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SOLITON EQUATIONS AND JACOBIAN

VARIETIES
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Abstract

The structure of the orbits of the dynamical system defined by the total KP hierarchy is studied. It

is shown that every orbit is locally isomorphic to a certain cohomology group associated with a

commutative algebra. The KP dynamical system restricted to each orbit determines a dynamical

system of linear motions on it with respect to the linear structure of the cohomology group.

Remarkably, it is proved that an orbit is finite dimensional if and only if it is essentially a Jacobian

variety of an algebraic curve. Using this fact, the problem of characterization of Jacobians among

Abelian varieties (Schoίtky Problem) is solved. It is also shown that our cohomology group

describes complete families of iso-spectral deformations of linear ordinary differential operators.
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Introduction

The purpose of this paper is to describe the geometric structure of solutions
of soliton equations. It is well-known ([4], [6], [7]) that some algebraic curves
solve soliton equations. For example, every hyper-elliptic curve gives a solution
to the Korteweg-de Vries equation

(1) ut--^uxxx
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where u = u(x91), ut= jf and ux = §^. Moreover, it is known that any

algebraic curve gives a solution to the Kadomtsev-Petviashvili equation

(2) K
for u = u(x, y, t). A solution which comes from a non-singular curve is called

a quasi-periodic solution. If the curve is rational with only ordinary double

points, then the corresponding solution is a soliton solution. Furthermore, if the

curve is unicursal, then it gives a rational solution. The soliton number of a

soliton solution is nothing but the virtual genus of the corresponding singular

curve, and hence its time invariance is obvious. Every quasi-periodic solution

determines a dynamical system of a linear flow on the Jacobian variety of the

corresponding curve. So the time evolution defined by (1) or (2) is very simple

on these Jacobian varieties. They are just linear motions, even though the

defining equations are nonlinear differential equations. Now we can ask the

following questions. Why do curves and their Jacobians appear as solutions to

soliton equations! Why do nonlinear equations such as (1) and (2) determine

dynamical systems of linear flows! Are there any other solutions of soliton

equations which do not come from algebraic curves!

I would like to give an answer to these questions in this paper. We will deal

only with the KP equation because it is known that it generates several soliton

equations such as KdV, modified KdV, Boussinesq and so on ([2], [12]). We

consider, however, not only the single equation (2) but also the system of total

hierarchy of the KP equations, because the geometric structure of soliton

equations becomes much clearer when we deal with the total hierarchy ([2],

[8]). Now let X be the space of all formal solutions to the KP hierarchy. Since

the total hierarchy involves infinitely many time variables tl9t29t3,— , the

infinite dimensional vector group T = lim^ Kn acts on X to make it into a

dynamical system {X,T\ where K denotes either the real number field R or

the complex number field C. The structure of the KP dynamical system (X, T)

was studied first by M. Sato [12] and later by his colleagues [2]. According to

Sato [12], every subdynamical system of {X, T) corresponds to a distinct

soliton equation and its orbits correspond to the solutions of this soliton

equation.

In this paper we study the geometric structures of orbits of the KP

dynamical system. We prove that every orbit of (X, T) is locally isomorphic to

a certain cohomology group Hι(A) defined by a commutative algebra A which

is essentially a commutative algebra consisting of mutually commuting linear

ordinary differential operators. We give a classification of all the orbits of

(X, T) in terms of these commutative algebras. Let us note that every orbit of
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(X, T) has a linear structure induced by the natural linear structure of the
cohomology group Hι(A). It is remarkable that the dynamical system re-
stricted on each orbit determines just linear flows with respect to this linear
structure. Moreover, if the orbit is finite dimensional, then it is essentially a
generalized Jacobian variety! Thus we have obtained the following situation:
All the Jacobian varieties appear as orbits of the KP dynamical system. But no
other general Abelian varieties appear in this stage, because every finite
dimensional orbit should be a (generalized) Jacobian variety. This enables us to
give a characterization of the Jacobian varieties among all the Abelian varie-
ties. This problem has been long known as the Schottky Problem ([10], [14]). I
would like to propose an answer to this problem in the following manner: An
Abelian variety is a Jacobian variety if and only if it can be an orbit of the KP

dynamical system. In connection with Novikov's conjecture (cf. [11]), we can
say that an Abelian variety is a Jacobian variety if and only if its Riemann
theta function solves the total hierarchy of the KP equation.

The algebras which will be used in the classification of orbits of the KP
dynamical system are subalgebras of the field ^((λ" 1 )) of quotients of the
formal power series ring ^[[λ"1]] in one variable λ"1 having no negative order
elements. It turns out that such algebras are realized as algebras consisting of
mutually commuting linear ordinary differential operators. There has been a
long history in studying commuting ordinary differential operators since
Burchnall and Chaundy [1]. What is interesting here is that every such algebra
studied by them can be embedded into the commutative field ^((λ" 1 )) as a
subalgebra. The variable λ is identified with the differential operator d/dx in
x. We can associate a cohomology group Hι(A) with a subalgebra A of
^((λ" 1 )) satisfying the condition

A CλK[[\-1]] -X~l = 0 .

Our cohomology group describes not only the local structure of each orbit of
the KP dynamical system but also the family of all the possible infinitesimal
iso-spectral deformations of a given linear ordinary differential operator. Let L
be a linear ordinary differential operator. Then we can construct a complete
family of infinitesimal iso-spectral deformations of L on the cohomology group
Hι{A), where A is the image of the embedding into ^((λ" 1 )) of the commuta-
tive algebra consisting of all linear ordinary differential operators which
commute with L. The problem of finding all the possible deformations of L
leads us to the KP hierarchy.

This paper is organized as follows. We describe a representation of com-
mutative algebras of ordinary differential operators into ^((λ" 1 )) to study
their algebraic structures in §1. In §2, we introduce the cohomology groups and
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give their algebro-geometric realization when they are finite dimensional.
Actually, our cohomology group Hι(A) is isomorphic to Hι(C, Θc) of a
complete algebraic curve C defined over K which is a one-point completion of
the affine curve Spec(Λ). The iso-spectral deformations of ordinary differential
operators are studied in §3. In the process of determining all the possible
deformations, we introduce the KP hierarchy as a system of deformation
equations. The algebraic structure of the KP hierarchy is studied in [8] and its
results are extracted in §4 without giving proofs. In §5, which constitutes the
core of this paper together with the next section, we give the classification of
orbits of the KP dynamical system in terms of commutative algebras studied in
§1. The structure of finite dimensional orbits is studied in §6. Each of them is
an open subset of the generalized Jacobian variety (or the connected compo-
nent of the Picard variety)

Pic°(C) = Hι(C, Θc)/Hι(C,Z)

associated with a complete algebraic curve C defined over K. A proposed
solution to the Schottky Problem is given in this section.

