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TOTALLY FOCAL EMBEDDINGS: SPECIAL
CASES

SHEILA CARTER & ALAN WEST

In this paper we take up again the study of totally focal embeddings
introduced in [2]. In the previous paper we showed that a compact totally focal
hypersurface must be just a round sphere. In this paper we show that if an
embedding of S 2 in R4 is totally focal, then again S 2 must be embedded as a
round sphere. We also show that if an embedding of S1 in R" is totally focal,
then S1 is embedded as a round circle. These two results do not seem very easy
to prove. The first result depends on some general results which perhaps pave
the way for further study. The second result seems to require ad hoc methods.

The general results we need are not all about totally focal embeddings. We
have devoted a separate section to some general theorems about submanifolds
of Rn which we require but do not seem to be generally known. They concern
the focal set and although we do not use them in the generality presented here,
we think they are of independent interest.

We know that there are plenty of totally focal embeddings which are more
interesting than just round spheres. See [3] and [4] for examples. However it
seems desirable to sort out what can happen in the simple cases before trying
to discuss these. With this in mind it seems curious that the proofs we present
here are not very straightforward, and it is irritating that, at present, we still
cannot discover whether there is any totally focal embedding of S 2 in R5 more
interesting than just a round sphere.

0. Notation and conventions

Let M -> Rn be a smooth connected compact m-dimensional manifold

without boundary embedded in ̂ -dimensional Euclidean space; its normal

bundle is N(M) C M X R " where (/>, x) G N(M) means that the line in Rn

through x and p is normal to the manifold M at p. This is a slightly different

convention from that used in [2]. The projection π: N(M) -> M is given by
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π(p, x) = p, and the end-point map η: N(M) -* Rw is given by η(p, x) = x.
We will write Np = {x E Rn:'(/?, x) G N(M)}, and observe that η: π"^/?) ->
Λ̂  is an isomoφhism.

The critical points of η, called critical normals, form the set Γ. The focal set
is η(Γ). We put Fp = η{v~ι(p) Π Γ} and observe that Fp is the zero-set of a
polynomial of degree m.

For any x e R " the distance function Lx: M -* R is given by Lx(/>) = || /> —
Λ: II2. Lx is nondegenerate if and only if x £ η(Γ), and/? is a critical point of Lx

if and only if (/?, x) G N(M). The index of /? is also the index of (/?, x) G
N(M). Thus each normal in ΛΓ(M) has an index, and this index is a constant
on each connected component of N(M) \ Γ. Let us denote the set of normals in
N(M) \ Γ which have index k by Nk(M). We put Np

k = {*:(/>, JC) G Nk(M)}.
As in [2] we say that M is totally focal if η"1 ° η(Γ) = Γ. This means that

every distance function Lχ9 x G R", is either nondegenerate or has only degen-
erate critical points. This is also equivalent to saying that Np Π τj(Γ) = Fp for
all/? EM.

1. Extension to projective space

First of all we extend our ideas to projective space PM. We suppose that
R" C P" is embedded in a standard way, and identify x ERn with [x, 1] G P".
Thus the "hyperplane at infinity" is an embedding of P""1 C P " , and we write
[z] instead of [z,0] where z G S""1. If z G Sn~\ the height function Hz is
given by Hz(p) — (z - p). The idea is to utilize the fact that height functions
are in a certain sense the limits of distance functions Lx as the point JC tends to
infinity.

The normal bundle is extended in the obvious way to N(M) C M X P " , and
the end-point map also extends to give η: N(M) -> Pw if we put η(/?, [z]) = [z].
We define Γ to be the set of critical points of this extended map η. Thus we can
talk about critical normals and focal points at infinity. We define Np C P71 and
Fp = i](f Π π~\p)) by analogy with Λ^ and Fp. The following theorem is
crucial when we apply these ideas to our problem.

Theorem 1.1. Let M CR" be a smooth compact manifold without boundary
embedded in Euclidean n-space. Then η~ι ° τj(Γ) = Γ if and only ifη~ι o η(f) =
Γ.

