
J. DIFFERENTIAL GEOMETRY
18 (1983) 209-220

EUCLIDEAN DE RHAM FACTOR OF A LATTICE
OF NONPOSΓΠVE CURVATURE

PATRICK EBERLEIN

Introduction

The rigidity theorem of Mostow [18] states that if M and M* are compact
locally symmetric manifolds of nonpositive sectional curvature with no
Euclidean or 2-dimensional local de Rham factors, then any isomorphism
between the fundamental groups of M and M* is induced by a diffeomorphism
of M onto M* which becomes an isometry if the metric of M or M* is
multiplied by a suitable positive constant. This result is a striking example of
the following general problem: given a compact connected Riemannian mani-
fold M of nonpositive sectional curvature, what geometric properties of M are
shared by all compact connected manifolds M* of nonpositive sectional
curvature whose fundamental groups are isomorphic to that of MΊ

The question above seems more reasonable if one recalls that a complete
manifold M of nonpositive sectional curvature is covered topologically by a
Euclidean space, and hence all homotopy groups of M except for the funda-
mental group are zero. In fact any isomorphism between the fundamental
groups of two compact connected Riemannian manifolds Λf, M* of nonposi-
tive sectional curvature is induced by a homotopy equivalence of M to M*.
One may rephrase the question above in terms of homotopy equivalence
classes of compact connected manifolds of nonpositive sectional curvature.

In previous papers [8], [11] we have given various examples of geometric
properties preserved by homotopy equivalences. In some cases these geometric
properties could be restated in terms of algebraic conditions on the fundamen-
tal group while in other cases no such restatement seemed possible and one
apparently had to use the existence of a pseudoisometric homotopy equiva-
lence between the two compact nonpositively curved manifolds. In [11] we
obtained an extension of the Mostow rigidity theorem (cf. Corollary 4 below)
which was obtained independently by Gromov [15] in even greater generality.
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We also showed in [11] that the number and dimensions of the local de Rham
factors are the same for homotopically equivalent compact manifolds of
nonpositive sectional curvature which possess no Euclidean local de Rham
factor (cf. Corollary 3 below). It was necessary in [11] to exclude the existence
of Euclidean local de Rham factors since we could not prove that the
dimension of the Euclidean local de Rham factor is the same for homotopically
equivalent compact manifolds of nonpositive sectional curvature.

In this paper we show that the dimension of the Euclidean local de Rham
factor is indeed a homotopy invariant in the class of compact manifolds of
nonpositive sectional curvature. This result and others which sharpen the
results described in the previous paragraph are corollaries of the following
main theorem.

Theorem. Let M be a complete Riemannian manifold of finite volume and

nonpositiυe sectional curvature. Then the dimension of the Euclidean local de

Rham factor of M equals the rank of the unique maximal abelian normal

subgroup of the fundamental group of M.

We discuss briefly the objects which appear in the statement of the theorem.
If H denotes the universal Riemannian covering manifold of M, then we may
write H as a Riemannian product Ho X Hλ X XHk, where Ho is a Euclidean
space, possibly of dimension zero, and each Hi is irreducible for 1 < / < k\
that is, Hi cannot be written as a Riemannian product of two manifolds of
positive dimension. The de Rham decomposition theorem states that this (de
Rham) decomposition is unique up to the order and isometric equivalence of
the factors Hr The factors Ht are the de Rham factors of H, and the factor Ho

is the Euclidean de Rham factor of H. If M is a quotient manifold of H, then
the isometric de Rham splitting occurs only locally, and the factors Hi are the
local de Rham factors of M.

The unique maximal abelian normal subgroup of the fundamental group of
M can be described geometrically. Regard the fundamental group of M as a
discrete group Γ of isometries of H such that M is isometric to the quotient
space H/T. The Clifford subgroup of Γ is defined to be the subgroup of Γ
which consists of Clifford translations of H, those isometries φ of H such that
the displacement function dφ: p -» d(p9 φp) is a constant function in H. The
discussion in §1 of this paper shows that if H/T has finite volume, then the
Clifford subgroup of Γ is the unique maximal abelian normal subgroup of Γ.

The key step in the proof of the main theorem is Lemma A of §2 whose
proof is a modification of the proof of Theorem 5.1 of [20]. From the main
theorem we obtain the following corollaries.
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Corollary 1. Let M, M* be connected Riemannian manifolds of nonpositiυe

sectional curvature and finite volume whose fundamental groups are isomorphic.