I deal only with formal solutions in this paper. But every formal solution of
the KP hierarchy corresponding to a finite dimensional orbit converges abso-
lutely to give a globally defined meromorphic solution. The study of conver-
gent solutions requires more lengthy machinery, and so is omitted in this
paper. The convergence condition of formal solutions and the topology of the
solution space will be given elsewhere.

I would like to thank Professor Mikio Sato for introducing me to the current
subject. Actually, I was deeply inspired by his beautiful lectures [13], which are
unfortunately unpublished. The idea of classifying orbits of the KP dynamical
system by using commutative algebras is essentially due to him.

My special thanks are due to Deborah DeWitt for her careful correction of
my English and for typing the manuscript.

List of notation.

Z = the set of all the integers.
N = the set of all nonnegative integers.
K[x] = the ring of all the polynomials in x with coefficients in K.

] = Λe ring of all the formal power series in x with coefficients in K.

1. The representation of commutative algebras

of ordinary differential operators

In this section we study the algebraic structure of commutative algebras
consisting of linear ordinary differential operators and give their simultaneous
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representations (i.e. injective Λ -̂algebra homomorphisms) into the universal
commutative algebra.

First of all let us determine our stage. We fix an arbitrary field K of
characteristic zero throughout this paper. As a function space we take a
commutative differential algebra R defined over K with the unity 1 and a
derivation 3: R -> R satisfying the following conditions:

(i) R is closed under indefinite integration, i.e. for every f ^ R there exists
g G i ? such that dg = /,

(ii) R is closed under exponentiation, i.e. for any / E R the expression
Σ™=of"/n\ gives an element in R.
An element r E R is called a constant of R with respect to the derivation 3 if
dr = 0. We denote by Rconst the set of all the constants of R.

A typical example of such a differential algebra is the ring R = K[[x]] of all
the formal power series in one variable x together with the derivation 3 = d/dx.
If K is a normed field such as the real number field R or the complex number
field C, then the convergent power series ring also gives an example. In both
cases the set Rconst of all the constants coincides with the basic field K.

The Lie algebra D of all the ordinary differential operators with coefficients
in R is defined by

( finite

Σ w

To calculate fractional powers of elements in Z>, we need to introduce an
extension of D. So we define the Lie algebra E of all the formal ordinary
micro- (i.e. pseudo-) differential operators with coefficients in R by

Σ
— 00 <V<^ + 00

The extended Leibniz rule

pv e R, v is bounded from above

gives an associative algebra structure in E, hence it has a natural Lie algebra
structure, where 9" / denotes the composition of two operators 3" and / in E
and 3'/denotes the zth derivative of/which is an element in R.

An element P e E has order v if its coefficient of 3" is nonzero and every
coefficient of 3μ with μ > v is zero. We denote v = ord(P). Let E{v) be the set
of all the elements in E of order at most v. Then we have a left ^-module direct
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sum decomposition

(1.1) E = D® E(1).

According to this decomposition, we write

(1.2) P = /> + +P_,

where P is an arbitrary element of E, P + e D is its differential operator part
and P_£ £ ( - 1 ) is its negative order part. This decomposition is essential in
our theory.

The set Rconst((3"1)) of constant-coefficient operators gives a maximal
commutative A^-subalgebra of E. What we want to do is to construct a
representation (AΓ-algebra isomorphism) from every commutative A^-subalgebra
inD into R^dd'1)).

Now let B c D be a commutative AΓ-subalgebra with the unity 1. From now
on, we always assume that B has at least one monic (i.e. the top order
coefficient is the unity) differential operator of order greater than zero. This
assumption is not a severe restriction because in usual cases, in which R is the
formal or convergent power series ring, we can construct a monic differential
operator from an arbitrary one by changing the independent variable x
suitably.

We identify two commutative algebras Bλ and B2 in D if there exists an
invertible element r ^ R such that

Bx = r- B2 - r~ι.

Since we required R to be closed under integration and exponentiation, we can
always assume the following.

Assumption 1.1. The commutative subalgebra B in D has an element of the
form

(1.3) dn + bn_2d"~2 + bn_3d
n'3 + ••• + &<>

withn > 1.
Lemma 1.1. For every commutative subalgebra B c D satisfying Assumption

1.1, there exists a K-subalgebra A in Rconst((θ"1)) with the property

(i 4) ^ o m i ^̂ o}
and a K-algebra isomorphism

Proof. Let us take a monic element Ln e B of the form (1.3) and set
L = (Ln)

ι/n e £ , which is of the form

L = 3 + w , ^ - 1 + u_2d~2 + ••• .
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According to Lemma 4.1 which we will prove in §4, there is an invertible
integral operator

S = 1 + 5_13-1 + s_2d~2 + • e 1 + E(~l)

such that L = S d S~\ Now define A = S~ι B S. It is evident that A is
isomorphic to B as a ^-algebra. So let us prove that A is contained in

Take any P <Ξ B. Since [P, LJ = P Ln - Ln P = 0, we have

[S- 1 P 5,3] = S 1 [ P , S θ S"1]S' = S~ι[P,L]S = 0.

This proves that Λ c Rconst((d~1)). Since the inner automorphism of E by 5
does not change the order of operators in E, A has no negative order element.
Hence (1.4) holds, q.e.d.

Remark. This isomorphic representation is not unique because it depends
on the choice of Ln e B.

By this lemma, the problem of studying the structure of commutative
algebras consisting of ordinary differential operators is reduced to that of
studying ^-subalgebras in Rcon^({^~1)) with the condition (1.4).

Let us now consider the converse. Suppose we have a subalgebra A c
K{{d~1)) with the condition

A C λ K [ [ d - 1 } ] - d ~ x = { 0 } .

We want to find an integral operator S so that

(1.6) S A- S1 aD.

Let L = S θ 5" 1 . Then (1.6) is equivalent to

(1.7) b(L)<ΞD ϊorcweryb(d)(ΞA<zK((d-1)).

If we write

L = d + u _ ι d - 1 + u _ 2 d ~ 2 + ••• ,

then the condition b(L) e D by an element b(d) e A of order n implies that
every uv with v < -n is determined by a differential polynomial in

Lemma 1.2. Condition (1.7) reduces to only finitely many nonlinear ordinary
differential equations on finitely many unknown functions M_1,M_2, ,w_ra+1

for some m > 0.
Proof. Take a monic element a(d) ^ A of the lowest order m > 0. By the

condition a(L) e D, (m - 1) functions w_1? w_2, ,w_m+1 determine all the
rest of the coefficients of L completely. As we will see in the next section, there
is an algebraic relation fb{a, b) = 0 for every b = 6(9) e A, where/6(β, 6) is a
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polynomial in a and b with coefficients in K. Let b(L) = 6(L) + + b(L)_ be
the decomposition of Z?(L) e £ into the differential operator part b(L)+^ D
and the negative order part Z?(L)_e ZJ*"1).