To prove this it is clearly sufficient to prove the following more general
result.

Theorem 1.2. Let M C Rn be a smooth compact manifold without boundary
embedded in Euclidean n-space. Then τj(Γ) = η(Γ) in Pw.
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The proof of this theorem uses a classical result from differential geometry
which we quote as a lemma.

Lemma 1.3. Let U CR" be a smooth hypersurface without boundary such
that at each point of U one of the principal curvatures is zero and has constant
multiplicity k. Then U has a k-dimensional foliation, each leaf of which is closed
in U, and is an open subset of some k-plane in R", and such that on each leaf the
normal direction to U is constant.

The proof of this lemma can be found, for example, in [6].
Proof of Theorem 1.2. Consider an ε-neighborhood of M. If ε is sufficiently

small, the boundary of this is a manifold M* C R" embedded in R" with
codimension 1. The focal set of M* in P" will be η(f) U M. Since M is
compact, it is closed and does not intersect the hyperplane at infinity. So to
show that η(T) = η(T) it is sufficient to show that η(T) U M - η(t) U M.
That is, it is sufficient to prove the result when M is replaced by M*.

So we assume that M has codimension 1 in RΛ, and therefore there is a
unique normal direction [t^] at each/? E M.

Now observe that since M is compact, so is N(M) and thus as f is closed in
N(M\ f and η(f) are compact. Hence Γ C f implies that η(Γ) C η(Γ).
Therefore it is only necessary to show that η(f) C η(Γ).

Suppose we can find [z] E τj(ί) where [z] & τ/(Γ). We will obtain a
contradiction. For such a z, let (p9[vp]) = O,[z]) E f. There must exist a
neighborhood of this point which does not intersect Γ. We deduce that there is
a neighborhood Up of p in M such that for all q E Up9 (q,[vp]) is a critical
normal, and all these critical normals must have the same multiplicity k, say.

Let W- {p GM:[vp] = [z]}. Clearly W is compact. Now put U-
U {Up\ p E W) and observe that we can apply Lemma 1.3 to U and W C U.
For any p E W let V be the leaf through p as given by the lemma. The normal
direction is constant over V and therefore V <ZW. Since V is closed in U and
W is compact, we deduce that V is compact. This is a contradiction since by
the lemma V is an open subset of some fc-plane. This contradiction shows that
[z] cannot exist and therefore η(f) Cη(Γ).

2. General results on focal sets

In this section we collect together some results about the focal sets of
embedded manifolds which we require. We do not actually require them in the
generality given here, but they seem to be interesting in their own right.

In this section we are essentially only concerned with local results so we
assume that M is a smooth connected submanifold of R" but is not necessarily
compact or closed.
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Theorem 2.1. Let M C Rn have normal bundle N(M), and let Nm(M) be the
set of normals of index m — dim M. Then for eachp E M, Nm(M) Π π~ι(p) is
either empty or is an open convex subset ofπ~ι(p).

The proof depends on a technical lemma from the theory of algebraic plane
curves. We will state and prove this lemma before beginning the proof of
Theorem 2.1.

Lemma 2.2. Let φ(x, y) be a polynomial of degree m on R2 such that φ(jc, 0)
is not identically zero. Suppose that for all a, φ(a, y) — 0 has m real roots (as a
function ofy). Suppose further thaty = 0 is a root of multiplicity I o/φ(0, y) = 0.
Then x = 0 is a root of multiplicity > I for φ(jc, 0) = 0.

Proof of Lemma 2.2. Let us first assume that φ is an irreducible poly-
nomial. We can find ε > 0 such that x = 0 is the only root of φ(x, 0) = 0 with
I x I < ε. Also since the roots of φ(a, y) = 0 must be continuous functions of α,
we can choose ε so that there is a δ > 0 such that if | a \ < ε then φ(α, y) = 0
has exactly / roots with | y | < δ. Further since φ is irreducible, we can choose ε
so that if 0 < I a \ < ε these roots are all distinct. This last remark comes from
observing that the common zeros of φ and dφ/dy must be finite so we can
choose ε, δ so that (0,0) is the only common zero in the rectangle {(*, y):
\x\< ε, \y\^ 8}. These facts are easily derived from standard results about
algebraic curves [8].