Then the dimensions of the Euclidean local de Rham factors of M, M* are equal.

Corollary 2. Let M be a compact connected Riemannian manifold with

nonpositive sectional curvature, and suppose that the Euclidean local de Rham

factor of M has positive dimension k. Then M admits a finite Riemannian

covering M** which is diffeomorphic to Tk X M o, where Tk denotes a k-torus,

and Mo denotes a compact manifold of nonpositive sectional curvature whose

Clifford subgroup of the fundamental group is the identity.

We remark that if M is a complete manifold of finite volume and nonposi-

tive sectional curvature, then the center of the fundamental group of M is

contained in the Clifford subgroup of the fundamental group of M. The

manifold M** in the corollary above need not be isometric to the Riemannian

product Tk X Mo. See the discussion of the main theorem of [6].

Corollary 3. Let M, M* denote compact connected Riemannian manifolds

with nonpositive sectional curvature and isomorphic fundamental groups. Let

H = H0X HXX XHk andH* = Hξ X Hf X XHf denote the de Rham

decompositions of the universal Riemanian covering spaces of M and M*9 where

Ho and H$ denote the Euclidean de Rham factors. Assume moreover that the

factors are ordered so that dim Hi < dim Hi+ λfor\^i^k—\ and dim H* <

dim H?+ι for 1 <r<j- 1. Then k = j and dim H( = dim H* for 0 < i < k.

The result just quoted is a sharpened version of Theorem B of [11]. Briefly,

one may say that the number and dimensions of the de Rham factors are

homotopy invariants.

Corollary 4. Let Λf, M* denote compact connected Riemannian manifolds

with nonpositive sectional curvature and isomorphic fundamental groups. Suppose

that the universal Riemannian cover H* of M* is a reducible symmetric space of

noncompact type, and that M* is an irreducible quotient of H*. Then M and M*

are isometric provided that one multiplies the metric of M or M* by a suitable

positive constant.

This result is a sharpened version of Theorem A of [11]. Gromov [15] has

extended the conclusion of Corollary 4 to the more general case where M* is a

compact irreducible locally symmetric manifold of rank > 2 and nonpositive

sectional curvature. See the introduction of [11] for further details.

We conclude by describing briefly the organization of the paper. §1 contains

notation and preliminary results. §2 contains a proof of the main theorem, and

§3 contains proofs of the corollaries.
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1. Preliminaries

All Riemannian manifolds in this paper will be assumed to be complete
connected and C00 and to have nonpositive sectional curvature. M will denote
a nonsimply connected manifold, and H a simply connected manifold, some-
times referred to as a Hadamard manifold. All geodesies in both H and M will
be assumed to have unit speed. T{H, TXM will denote the unit tangent bundles
of H, M, and I(H) the isometry group of H.

For manifolds of nonpositive sectional curvature we shall assume the
notation, definitions and basic facts found in [12] and in shorter form in [5, pp.
76-78] or [10, §1].

1.1. de Rham decomposition [16]. An arbitrary Riemannian manifold N is
said to be reducible if there exists a finite Riemannian covering N* of N such
that N* is isometric to a Riemannian product iVf X N£ where each manifold
N* has positive dimension for i = 1,2. If N is simply connected, then N* — N.
If N is not reducible, then it is said to be irreducible.

Let if be a reducible Hadamard manifold, and let iff X Xif* be any
Riemannian product decomposition of H. An isometry φ of H is said to
preserve the factors of the decomposition or to preserve the splitting if
(<t>)J$Li(p) = tyiiiΦp) for each/? in H and each I < i < k, where 911,. denotes
the foliation of TH induced by the tangent spaces of Hf. It is not difficult to
show that if φ preserves the splitting, then φ may be written uniquely as
φ = φιχ •.. Xφk where φ, G I(H*) C I{H). If G C I(H) is a group of
isometries such that each element of G preserves the splitting, then we define
projection homomorphisms/?,: G -> I(Hf) given by p^φ) = φz for every φ E G
and 1 < / < k.

It is evident that any Hadamard manifold H can be written as a Riemannian
product H0X Hx X XHk, where Ho is a Euclidean space of dimension
r ^ 0, and each Hi is an irreducible Hadamard manifold for 1 < / < k. The
de Rham decomposition theorem asserts that this decomposition of H is
unique up to order and isometric equivalence of the factors. Such a decomposi-
tion is called the de Rham decomposition of H. The de Rham decomposition
theorem is valid for an arbitrary simply connected Riemannian manifold N.