Now let us impose sufficiently many but only a finite number of differential
equations on w_x, w_2, * ,w_m+i so that b(L)_ is of order — r. We can make
this r sufficiently large such that

(1.8) r>m,

(1.9) fh(a(L

Comparing the negative part of

0= [a(L),b(L)] =

we obtain

0 =

This implies that the top order coefficient c of b{L)_ is constant because
is a monic differential operator. Now look at the top order coefficient of

It is zero because fb(a(L), b(L)) vanishes identically. On the other hand it is a
nonzero constant times c because the top order coefficients of a(L) and b(L)+

are both constant. Therefore c = 0. This means that b(L)_ vanishes identi-
cally. Since A is a finite #[tf(3)]-module (see Corollary 2.1), condition (1.7)
can be reduced to only finitely many ordinary differential equations for
M_X, u_2,'-,u_m+ι. q.e.d.

Example. If we take A = i φ 2 , 3 3 ] c /^((θ"1)), then condition (1.7) re-
duces to only one ordinary differential equation for only one unknown
function u_x:

d2u_λ + 6K?.! = 0.

Still it is not clear whether our system of ordinary differential equations
which is equivalent to (1.7) has a solution or not in general. This inverse
problem, however, was studied by a quite different approach. As we will show
in the next section, the algebra A determines a complete algebraic curve C over
K. Then one might construct a commutative algebra

B = S A S 1 czD

by using an algebro-geometric technique on the curve C. However, since it has
been studied in detail by several people ([1], [4] and [9]), we will not discuss
this problem here any more.
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2. The first cohomology group and its geometric realization

In this section we study the algebraic structure of each unitary ΛT-subalgebra
A in K((d~1)) with the property

(2.1) Anκ[[d-ι]] d-ι = {0}.

We define the first cohomology group Hι(A) associated with A and give an
algebro-geometric realization of this cohomology group. We denote by sf the
set of all the unitary #-subalgebras in ^((θ" 1 )) with the property (2.1).

Lemma 2.1. Every A e s/has a K-linear basis with indices in
NA = {n e N| 3P e A such that ord(P) = n).

Proof. Since A is a ^-algebra, there is a monic element Pn in A of order n
for every n e NA. We put Po = 1. Let us prove that {Pn\n e NA) forms a
AΓ-linear basis of A.

Take an arbitrary P ^ A and let ord(P) = m. If m = 0, then P e ί b y
(2.1). Hence P = P Po. So suppose that m > 0 and that every element in A of
order less than m can be represented as a A -̂linear combination of Pn's for
n < m. Let c e # be the top order coefficient of P. Since the order of P — cPm

is less than m, it is a linear combination of Prt's for n < m. Therefore P can be
represented as a K-linear combination of PM's for n < m.

Lemma 2.2. /w eι> ery ^ G J / , there exists a number r e N αz/fed /Λe rank of
A and a finite subset F c N such that

(2.2) Λ ^ = r ( N - F ) .

Proof. For every integer m and n in N, we denote by GCD(m, n) their
greatest common divisor. The rank r of A is defined by

r = min{GCD(ord(P),ord(ρ))|P,ρ <= A).

By this definition, A^ c rN holds. If r = 0, then Λ = if and F is arbitrary. So
we assume that A has at least one element of order greater than zero. Take
P e A of order m and g e yl of order w so that r = GCD(m, «). Let m = mV
and n = n'r. We want to show that kr e A^ for every fc » 0 (sufficiently large
k e N). Now choose positive integers α and b so that r = am - bn. Let
M = bm'n. Then we obtain

M = m'bn = oτd(QmΊy) e Λ ,̂

M + Γ = am + (mr - 1)6Λ = ord(P* ρ^'"1)*) e NA9

M + 2r = lam +(m r - 2)bn = ord(P2a Q^'-2^) e NA9

M + m'r = m'am -h(mr - m')bn = oτά{Pma) e A .̂
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Since

M + /m = ord(i>/ Qm'b)<ΞNA

for every / > 0, we can conclude that M + kr ^ NA for every k > 0. We define
f = {/^ N| /r € iV^}. Then Fis a finite set and satisfies (2.2).

Corollary 2.1. Lei P and Q be elements in A e jtf of positive rank r such that
r = GCD(ord(P),ord(0).

(ii) A is a finite K[P]-module. Moreover there is a nontrivial polynomial
/ (* , y) e * [ * , y] such thatf(P, Q) = 0.

Proof. Note that #[/>, β] ^ ^ and K[P,Q](zA. We can construct a
ΛMinear basis of A with indices in (NA — NK[PQ]) U NK[P Q]. Since we have
proved that NA - NK[P Q] is finite, the statement (i) holds. Applying Lemma
2.1 to K[P, Q]9 we conclude that P and Q satisfy an algebraic relation
/ ( P , β ) = 0. q.e.d.

Thus we know that every A ^jtf has transcendence degree one over K if
A Φ K.

Definition 2.1. The cohomology group Hλ(A) of A e j / i s defined as the
first cohomology group of the following complex:

0 -> A θ ^ [ [ θ " 1 ] ] θ- 1 -> ^ ( ( θ " 1 ) ) -> 0.

In the rest of this section we study an algebro-geometric realization of this
cohomology group. Let us first associate a complete algebraic curve defined
over K with an algebra A e s/. So define

Note that A(v) = 0 for all v ^ - 1 and Aφ) = K by (2.1). Let / denote the
identity operator 1 e Λ. We introduce a new valuation called degree in A as
follows:

(ii) every element in K - {0} has degree zero,
(in) deg(P) = ord(P) for every P £ A of order greater than zero.

Now define a graded A -̂algebra by
00

(2.3) gτ(A)= φAn9
n = 0

where

An = ^ ( w ) φ yl^-1) / φ A(n~2) -12 Φ φ Λ(0) /".

This graded algebra defines a complete algebraic variety

(2.4) C = Proj(gr(Λ))
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over K. Since A is a finite K[P]-modu\e for some monic element P e A9 gr(A)
is finite over K[I, P]. Hence C is one-dimensional over K.

Following Mumford [9], our curve C is covered by two affine open sets

D+(I) = affine open set defined by / Ψ 0

= Spec(gr(Λ)[ j ] J = Spec(Λ),

D+(P) = affine open set defined by P Φ 0

Take another monic element Q e A so that

r = rank of Λ = GCD(ord(P),ord(β)).