Thus there will be / continuous functions/: [-ε, ε] -> [-δ, δ], i = 1, •,/ such
that for any a E [-ε, ε ] , f l ^ 0 j = / , ( α ) , >//(<*) are the distinct and nonzero
roots of φ(α, y) = 0 for which \y\<8. Out of the 2/ values /(ε), /(-ε),
i = 1, •,/ we may suppose that at least / are positive (otherwise we replacey
by -y\ and if γ > 0 is chosen to be less than all these positive values, a
repeated application of the mean value theorem to the intervals [-ε,0] and
[0, ε] shows that there are at least / distinct roots of φ(x, γ) = 0 with | x | < ε.
Applying Rolle's theorem to φ(x, γ) in suitable intervals we deduce that for
any r, 0 < r < /, there is some x, | x | < ε, with (drφ/dxr)(x, γ) = 0. Since ε
and δ may be chosen arbitrarily small we deduce that (drφ/dxr)(Q, 0) = 0. This
means that x = 0 is a root of φ(jc, 0) = 0 with multiplicity at least /. Thus the
result is proved if φ is irreducible.

Now suppose φ = φ{ φ2 Φr is the decomposition of φ into its irreduci-
ble factors (over R). Then y — 0 must be a root of φz(0, y) = 0 with multiplic-
ity /,, putting /, = 0 if it is not a root, with lx + /2 + +/Γ = /. Applying the
result to each irreducible factor we obtain the required result applied to φ.

Proof of Theorem 2.1. Clearly since η \ π~ι(p): π~\p) -> Np is an isomor-
phism, we only need show that N™ is an open convex set of Np. Take
x l s x2 E Np

m. These together with p determine a plane in Λ ,̂ which we can
extend to a real projective plane in Pw. We work entirely in this plane.
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The protective line through xλ and x2 meets the line at infinity at a point

which we will call xaQ9 and these points separate the line into three closed

segments xxx2, *!*«> and JC2*OO If * ^ *«, is a point on this line, we will letpx

denote the closed segment of the line through/? and x, which does not intersect

the line at infinity.

Now every line through p intersects Fp in exactly m (real) points, counting

multiplicities, and x €Ξ Np

m means x & Fp and there are m points in px Π F.

Thus we are given that there are m points Ίnpxx Π Fp and inpx2 Π F , and we

wish to show that x & Fp and there are m points in px Π F whenever

x G xxx2. The method depends on the fact that as x varies the number of

points in px Π Fp can change only if x passes through a point of F. Thus it is

sufficient to show that xλx2 Π Fp = 0 .

To show that xxx2 Π Fp is empty we show that there must be m points in

{XIXM U X:2Λ:00} Π F if we count multiplicities correctly. So let x vary in

jcjjc^, and write kx for the number of points in which px intersects F 9

counting multiplicities. Thus kx — m when x = xx or x2 and kx can be reduced

only when x passes through a point of Fp. However the lemma implies the

stronger result that if kx is reduced by losing / coincident points, then x must

pass through at least / coincident points in the intersection of x^x^ with Fp.

Thus for any x G x , ^ if px intersects Fp in kx points with x itself accounting

for lx coincident points, then xxx must intersect Fp in kx points with x itself

accounting for lx coincident points, then xxλ must intersect Fp in at least

m — kx + lx points including multiplicities.