If φ is any isometry of H, then the differential map φ+ leaves invariant the
Euclidean foliation of TH induced by Ho and permutes the nonEuclidean
foliations of TH which are induced by the nonEuclidean factors Hi9 1 < / < k,
in the de Rham decomposition of H. It follows that if G C /(if) is any group
of isometries, then there exists a subgroup G of finite index in G which leaves
invariant all of the de Rham foliations of TH, and hence preserves the factors
of the de Rham decomposition of H. By the discussion above there exist
projection homomorphisms/?,: G -> I(Ht) for 0 < / < k.
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1.2. Duality condition [2], [4], [5], [9]. For any Hadamard manifold H and

any isometry group G C I(H) one may define a nonwandering set Ω(G) C TλH

as follows. A vector v G TXH is said to lie in Ω(G) if for any open set 0 C TλH

with ϋ G O w e can find sequences {φn} C G and {/„} C R such that ίrt -* + oo

as n -» oo, and [(Φ^T^O)] Π 0 is nonempty for every w. Here {Tt} denotes the

geodesic flow in TλH. The set Ω(G) is closed in TλH and invariant under both

{Tt} and G+ = {φ#: φ G G).

Following [2] we say that an isometry group G C I(H) satisfies the duality

condition in H if Ω((J) = TXH. In particular if G is a discrete group, and the

quotient space H/G is a smooth manifold of finite volume, then G satisfies the

duality condition. The duality condition was originally defined in the following

equivalent form: a group G C I(H) satisfies the duality condition if and only

if for every geodesic γ in H there exists a sequence {φn} Q G such that

Φn(p) -* γ(oo) and Φ~\p) -> γ(-oo) as n -> oo for any point p in H. The

equivalence of these two formulations of the duality condition follows from [7,

Proposition 3.7].

It is proved in [9, Appendix I] that if G C I(H) satisfies the duality

condition, then any finite index subgroup of G also satisfies the duality

condition. Moreover the duality condition is a property preserved by projec-

tion homomorphisms. To be precise let H = Hf X Xi/* be a Riemannian

product manifold, and let G C I(H) be a group which preserves the factors of

the decomposition. Let/?,: G -* I{Hf\ 1 < / < k, be the corresponding projec-

tion homomorphisms. Then/ ̂ G) satisfies the duality condition in Hf for each

1 < / < k if G satisfies the duality condition in H. We remark that the groups

Pi(G) are in general not discrete even if the original group G is discrete.

1.3. Displacement functions [3], [10], [14], Every isometry φ of a Hadamard

manifold H determines a displacement function dφ: H -» R given by dφ(p) =

d(ρ9 φp). The function (dφ)
2 is a C00 convex function on H [3, Proposition

4.2]. If dφ assumes a positive minimum value on a nonempty set A C H, then

for every point pinA [3, Proposition 4.2] also says that φ translates the unique

geodesic of H which joins/? to φp.

If Γ C I(H) is a discrete group, then Γ determines a displacement function

dτ: H -> R given by dΓ(/?) = inf^ψeΓ {^φί/O}- The function dτ is continuous

on H and invariant under iV(Γ), the normalizer in I(H) of Γ. Since a discrete

group of isometries is properly discontinuous, it follows that locally dτ is the

minimum of finitely many displacement functions dφ9 φ G Γ. The points in H

at which dτ is zero form a closed nowhere dense subset of H. If the quotient

space H/T is a smooth manifold, then dτ(p) is twice the injectivity radius of

H/T at τr/7, where π: H -> i//Γ is the projection map. For other applications

of the function dτ see for example [10] and [14].
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1.4. Clifford translations [5], [21]. An isometry φ of a Hadamard manifold

H is called a Clifford translation if the displacement function dφ is constant in

H. A remark from the discussion above implies that an isometry φ is a Clifford

translation if and only if φ translates the geodesic of H from p to φp for every

point/? in H. [21, Theorem 1] gives a more useful characterization of Clifford

translations. Express a Hadamard manifold H as a Riemannian product

//0 X i/α where i/0 is the Euclidean de Rham factor of H, and Ha is the

product of all nonEuclidean de Rham factors of H. Let/?0:1(H) -> /(i/0) and

/?α: /(i/) -> /(#«) be the corresponding projection homomorphisms. Then an

isometry φ of H is a Clifford translation if and only if pa(Φ) = 1, and/?0(φ) is a

translation of the Euclidean space Ho. In particular # has a nontrivial

Euclidean de Rham factor Ho if /(if) admits nonidentity Clifford translations.