Choose positive integers a and b such that r = aoτd(P) — boτd(Q) as before.
Then

Qb - ΓV
Therefore the completion of gr(^)[l/P] 0 in the /-adic topology is K[[Qb/Pa]].
Note that

Qb/Pa = d~r + (lower order terms) e ^ ( ( θ - 1 ) ) .

Now let us suppose r = 1. This is equivalent to the condition that requires
Hι(A) to be of finite dimension over K. Since

Qb/Pa = d~ι + (lower order terms),

we obtain

This shows that Qb/Pa gives a local coordinate of D+(P). Therefore C is a
one-point completion of the affine algebraic curve Spec(Λ) by a smooth
ϋC-rational point {Qb/Pa = 0} of C. We denote this point by oo.

Theorem 2.1. Suppose A has rank one. Then our cohomology group Hι(A) is

isomorphic to the cohomology group Hι(C, ΰc) defined on the complete algebraic

curve C with coefficients in the structure sheaf Θc of C.

Proof. Let us compute the cohomology group Hι(C, 0c) according to the
affine covering C = D+(I) U D+(P). We obtain

Hι(C, Θc) s T{D+(P) - oo, 0c)/[Γ(Z>+(/), 0c) + T(D+(P), 0c)\.
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We can compute the right-hand side in ^((θ" 1 )) because

T(D+(P), oc) c κ[[Qb/p°\] = * [[a-1]],

T(D+(P) - oo, Φc) c K{(Qb/P°)) =

Therefore,

H\C, Θc) ^ K((^))/{A + K[[^]\) = H\A).

q.e.d.
Now let us go back to commutative algebras consisting of ordinary differen-

tial operators. Let A be an element of s/oϊ rank one and let S e 1 + E(~l) be
an invertible integral operator satisfying

(2.5) B = S A - S~ι c D.

We can associate a graded A'-algebra gr(2?) with B as in (2.3). Similarly, D has
a graded A'-algebra structure gr(Z>). Then, gr(Z>) has a right gr(^4)-module
structure via (2.5). Since gr(D) is naturally a left ^-module, it has a module
structure over R ®κgτ(A) whose rank is precisely the rank r of A9 hence in our
case, one. In short, every S e l f £ ( - 1 ) satisfying (2.5) gives gr(Z>) a locally
free (R Θ^gr^XJ-module structure. Let«£? denote the corresponding rank one
sheaf over SpecR XKC. Note that the right 5-module structure of D and the
(R ®κΘc)~mod\ile structure of if on Spec/? X^C are in one-to-one corre-
spondence. Therefore we have an injective map

(2.6) {S e G/Gconst satisfying (2.5)} -> Hλ(SpccR Xk C, (P ),

where G = 1 + £ ( - χ ) and Gconst = { S e G|[5, 3] = 0}.

3. Iso-spectral deformation of ordinary differential operators

Let us consider the following problem: Find a complete family of infinitesimal
iso-spectral deformations of a given linear ordinary differential operator. Here by
complete family we mean a family involving all the possible infinitesimal
iso-spectral deformations. As for geometric structures defined on a manifold,
their deformations are usually described by certain first cohomology groups. In
our case, even though differential operators are different from geometric
structures on manifolds, the deformations are again related to a cohomological
structure.

In this section we show that the cohomology group defined in the previous
section describes an effective (i.e. smallest possible) complete family of infini-
tesimal iso-spectral deformations of a given ordinary differential operator. In
the rest of this paper, we always assume that Rconsi = K.



SOLITON EQUATIONS AND JACOBIAN VARIETIES 415

Let us start with a monic nίh order ordinary differential operator Ln e D of
the form (1.3). According to P. Lax [5], every one-parameter family Ln(y) of
infinitesimal iso-spectral deformations of Ln should satisfy the Lax type
equation

(3-1) d-

for some differential operator Z(y) depending ony e K. Therefore finding all
the possible iso-spectral deformations of Ln is equivalent to determining all the
permissible Lax type equations for Ln and to solve them.

Before talking about Lax type equations, we have to determine the deforma-
tion parameter dependence of elements in R, D and E. So we introduce the
following notations

We introduce the weighted degree in £% by defining deg tn = n. Note here that
$t satisfies the same conditions (i) and (ii) which we imposed on R in §1. The
space T of all deformation parameters tl9129 * * is defined by T= limnK

n

together with the inductive limit topology.

Let ${v) be the set of all operators in #of order at most v. Then correspond-
ing to (1.1) we have a left ^-module direct sum decomposition.

(3.2) *=9Θ*<-1\

We use the notation P+ for the differential operator part of P e <?and P_ for
its negative order part.

What we want to do now is to determine all permissible Lax type equations
for Ln. So let us look at (3.1). It is an equation in 3). We can also write it in ά>
level as follows:

(3.3) HLΛ/y

)γ/ =[z(y),(LΛy)Ϋ/n}.

Since the \/n power of Ln is of the form

the left-hand side of (3.3) is an element of £{~ι\
Definition 3.1. We call a first order monic operator in <f of the form

L = 3 + u_xd~ι + w_23~2+ •••

a Lax operator. For a differential operator P e 2 and a Lax operator L, the
pair (Λ L) is called a Lax pair if their commutator [P, L] = P L - LP
belongs to # ( ~ υ
p ( )
belongs to # (
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Let L be a Lax operator. Then for every n e N the pair ((£")+, L) is a Lax

pair since

[(L") + , L] = - [(L")_, L] e f ^ " 1 ) , ^ ] c *<-*>.

Lemma 3.1. Le/ Lfcί/ Lax operator and (P, L) be a Lax pair. Then P e S

is a linear combination of(Ln)+'s with coefficients in &const = constants in 9t with

respect to 3.

Proof. Suppose the lemma is true for all P e 2 of order less than n. Take a
Lax pair (P, L) with ord(P) = n. Since L is monic and [P, L] e # ( " 1 } , the top
order coefficient/>π of P is a constant. Hence {P - pn{Ln)+, L) gives another
Lax pair with ord(P - pn(Ln)+) < n. This proves that P is a linear combina-
tion of 1, ( L ) + ) ( L 2 ) + , ,(LΠ)+ with coefficients in ̂ c o n s t . q.e.d.

Thus we have determined all the candidates for the right-hand side of the
permissible Lax type equations (3.3) for a Lax operator L. Since we want only
independent infinitesimal deformations of L, we need not take any /-dependent
combinations but just A'-linear combinations of (L")+'s. The following system
of infinitely many Lax type equations is called the Kadomtseυ-Petviashvili
hierarchy and known as a generic system of several kinds of soli ton equations:

(3.4) | ^ = [(L") + , L ] , « = 1,2,3, .