We now let x tend to x^ along x^x^, and observe that the segment px will

tend to a segment, call it Ll9 of the line through p and x^. We deduce that if

this line segment Lλ intersects Fp at kx points with perhaps / of them being

accounted for by / coincident points at x M , then XγX^ must intersect Fp in at

least m — kx + I points. Similarly we can apply the same argument to *2*oo>

letting x tend to x^ and the segment px tend to the segment L2 of the line

through p and x^. We deduce that x^^ intersects Fp in at least m — k2 + I

points. However Lx U L2 is a complete projective line through p, and so

intersects Fp in exactly m points. Thus kx + k2 — I — m. Also the line through

JCJ and x2 can intersect Fp in no more than m points, none of them at xx or x2.

So if k0 is the number of points in which xxx2 intersects Fp9 we get (m — kx +

/) + (m — k2 + /) + k0 — I < m. This gives m + k0 < m. So k0 = 0, and this

proves that x E Np

m whenever x G xxx2 with *„ x2 G Np

m. Hence Np

m is

convex.

Notice that this general theorem can be modified to apply to immersions.

Note also that we have proved rather more than was said in the theorem. In
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fact any protective line which intersects Np

m must intersect Fp in exactly m
(real) points if we take into account their multiplicities.

The following lemma is fairly obvious, but we need it later and the proof is
short.

Lemma 2.3. Let M CRn and let A C P" be a projectiυe k-plane. Suppose
that for allp GM,A C Fp. Then M lies on a sphere with focal set A.

Note. If A does not lie entirely in the hyperplane at infinity, then A is the
closure in P" of a A -plane Λ C R", and a sphere with focal set A is a
(n — k — l)-sphere with centre in Λ lying in an (n — &)-plane perpendicular
to Λ. If A C P" \Rn, then a sphere with focal set A is an (n — k — l)-plane
whose normal directions are the points of A.

Proof. We first prove the theorem when k = 0 and A is just a point c E Rn.
In this case for any p E M, (/?, c) is a normal in N(M). Thus every point
p E M is a critical point of the distance function Lc. Since M is connected, this
means that Lc must be a constant. Thus M lies on a hypersphere centre c.

Now consider the case when A is a point [a] GP"\R". (We can think of
a E S""1 as determining a direction.) Again (/?, [a]) is a normal in N(M), and
this means that every point/? E M is a critical point of the height function Ha.
Thus Ha is a constant, so M lies on a hyperplane perpendicular to #.

In the general case we take a fixed point on ΛΓ, say /?0, and observe that we
have proved that for any x E A, M lies on the hypersphere (or hyperplane)
through p0 and with centre x. The intersection of all these hyperspheres is a
sphere with focal set A.

Theorem 2.4. Let M C R " , dim M — m, αwd let fl be a projectiυe hyper-

plane inPn. Suppose that for all p E M, Fp C ΐϊ . Γλe« M w α« o/?e« swfoseί of a

round m-sphere or aflat m-plane in Rn.

Proof. Write Π = Π Π R". We note that M must intersect Π transversally,
because if p E M Π Π and there is a projective line through p which is normal
there to both M and Π, then the focal points on this line cannot be at/? and so
cannot lie on Π. Thus M \ Π is dense in M.

Now if p E M \Π, then ^ Π Π is a projective hyperplane of Np and
contains /j,. Since Fp is an algebraic hypersurface of degree m'ιnNp, this means
that Fp must be just this hyperplane counted m times. Thus M \ Π is totally
umbilic, and M is also totally umbilic since M \ Π is dense in M. When m > 1,
we can use the standard result that M must then be an open subset of a round
m-sphere or a flat m-plane [5]. The case m = 1 needs a special proof.

In this case we can assume that M is a curve given in the conventional way
by a vector function τ{s) of the arc-length. As usual we write r' = t and, if
t' Φ 0, t — KΏ where K > 0. We will deal with the case when K is not identically
zero since clearly if t' = 0 everywhere, then the curve M is a straight line. Let
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Mo be the set of points in M where t' — 0. We first consider M\M0 where
/c > 0, and write p = κ~ι as usual. Let r E M\λf09 then Fr does not belong to
the hyperplane at infinity, so it is enough to suppose Fr C Π, which is then
equivalent to Fr C Π. If we define Br C R" by b E £ r if and only if (t b) =
(n b) = 0, then Fr = r + pn + Br. If w = 3 then, of course, Br is just the
1-dimensional subspace determined by the binormal b. The analogue of
n' = Tb — ict in the case n > 3 can be written n' + /ct E i?r; it is derived in a
similar way.