For any group G C I(H) the subgroup C(G) consisting of Clifford transla-

tions in G forms an abelian normal subgroup of G. If G satisfies the duality

condition in H, then C(G) may be characterized as the unique maximal abelian

normal subgroup of G. This latter fact may be deduced without difficulty from

[13, Corollary 3] or directly from [5, Theorem 2.4].

1.5. Lattices [10], [11], [14]. A discrete group T Q I(H) is a uniform

(nonuniform) lattice if the quotient space H/T is respectively compact or

noncompact. A lattice Γ is reducible if the quotient space H/T is a reducible

Riemannian manifold; that is, if there exists a finite index subgroup Γ* C Γ

such that H/T* is the Riemannian product of two manifolds of positive

dimension. A lattice Γ is irreducible if it is not reducible.

The fact that a lattice Γ satisfies the duality condition implies by the

discussion above that the Clifford subgroup C(Γ) is the unique maximal

abelian normal subgroup of Γ.

If Γ is a nonuniform lattice, then the injectivity radius of H/T must be

arbitrarily small outside a suitably large compact subset of H/T. In particular

for any ε > 0 there exists a compact subset C of H such that the displacement

function dτ is < ε in H - T C. See for example [10, p. 442].

2. Proof of the main theorem

See the introduction for a statement of the theorem. The first step in the

proof is a result whose proof is a slight modification of the proof of [20,

Theorem 5.1].

Lemma A. Let H be an arbitrary Hadamard manifold, and express H as a

Riemannian product H0X Hx, where Ho is the Euclidean de Rham factor of H,
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and Hx is the product of all nonEuclidean de Rham factors of H. Let p0:

I(H) -> I(H0) and pλ\ I(H) -> I(HX) denote the induced projection homomor-

phisms. If Γ is a discrete subgroup of I(H) that satisfies the duality condition,

thenpx(T) is a discrete subgroup of I(HX).

Proof. We may assume that Ho has positive dimension, for otherwise there

is nothing to prove. Let A denote the subgroup of translations of Ho, and let G

denote the closure in I(H) of Γ A = {ya: γ G Γ , α G 4 Note that A is a

closed normal abelian subgroup of the Lie group G. By the Zassenhaus lemma

as stated in [1, p. 146] it follows that Go, the connected component of G that

contains the identity, is a solvable Lie group. One may also use [19, Theorem

8.24, p. 149] to prove that Go is solvable.

We assert that px(G0) = {1} or equivalently that Go C I(H0) X {1} C I(H).

Suppose that the group px(G0) is not the identity. Observe that px(G0) is

solvable since Go is solvable, and is normalized by px(T) since Go is normalized

by Γ. If A* denotes the last nonidentity subgroup in the derived series for

px(G0), then A* is abelian and is normalized by px(T) since it is left invariant

by all automorphisms of px(G0). The group px(T) satisfies the duality condi-

tion in I(HX) by the discussion of §1 since Γ satisfies the duality condition in

I(H). It now follows from [5, Theorem 2.4] that A* C I(HX) consists of

Clifford translations, and hence Hx admits a nontrivial Euclidean de Rham

factor by [21, Theorem 1]. This contradicts the definition of Hx and proves that

px(G0) is the identity.

We show that px(T) is discrete. Let φn = αnX βn be any sequence in Γ such

that βn — Pι(Φn) -* 1 as n -> oo and αn = po(φn). It suffices to prove that

βn — 1 for arbitrarily large values of n. Let Tn be the translation of Ho such

that α* = Tn o αn fixes the origin in Ho. If φ* = α* X βH, then {φ*} is a

bounded sequence in G and converges to an element φ* in G by passing to a

subsequence if necessary. If ξn = Φ^+iίΦ*)"1, then ξn -> 1 as n -> oo, and in

particular ξn G Go c I(H0) X {1} for large n since px(G0) = {1}. It follows

that βn is constant for large n since ξn = α j + ^ α * ) " 1 X βn+\(βnY
1' Therefore

βn — 1 for large n since βn -> 1 as n -> oo. This completes the proof t h a t ^ ^ Γ )

is discrete.