Let us examine how this system (KP hierarchy) generates soliton equations.
First we note that the original Kadomtsev-Petviashvili (or 2-dimensional KdV)
equation

follows from the system (3.4). Secondly, if we impose an auxiliary condition
L2 e 3), then we immediately obtain from (3.4) the system

(3.5) ^ ^ = [(L 2 "- 1 ) + , L 2 ] , « = 1,2,3, ,

which describes the complete family of infinitesimal iso-spectral deformations
of the one-dimensional Schrόdinger operator L2 = 32 + 2w_x. This system is
nothing but the Korteweg-de Vries hierarchy which appeared in [5]. The
original KdV equation

-gf1 = 4 9 3 w ~i + 3u_ιdu_ι

follows from (3.5) by taking n = 2.

Similarly the auxiliary condition L3 e Ogives the total Boussinesq hierarchy,
and so on.



SOLITON EQUATIONS AND JACOBIAN VARIETIES 417

To get a deformation family, we have to solve (3.4). The initial value
problem of system (3.4) was solved in my previous paper [8] which is briefly
reviewed in the next section. For the given operator Ln e Z), we can solve (3.4)
with the initial value

according to Theorem 4.1 of §4. We denote by L(t) the unique solution
defined on T. Since the nth power Ln(t) = (L(t))n is automatically a differen-
tial operator by Lemma 5.1 of §5, we obtain a complete family Ln(t) of
infinitesimal iso-spectral deformations of Ln = Ln(0) defined on T.

The remaining problem is to eliminate the irrelevant deformation parame-
ters. In the KdV case, for example, all the even number parameters are
irrelevant because

Thus, some of the deformation parameters tl9t29t39- — might be irrelevant for
the given Ln. It is our cohomology group that picks up all the relevant
nontrivial deformation parameters.

Lemma 3.2. The set of all the differential operators in D which commute with
a given operator Ln e D is itself a commutative subalgebra of D.

Proof. Let B = { P e D | [ ? , L J = 0} and take an integral operator S e l
+ E{~1) such that

Then the argument in the proof of Lemma 1.1 shows that

Hence B is itself commutative.
Definition 3.2. Let Ln{yv y2, y3, ) be a family of iso-spectral deforma-

tions of Ln(0) depending on deformation parameters y = (yv y2, y3, ) e
Km, where m is a finite number or oo. Then the parameters yv y2, are
called effective if the K linear map from the tangent space TQ(Km) to E{~1)

defined by

.y-0

is injective.



418 MOTOHICO MULASE

Let A ^s/. We now want to construct a natural linear map from Hι(A) to

T. Since

H\A) = K((d~ι))/A Θ ̂ [[θ" 1]] θ ' 1

we can take finitely or infinitely many elements

(3.6) Λ,= E Λί7θ
y e # [ θ ] θ, / = 1,2,3,-

as a ίC-linear basis of Hι(A). Let y = (yl9 y2, y3, * * ) be the coordinate
system of Hι(A) with respect to the basis hv Λ2, . Then the canonical linear
map

(3.7) /:i/1(^)^^-/(7) = ^ ^

is defined by

(3.8) tj= ΣVi
/>1

This definition does not depend on the choice of a basis of Hι(A). Note that
the canonical linear map has maximal rank.

Theorem 3.1. Let B be the commutative algebra consisting of all the differen-
tial operators which commute with the given differential operator Ln e D of order
n and A ^s/ be its representation

A = S~ι - B SGK((d-ι))9

where S e 1 + E^~l) is an integral operator satisfying (Ln)
ι/n — S 3 5" 1 .

Let L(t) be the solution of (3.4) starting at L(0) = (Ln)
ι/n and let Ln(t) =

(L(t))n e 3). Then the family Ln(f(y)) defined on Hι(A) gives an effective
complete family of infinitesimal iso-spectral deformations of Ln, where f: Hι(A)
3 y •-* f(y) = t e Tis the canonical linear map.

Proof. This theorem follows directly from the results of §5. We have only
to prove that the orbit M of the KP dynamical system corresponding to L(t) is
an A -maximal orbit (in the notations given in §5). So it is sufficient to prove
that our A coincides with AM of (5.5). Let S(t) be a gauge operator of L(t)
satisfying the gauge equation (4.9) (see §4) and put B{t) = S(t) A S(t)~ι.
This algebra coincides with B at t = 0. Obviously, the commutative algebra BM

of (5.4) is contained in B(t) because every element in BM commutes with L(t).
So let us show the converse. Now take an element P(t) = S(t) a(d) ^ ( O " 1

e ΰ(O, where a(d) e A c K^d'1)). Since B(t)<z2, we have P{t) =
a(L(t)) = a(L(t))+. Hence we can write

finite
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where the an's are constants. By the KP hierarchy (3.4),

Σ an^p- = Σ an[L(t)l,L(t)\ = [P(ή, L(ή] = 0.

This means P(t) e BM. Therefore we can conclude that M is an A -maximal
orbit.

4. The algebraic structure of the Kadomtsev-Petviashvili equation

In [8] we gave a method for solving the initial value problem for the KP
hierarchy (3.4). Here we review briefly the results therein, without giving
proofs.

The key idea of the arguments in [8] is the linearization of the nonlinear
evolution equation (3.4). In that paper we gave a system of linear partial
differential equations with constant coefficients which is equivalent to (3.4).
Since all the solutions to this linear system are easily determined, we can solve
the original system (3.4). The basic tool we need there is the formal Lie groups
consisting of infinite order ordinary (micro-) differential operators. We use the
following notations:

pv e # , 3N <Ξ N, ord,(/>J > v - NVv » 0
*> = 0

= Σ ?, 3N e Z, oτdt(pv) > v - NVv » 0>,

where ord,(pv) denotes the order of pv as a formal power series in t e T. These
algebras are the formal completions of 2 and £ respectively. Their formal Lie
groups are defined by

Q G 1 + Eil\3Pι e<#},

where P\t=0 is the restriction of P at / = 0. The set G = 1 + E(~l) has a group
structure and we regard this as the formal Lie group of the Lie algebra E(~ι\
Similarly SP= 1 + £{~l) is the formal Lie group of the Lie algebra <${~ι\
Corresponding to the direct sum decomposition of the Lie algebra (3.2), we
have "a kind of" direct product decomposition in group level as follows;

(4.1) ix = ^-S)\

This means that for every U e ix, there exist unique elements S in ^and Y in

3)x such that

(4.2) U= S ι - Y.
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Lemma 4.1 [16]. For every Lax operator L e<? ( ~ 1 } , there is an integral

operator S e & called a gauge operator of L such that

(4.3) L = S 3 S " 1 .