We shall also need the following result which strengthens slightly [10,

Theorem 4.1]. The proof of the result except for occasional trivial modifica-

tions is contained in the proof of [10, Theorem 4.1].

Lemma B. Let H be α nontrivial Riemannian product Hλ X H2, and let

Γ C I(H) be a discrete group which satisfies the duality condition and preserves

the factors of the decomposition. Suppose moreover that either (a) the quotient

space H/T is compact or (b) for every ε > 0 there exists a compact subset



216 PATRICK EBERLEIN

C Q H such that the displacement function dτ is < ε in H — Γ C. Finally let

Γ2 = p2(X) be a discrete subgroup ofH2, wherepλ\ Γ -> I{HX) andp2. Γ -> I(H2)

are the projection homomorphisms. Then

(1) IfN = kernel(/?2), then L(N) = ^ ( o o )

(2) Either Tx = px(T) is discrete or N contains Clifford translations.

If Hλ is a Euclidean space, then N always contains Clifford translations.

See §1 for a discussion of the properties of the displacement function dτ.
Lemma B applies to lattices [10, Theorem 4.1] since a lattice Γ satisfies
property (a) if it is uniform, and property (b) if it is non-uniform. See also [10,
p. 442] or [14].

We are now ready to begin the proof of the main theorem. Let M satisfy the
hypotheses of the theorem, and express M as a quotient space H/T, where H is
the universal Riemannian covering space of M, and Γ C I(H) is the deckgroup
of the covering. If M has a Euclidean local de Rham factor of dimension zero,
then the subgroup of Clifford translations in Γ is the identity by [21, Theorem
1] or the discussion of §1. Therefore the only abelian normal subgroup of Γ is
the identity by [5, Theorem 2.4] or the discussion of §1. The theorem is proved
in this case.

It suffices to consider the case in which the Euclidean de Rham factor Ho of
H has positive dimension. Let p0: Γ -> I(H0) and px\ Γ -> I(HX) denote the
projection homomorphisms where H — H0X Hx, and Hx is the product of all
nonEuclidean de Rham factors of H. The group px(T) is discrete by Lemma A,
and it follows from [10, Theorem 4.1] or Lemma B that Γ admits nonidentity
Clifford translations.

Let C(Γ) denote the subgroup of Γ which consists of Clifford translations,
and let Γ* denote the centralizer of C(Γ) in Γ. By [22, Lemma 3.3] Γ* has
finite index in Γ, and hence Γ* is also a lattice. Clearly C(Γ) is contained in
the center of Γ*, and in fact C(Γ) is the center of Γ* by the discussion of §1.

Next we construct a splitting of H that decomposes H into a Riemannian
product Hf X Hξ such that Hf is a Euclidean space, C(Γ) C I(Hf) X {/},
and H*/C(T) is a torus. For each φ e C(Γ) let Xφ denote the vector field of H
such that expp(Xφ(p)) = φ(p) for every point/? in H. By [21] the vector field
Xφ is parallel in H for every φ G C(Γ). Let N be the distribution in H such that
N O ) = s p a n ^ O ) : φ G C(Γ)}. It follows that the distributions N and N1-
are both parallel and involutive. If Hf and H^ are maximal integral submani-
folds of N and N1- through a fixed point p in H, then by the de Rham
decomposition theorem H is isometric to the Riemannian product Hf X H\,
[16]. Moreover i/f is an Euclidean space since any 2-plane spanned by parallel
vector fields must have zero sectional curvature. If φ E C(Γ) is an arbitrary
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element, then for each p in H, φ translates the geodesic with initial velocity
XήUP)\ we use [3, Proposition 4.2] and the fact that dφ: q -> d(q, φq) is a

constant function in H. It follows that each element φ E C(Γ) leaves invariant

each leaf of N. Therefore C(Γ) C I(H*) X {1}, and each element of C(Γ) acts

as a translation on the Euclidean space Hf. Clearly Hf/C(T) is compact

hence a torus by the definition of N. The arguments of this paragraph are very

similar to those found in the proof of [5, Theorem 4.2]; see that paper for

further details.

The fact that Γ* centralizes C(Γ) implies that Φ*N(p) = N(φp) for every/?

in H and every φ G Γ*. In other words Γ* preserves the splitting H = Hf X H%,

and therefore every element φ of Γ* can be written uniquely as φ — φλ X φ2,

where φ. e /(if,*) for / = 1,2. Let Λ : Γ* -> I(H*) be the corresponding

projection homomorphisms for i — 1,2.