Proof. Put L = 3 + w ^ θ " 1 + w_ 28" 2 + and solve (4.3) in S = 1 +

5 _ 1 3 ~ 1 + s _ 2 3 ~ 2 + •••. The equation is equivalent to the following system:

(4.4) 3 * , = - Σ Σ 7 k ( 9 V μ + / ) > " = - l > - 2 , - 3 , .

Note that the right-hand side involves only s_l9 s_2,
m

 ' J ^ + I - So we can solve

this system successively by taking indefinite integrals only once at each step to

determine all the coefficients sv of S.

Remark, (i) The proof is valid for L e E(l) to determine S e G satisfying

(4.3). We have used this fact in §1.

(ii) In each step of the integration of (4.4) we have one constant cv of

integration with respect to the derivation 3. So define

If S is a gauge operator of L, then so is S Sconst because

The gauge operator S Sc o n s t is a solution of (4.4) taking all the constants cv of

integration into account. Conversely, if Sx and S2 are gauge operators of the

same L, then there exists 5 c o n s t e ^with [ 5 ^ ^ , 3] = 0 such that 5 2 = Sλ Sc o n s t.
L e t ĉonst = i s e ^[S 1 . 9 ] = °} τ h e n t h e L a x operator L e # ( 1 ) determines a

unique element in ^ / ^ c o n s t and vice versa. Therefore we identify ^ / ^ c o n s t with

the set of all Lax operators. Similarly we identify G/Gconsi with the set of all

monic first order operators of the form 3 + w_13~1 + w_ 2 3~ 2 + ••• e £ ( 1 ) .

Zakharov and Shabat [18] wrote equation (3.4) in terms of zero curvature

condition. Let us introduce the Zakharov-Shabat connections of L:

(4.5) Z£ = ± Σ (L")± dtn.
n = \

Then the Lax equation (3.4) for the KP hierarchy can be written as

(4.6) dL=[Zl,L],

where d denotes the exterior differentiation on T. Since [Z^, L] = [Z[, L], we

have an equivalent equation

(4.7) dL=[Z-L,L\.
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Under the definition (4.5), (4.6) or (4.7) is equivalent to the Zakharov-Shabat
equation

(4.8) dZ±-$[z±,Z±]=0.

M. Sato [13] and G. Wilson [17] have introduced independently an equation on

the gauge operator S e ^equivalent to (4.6):

Lemma 4.2. A Lax operator L e ^ ( 1 ) satisfies (4.6) if and only if there exists

a gauge operator S e &of L satisfying the gauge equation

(4.9) dS = ZZ - S.

Now we can recall the main theorem of [8].

Theorem 4.1 [8]. We can solve the initial value problem for the KP hierarchy

(4.6) by the following procedures'.

Start with a given initial data L(0) e G/G c o n s t . By calculating infinitely many

successive indefinite integrals, we obtain an integral operator S(0) e G satisfying

L(0) = 5(0) 3 S(θy\ Now define

(4.10) U(t) = exp(/x3 + t2d
2 + tβ3 + ) S(0)~ι e Sx.

Let S(t) be the &-part of U(t) according to the decomposition (4.2). Then the Lax

operator L(t) = S(t) θ S(t)~ι gives the desired solution of (4.6) with the

initial value L(t)\t=0 = L(0).

By this theorem we see that the solution space of (4.6) is nothing but the

space G/Gcomt of initial data. The KP hierarchy (4.6) determines an infinitesi-

mal dynamical system on it with the infinite dimensional additive time group T

acting on it, which we call the KP dynamical system and denote by (G/G c o n s t , T).

5. The classification of solutions of soliton equations

From the point of view of M. Sato [12], the KP hierarchy (3.4) or (4.6) is a

defining equation of the KP dynamical system on the solution space G/Gcomv

and all its subdynamical systems correspond to distinct soliton equations and

every orbit of them gives a solution of these soliton equations.

In this section we give a classification of all the orbits of the KP dynamical

system in terms of the commutative algebras and their cohomology groups

studied in §§1 and 2.

Lemma 5.1. For every algebra A in s/, the condition S A - S~ι c D

imposed on S e G = 1 + E(~l) is time invariant. Namely the unique solution
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5(0 e & of the gauge equation (4.9) which starts at 5(0) = 5 satisfies the same
condition S(t) A S(t)~ι c 3).

Proof. Let U(t) = S(t)~ι - Y(t) be the decomposition of the operator

U(t) = exp(/j3 + t2d
2 + /33

3 + ) 5(0)~*

of (4.10) according to (4.2). Since Y(t) belongs to 3X and the operator
expί^θ + t2d

2 + ) commutes with A, we have

Every element in S(t) - A - S(t)~ι is of finite order, hence this set is contained
in 9>. q.e.d.

Thus the set

XA = ( 5 e G|S A - S~λ c £)}

is a time invariant subspace of G. Let

(5.1) Λf, = [L = 5 3 S-*\S e Z,} c G/Gc o n s t.

We call (XA,T) the subdynamical system of the KP dynamical system defined
by A e / By definition, if A <z A' for A and Λ' in s/9 then ̂  D Λ ,̂. An orbit
of (XA, T) is called an A-maximal orbit if it is not contained in any smaller
subdynamical system (XA,9 T) of A' J A, What we want to show first is that
every A -maximal orbit of the KP dynamical system is locally isomorphic to the
cohomology group Hι(A) oϊA 6 /

Lemma 5.2. Let L(t) be a solution to the KP hierarchy (4.6) corresponding to

an A-maximal orbit in (G/GconsV T) and let S(t) be a gauge operator of L(t)

satisfying the gauge equation (4.9). Then the algebra A can be recovered by

A = [S(θyι a(L(0))+. S(0)\a(d) e ^((θ"1)), [a(L(0)) + 9 L(0)] = θ}.

Proof. Take an arbitrary element a(d) e A c ^((θ" 1 )). Since 5(0) .4
c D, a(L(0)) = 5(0) a(d) S(0)~ι coincides with a(L(0))+. Hence

we have a(L(0)) = 5(0)~1 α(L(0))+ 5(0) and [a(L(0))+9 L(0)] = 0.
Conversely, suppose an element a(d) e ^((θ" 1 )) satisfies [α(L(0))+, L(0)]

= 0. Since it means [5(0)"1 a(L(0))+ 5(0), 3] = 0, S(0)~l a(L(0))+- 5(0)
) " 1

is an element in /^((S"1)). Now let A' = ̂ [5(0)" 1 a(L(0))+ 5(0)] = the
symmetric algebra generated by 5(0) - 1 a(L(0))+- 5(0) over A. This is also an
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element in s# and satisfies 5(0) A' S(0)~ι c D. Therefore the orbit de-
termined by L(t) is contained in the subdynamical system {XΛ,9 T) of A' D A.
But we assumed that this orbit was an A -maximal orbit of(XA9T). Hence A'
must coincide with A. This means S(O)"1 a(L(0))+- S(0) e A. q.e.d.