We assert that (a) Γf = pλ(T*) consists of translations of the Euclidean

space Hf and (b) the group Γ2* = /?2(Γ*) is a discrete group which contains no

nonidentity Clifford translations. To prove (a) we observe that Γ* centralizes

C(Γ), and hence Γf = px(T*) centralizes/^(QΓ)) = C(Γ). The fact that H* is

spanned by the translations in C(Γ) implies that every element of Γf must be a

translation. To prove (b) we suppose that φ2 = p2(Φ) is a Clifford translation

of i/f for some element φ = φx X φ2 in Γ*. The element φx is a translation in

Hf by (a), and hence φ is a Clifford translation of H. Since C(Γ) C I(Hf) X

{1}, it follows that φ2 = p2(Φ) — 1. The discreteness of Γ^ follows from [10,

Lemma 5.1, p. 468] if we recall that every element in the center of Γ* is a

Clifford translation and hence lies in I(Hf) X {1}.

We complete the proof of the theorem. Clearly the rank of the free abelian

translation group C(Γ) equals the dimension of Hf since Hf/C(T) is com-

pact. By the discussion of §1, C(Γ) is the unique maximal abelian normal

subgroup of Γ. Our result will be proved when we show that Hf is the

Euclidean de Rham factor of H, and this will follow when we show that H%

has no Euclidean de Rham factor. We argue by contradiction, and suppose

that H% may be expessed as a Riemannian product HaX Hβ, where Ha has

positive dimension and is the Euclidean de Rham factor of i/2. We wish to

apply Lemma B to the discrete group Γ2* acting on H%, and conclude that Γ^

admits nonidentity Clifford translations, contradicting property (b) of the

previous paragraph. Clearly Γ2* = jp2(Γ*) satisfies the duality condition in

I(H^) since Γ* is a lattice and satisfies the duality condition in I(H).

Moreover pβ(T}) is discrete in I(Hβ) by Lemma A. If the quotient space

HZ/Γ? is compact, then Γ2* satisfies condition (a) of Lemma B, and we may

apply Lemma B to obtain the desired contradiction.
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Suppose now that //*/Γ* is noncompact. We are unable to show that Γ2* is
a nonuniform lattice, but we are able to show that Γ£ satisfies condition (b) of
Lemma B. This will allow us to apply Lemma B and obtain the contradiction
described above. We verify condition (b). Let ε > 0 be given. The fact that
Hζ/T} is noncompact implies that Γ* is a nonuniform lattice, and hence there
exists a compact set C C H such that the displacement function dτ* is < ε in
H—T*'C. To verify condition (b) it suffices to show that dτ* < ε in
if* - Γ* C2, where C2 = ττ2(C), and ττ2: H = H* X Hζ -> Hζ is the canoni-
cal projection. Let/?2 E H'ξ — Γ2* C2 be given, and choose/? = (pl9 p2) E H
so that π2(p)= p2. Clearly/? lies in H — Γ* C, and hence dτ*(p) < ε by the
choice of C. Choose φ = φx X φ2 E Γ* so that rfφ(/?) = d(/?, φ/?) < ε. We
recall that d\p, φp) = d\pλ> φxpx) + d\p2, φ2p2) > d2(p2, φ2p2). Hence

dτ^Pi) < ^ φ 2 (^ 2 ) = ^(Λ» Φ2P2) ^ ^(P» Φ/7) < ε τ h e 8 r o u P Γ2* satisfies con-
dition (b) of Lemma B, and the proof of the theorem is complete.

3. Proofs of the corollaries

See the introduction for a statement of the corollaries. We omit the proof of
Corollary 1, which is an immediate consequence of the theorem.

3.1. Proof of Corollary 2. Let H be the universal Riemannian covering of
M, and express M as a quotient space H/T where Γ is a suitable uniform
lattice in H. Let C(Γ) denote the Clifford subgroup of Γ = irλ(M\ and let Γ*
denote the centralizer in Γ of C(Γ). By the main theorem, C(Γ) is a free
abelian group of rank k, which is normal in Γ, and by the argument of [22,
Lemma 3.3] it follows that Γ* has finite index in Γ. Consider now the compact
manifold M* = H/T*9 which is a finite covering of M and whose fundamental
group Γ* has a center C(Γ) which is free abelian of rank k > 1. It now follows
from the main theorem of [6] that M* admits a finite covering Λf** with the
properties listed earlier in the statement of Corollary 2.