Now let MA denote an A -maximal orbit of {XA9 T) defined by A e J / and let
L = L(/)bea corresponding solution of (4.6) starting at L(0) e MΛ. First we
note that every AΓ-basis 3M of AT[3] 9 corresponds to a distinct time evolution
of L via the Lax type equation

where S = £(*) is the corresponding solution of the gauge equation (4.9). We
also know by Lemma 5.2 that every element a e A corresponds to a trivial (or
stationary) time evolution because [(S a S~λ)+, L] = 0. Therefore our
cohomology group H\A) represents the effective time evolutions.

Definition 5.1. A subspace Y c Tcontaining 0 e Γis called an L-effectiυe
parameter subspace of Γif the linear map from T0(Y) to E(~l) defined by

is injective.
Lemma 5.3. The image Y = f(H1(A)) c T of the canonical linear map /:

Hι(A) -> T o/(3.7) gwej α« L-effectiυe parameter subspace of T of the maximal
dimension.

Proof. Let A,. = Σy=ι h^V e i^[θ] (ι = 1,2,3, ) be a basis of H\A) as
in (3.6) and let

(5.2) ^ . ^ L e ^ y ) ,

where >Ί, .y^ J ^ " # a r e ^ e coordinates of Hι(A) with respect to the basis

Ax, A2, A3, . Then the KP hierarchy in terms oίyl9 yl9 y39 — ' is given by

(5.3) P =

Suppose there is a if-linear relation

,?• = 0
f - 0
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with some constants ci e K. Then by the KP hierarchy, we have

= 0.

Then Lemma 5.2 says that Σ ; cihi + (suitable nonpositive order terms) belongs
to the algebra A. Hence Σ, cihi = 0 as an element in Hι(A). Therefore every
coefficient c, vanishes. This proves that Y = f(Hι(A)) is an L-effective param-
eter subspace of T.

Now take any

^ = Σkj^^T0(T)-T0(Y).

By definition, ΣjkjdJ corresponds to the zero-element of Hι{A), hence it
belongs to A/(K[[d~1]] Π A). Then again by Lemma 5.2,

dy
,L = 0.

ί = 0

This shows that the L-effective parameter subspace Y = f(Hλ(A)) has maxi-
mal dimension in T. q.e.d.

Now we consider dL/dtn\ΐ=0 an element of the tangent space TL(Q)(MA) of
the A -maximal orbit MA corresponding to L(t) at L(0) e M .̂ Then we have
an isomorphism from H\A) to TL(Q)(MA) defined by

T0(f(H\A))) B fy dy
TLΦ)(MA).

Note that this isomorphism does not depend on the specific point L(0) e M .̂
Thus we conclude that MΛ is locally isomorphic to Hι(A). We can take the
coordinates yl9 y2, y3, of Hι(A) as a local coordinate system of MA near
L(0). Therefore the time evolution of L(t) e MA described in terms of the
local coordinates yl9 y2, y39 is linear in t <Ξ Γ! Thus we have obtained the
following.

Theorem 5.1. Every A-maximalorbit MA in the subdynamicalsystem (XA,T)
of the KP dynamical system defined by A E i is locally isomorphic to the
cohomology group Hι(A) of A and the dynamical system restricted on MA defines
a dynamical system of linear motions with respect to the linear structure of
H\A).

We now consider the converse direction. Let L be a solution of (4.6) which
corresponds to an orbit M of the KP dynamical system and let S be a gauge
operator of L satisfying the gauge equation (4.9). Then L defines an onto linear
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map h:T0(T)^TL(0)(M) by

We define

(5.4)

425

BM = Λ>subalgebra of 2 generated by

finite

Σ Cn(L") +
« = 1

finite

n = \

Lemma 5.4. This algebra BM is a commutative subalgebra in 3). Moreover, if
we define A M by

(5.5) AM = S~ι BM-S,

then this is an element ofs/.
Proof. Let

f) f i n i t e r\4 = 1 ^ 4 (/-1,2,3,-..)

be a basis of Ker(Λ). We associate an element Z, = Σ 7 C/7 ( L 7 ) + G 3) with each
of them. Since 3L/3jλ|/=0 = 0, we have ΘZ/y9.y/|/=o = 0 for every w G N.
Taking its differential operator part, we obtain

r\ 7

= 0 for every / andy.

Then by the Zakharov-Shabat equation (4.8),

3Z,
= 0.

r=o
Since BM = K[ZX, Z2, Z3, ], we know that it gives a commutative subalge-
bra 5 W | , = O c ί>atί = 0.

Now let us turn to the algebra

A M = S-1 • B M • S = KlS-1 • Z 1 - S , S ~ 1 - Z 2 - S , - - - ] .

By the gauge equation ΘS/θί, = - ( L y ) _ S, we obtain
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Since we want to show that Γ ' - Z - S e ί ^ " 1 ) ) , let us first claim that
S'1 3S/3j, does not depend on t e T. Indeed,

3

- 1 9 5 - 1 9 ((τnλ ? ϊ

- 1 9 S - 1 *Λ ^

= 0,

and similarly all higher derivatives in t vanish at t = 0. Now [S~ι ΘS/Θ^ , θ]

vanishes at / = 0 because

S~ -T— , 3 = 5 " I ̂ 77 S~ ,

dy,

and 3i/3_v ( | ί = 0 = 0. But since S~ι 3S/θj, does not depend on t, we con-

clude that [ S " 1 3iSy3j>,, 3] vanishes identically. Hence

is an element of K((d x)) for every /. Therefore BM = K[ZV Z 2 , ] is a

commutative subalgebra in 3f and ylM = S~ι 5 M S is an element of J / .

q.e.d.

Thus every orbit M of the KP dynamical system determines an algebra

AM E:sέ. Note that AM does not depend on the choice of a specific point

L(0) G M. It is easily verified that M is nothing but an ^^-maximal orbit of

the subdynamical system (XA ,T) defined by AM. Now we have obtained the

classification theorem of all the orbits of the KP dynamical system.