3.2. Proof of Corollary 3. The Euclidean spaces Ho and Hξ have the same
dimension r ^ O by Corollary 1. If r - 0, then Corollary 3 becomes [11,
Theorem B], so we may suppose that r> \. The idea now is to reduce to the
case r = 0 by splitting off the Euclidean de Rham factors of H and H* in some
fashion. We use the main theorem of [6] to accomplish this.

We first reduce to the case where both H and H* have at least one
nonEuclidean de Rham factor. Let Γ, Γ* denote uniform lattices in H, H* such
that λf, M* are the quotient spaces H/T, H*/T*. If one of the spaces, say H,
were a Euclidean space, then by the Bieberbach theorems the lattice Γ would
admit a subgroup f of finite index in Γ which consisted entirely of translations



EUCLIDEAN DE RHAM FACTOR 219

of H. An isomorphism carrying Γ onto Γ* would carry f onto a free abelian
subgroup f * of finite index in Γ*. It would thus follow that H* is a Euclidean
space whose dimension is the rank of the free abelian lattice f *. See for
example [13, Corollary 2] or [22, Corollary 1].

We have reduced to the case in which H and H* both have an Euclidean de
Rham factor of rank r > 1 and at least one nonEuclidean de Rham factor. If
G c I(H) denotes an arbitrary subgroup of / ( # ) , then let C(G) and Z(G)
denote respectively the subgroup of Clifford translations in G and the center of
G. Now consider the uniform lattice Γ which is the deckgroup of the compact
manifold M described in the statement of Corollary 3. If Γo denotes the
centralizer in Γ of C(Γ), then Γo has finite index in Γ as we observed earlier in
the proof of the main theorem. Moreover the discussion of §1 of [6, Lemma 3]
shows that Z(Γ0) = C(Γ0) = C(Γ), a free abelian group of rank r > 1.

Now let Ha = Hλ X XHk, the product of the nonEuclidean de Rham
factors of H. The proof of the main theorem in this paper shows that the
splitting H = Ho X Ha satisfies the conditions of [6, Lemma 1] relative to the
lattice Γo. The main theorem of [6] shows that Γo admits a finite index
subgroup Γ' such that if Γ is any finite index subgroup of Γ', then H/t is
diffeomorphic to a product Tr X M, where r — dim H0,T

r denotes an r-torus,
and M is a compact orientable manifold of nonpositive sectional curvature
whose fundamental group has trivial center. Moreover the proof of the main
theorem of [6] shows that Ha = Hx X XHk is the universal Riemannian
cover of M. In particular if f has finite index in Γ', then f is isomorphic to
Zr X G, where G denotes a uniform lattice in Ha whose center is trivial, and Zr

denotes the standard integer lattice in Rr = Ho. Similarly there exists a finite
index subgroup Γ*' of the lattice Γ* in i/* such that if f * is any finite index
subgroup of Γ*', then f * is isomorphic to Zr X G*, where G* is a uniform
lattice in H* = Hf X XHj whose center is trivial.

By hypothesis the lattices Γ and Γ* are isomorphic. Let θ: Γ -> Γ* be an
explicit isomorphism. Let Γ* = 0(Γ) Π Γ*r and f = θ-\t*), where Γ and
Γ*' are the lattices defined in the previous paragraph. The groups f and Γ*
have finite index in Γ' and Γ*' respectively, and by the previous paragraph f
and Γ* are isomorphic respectively to Zr X G and Zr X G*9 where G and G*
are uniform lattices with trivial centers in the spaces Ha and H*. Since
0(Γ) = f *, it follows that there exists an isomorphism ψ : Z r X G - ^ Z r X G*.
The group Zr is the center of both Zr X G and Zr X G* since both G and G*
have trivial centers. If/?: Zr X G* -» G* is the projection on the second factor,
then it is routine to show that p ° ψ: G -> G* is an isomorphism. Since G and
G* are uniform lattices in Ha = Hx X XHk and H* = H* X XHf, we
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may apply [11, Theorem B], to conclude that k=j and dim Ht = dim Hf for
1 < i < k. This completes the proof of Corollary 3.

3.3. Proof of Corollary 4. By convention a symmetric space H* of noncom-
pact type possesses no Euclidean de Rham factor. By Corollary 1 the universal
Riemannian cover H of M also possesses no Euclidean de Rham factor. The
result now becomes [11, Theorem A].
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