Theorem 5.2. For every orbit M of the KP dynamical system there exists a

unique commutative algebra A e sέsuch that the subdynamical system (XA,T)

defined by A contains M as an A-maximal orbit. Thus all the orbits of the KP

dynamical system and elements of s/are in one-to-one correspondence.
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6. Finite dimensional orbits of the KP dynamical system

and a characterization of the Jacobian varieties

We have seen so far that every orbit of the KP dynamical system is in
one-to-one correspondence with an algebra in J / and that the cohomology
group of this algebra determines the local structure of the orbit. In the present
section we describe the slightly more detailed structure of every finite dimen-
sional orbit in terms of algebraic geometry. As a by-product, we give a
characterization of all the Jacobian varieties among all the Abelian varieties
defined over an algebraically closed field of characteristic zero. The problem of
the characterization of Jacobian varieties among Abelian varieties is called the
Schottky Problem ([10], [14]) and has long been unsolved. Our solution to this
problem using the KP hierarchy is somewhat similar to the statement of
Novikov's conjecture (cf. [11]), however, what is quite different is that we use
the total KP hierarchy instead of the original single KP equation. Dubrovin [3]
has also obtained a partial solution to this problem, but our method and result
are completely different.

In this section we restrict ourselves to the case of R = K^x]]. As we have
noted in §2, the cohomology group Hι(A) of A e sfis of finite dimension if
and only if the rank of A is one. Therefore every finite dimensional orbit of the
KP dynamical system corresponds bijectively to a rank one algebra in sέ. What
we want to show here is that these finite dimensional orbits are essentially

Jacobian varieties of complete algebraic curves.

So let us start with a finite dimensional orbit M of the KP dynamical system.
Let L = L(t) be its corresponding solution of the KP hierarchy (4.6) and let
S = S(t) be a gauge operator of L satisfying the gauge equation (4.9) as
before. As is shown in §5, M determines an algebra A e sf which is of rank
one. Since

is a commutative subalgebra in @>, S> has a left ^-module and a right y4-module
structure via Bs c 3). The rank of S> over 8% ®KA is one. The argument in §2
proves that our solution L defines a line bundle&= ^f(t) over Spec3tXκC,
where C denotes the complete algebraic curve defined in §2. Let Jt be the
maximal ideal of R = K[[x]] generated by x. Then we can restrict the line
bundle & (t) o n ( l x η x C = Γ X C which we denote by JSfo(/). This is a
deformation family of a line bundle on C with parameters in T. Thus we have
a formal map

(6.1) T^t^^iήtΞH'iCΘ*).
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Let dimκ Hι(A) = dim KH\C, Θc) = g. According to §3 we can take a
coordinate system^, y29- ,j>g of Hι(A) so that the canonical linear map/of
maximal rank from Hι(A) to Γis defined by

>,= Σ * , yΛ> y = l,2,3, ,
1 = 1

as in (3.8). As we have seen in §5, these j ^ , j 2 r * 'Jg

 a r e effective deformation
(or time evolution) parameters of the solution L(t) via/. Composing these two
maps, we obtain a local isomorphism

Since every point L(t) e M determines injectively a line bundle J2?0(0
//HC 0*), we can conclude here that the map

sends the orbit M into Hι{C, Θ*) as an open subset. More precisely, every
finite dimensional orbit M is contained in Pic°(C) = Hι(C9 Θc)/Hι{C,Z) c
Hι{C, 0*) as an open set. Since Pic°(C) has a natural linear structure which
comes from Hι(C, Θc), the flows on M defined by the KP dynamical system is
still linear with respect to the linear structure of Pic°(C). Thus we have
obtained the following.

Theorem 6.1. Every finite dimensional orbit of the KP dynamical system is an

open set of the Picard variety {or the generalized Jacobian variety) Pic°(C) of a

certain complete algebraic curve C over K defined by an algebra in ^correspond-

ing to the orbit and the KP dynamical system restricted on this orbit determines

linear flows on it with respect to the linear structure c/Pic°(C).

Remark. Every complete algebraic curve determines an algebra A G j/if it
has a smooth ^-rational point. Indeed, let C be a curve with a smooth
^-rational point oo on it and let z be its local coordinate near oo such that
(z = 0} defines the point oo. Then Laurent series expansion in z gives us a
map Γ(C - oo, Θ) <-» K((z)). Let A be its image. Then

AΠK[[z]] =Γ(C,ΦC) = K.

If we write 9" 1 instead of z, the commutative subalgebra A c K((d~x))
becomes itself an element of J / .

What is important here is that if K is algebraically closed, then every
generalized Jacobian variety appears as a finite dimensional orbit of the KP
dynamical system, but no other Abelian variety does:

Corollary. An Abelian variety defined over an algebraically closed field of

characteristic zero is a Jacobian variety of a certain algebraic curve if and only if

it can be an orbit of the KP dynamical system.
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M. Sato [12] and his colleagues [2] have introduced the notion of the

τ-functions for the KP hierarchy. To define τ-functions in our context, we need

some new notations. First, we denote

= /_θ_ j . _ 3 _ j . _ 3 _

' \ 3*1' 2 3 ί 2 ' 3 3 / 3 ' " "

Secondly, we introduce polynomials/?„(7) in K[tl9tl9 t39 ] by

Definition 6.1. Let τ(t) be an invertible element of K[[tl912, t39 * * * ]].

We define a function T(JC, ί) in &= (K[[x]])[[tl9t29-- ]] by T(X, ί) =

T(JC + tl9 tl9139 - - ). Then τ(t) is said to be a τ-function of the KP hierarchy

(4.6) if and only if

,f0 τ(x,t)

satisfies the gauge equation (4.9).

Remark. We can rewrite the nonlinear differential equations (4.9) for S in

terms of τ-functions. Essentially, they are nothing other than the so-called

Hirota 9s bilinear equations for τ-functions (cf. [2]).

It is well known that the τ-function corresponding to a quasi-periodic

solution is essentially given by a Riemann thett: function;

τ(t) = exp(quadratic term in t) θ(φ(t))>

where θ(z) = θ(zl9 9zg) is a theta function defined on the covering space K8

of a Jacobian variety / of dimension g and <j>: ϊ" -> K8 is a suitable onto linear

map. If we combine this result with our Corollaiy, we obtain the following

Theorem 6.2. An Abelian variety of dimension g defined over an algebraically

closed field of characteristic zero is a Jacobian variety if and only if there exists a

suitable quadratic form q(t) in t e T and an onto linear map φ: T -> K8 such

that

(0
def

gives a τ-function of the KP hierarchy. Here θ(z) = θ(zl9 z2, -9zg) denotes the

Riemann theta function associated with the given Abelian variety.

It is obvious from the argument of §2 that we need only finitely many

differential equations to characterize Jacobian varieties of dimension g for any

given g e N.
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