The object now is to prove that Fr is constant by showing that r + pn is
constant, and then that Br is constant.

We let Π be given by x E Π if and only if (x — c a) = 0, where a is a unit
vector. Then we are given that for all b E Bn (r + pn + b — c a) = 0. This is
equivalent to (r -f pn — c a) = 0 and (t b) = (n b) = 0 => (b a) = 0.
Thus differentiating this condition we see that

<t + p'n + pn' a>=0,

and (t u)+ /c(n b>= <n u>+ <n' b>= 0 => <u a>= 0. Using the fact
that b and n' + /ct E Br and so (b a) = (n' + /ct a) = 0, this becomes

<p(n' + /ct) + p'n a>= p'<n a>= 0,

and (t u - <n' b)n> = (n u - <n' b>n> = 0 => (u a) = 0. But this also
implies (u — (n' b)n a) = 0, so we conclude that

b G 5 r ^ ( n ' b)(n a>= <n' + /ct b)(n a ) = 0.

Taking b = n' + /ct we deduce that

p'<n a>= ||n' + /ct||2<n a>=0.

Now if r E M\(M0 U Π), then (r - c a>^ 0. So (n *)Φ 0. Hence if
r E M\(M0 U Π), then κf = ||n' + /ct|| = 0. Thus /c' = 0 and (n + /cr)' = 0
for all r E M\(M0 U Π). This implies κf = 0 and (n + /cr)' = 0 for all r E
M\M0, since M\Π is dense in M. Using the principle that any nonconstant
smooth function on a connected manifold must have regular values and
observing that /c2 is a smooth function on M with (/c2)' = 0, we deduce that /c
is a nonzero constant on M. Thus Mo is empty, and n + /cr is also constant on
M. Hence r + pn is constant on Λf.

Now consider the function (t d)2 + (n d)2 for any (constant) d E IT.
Using n' = -/ct, t' = /en we see that this has zero derivative and hence is
constant. So if we fix a point r0 E M, and let t o , n o be the tangent and
principal normal at that point, then d E BΓQ if and only if ( t 0 d)2 + (n 0 d)2

= 0 which means (t d>2 + <n d>2 = 0 and s o d G 5 r for all r E M. Thus Br



692 SHEILA CARTER & ALAN WEST

is a constant (n — 2)-dimensional subspace of Rn. So Fr — r + pn + Br is a
constant (n — 2)-plane; call it Λ. We can now use Lemma 2.3 to conclude that
M lies on a round circle with focal set Λ. This concludes the proof of Theorem
2.4.

Note that the method used for m = 1 can be used with suitable adjustments
for the general case. It did not seem worth-while to make these adjustments
since the result on totally umbilical manifolds is well-known. Moreover it is
only the case m = 1 that is required for the later sections in this paper.

This completes the section on the general results we require. It is interesting
to raise the question of what further results can be given on these lines. For
instance we can prove that if 2 m < n and there is a cone in Rn with
cross-section an (n — 2)-sphere which contains all the focal set of M, then M
must lie on a round sphere. It would be interesting to know when η(Γ) could
be a manifold.

3. Totally focal spheres

In this section we consider some special properties of totally focal embed-
dings of spheres.

Theorem 3.1. Let M C Rn be totally focal where M is homeomorphic to the
sphere Sm. Let M' C N(M)\T be any connected component of η~ι(M). Then
η I M'\ M' -> M is a homeomorphism, and π \ M'\ M' -* M is of degree ± 1.

Proof. The case when M' is the zero section is trivial, so we exclude this
case from now on. If m Φ 1, then M = Sm is simply-connected, and M' is a
connected covering space, so η \ M' must be a homeomorphism. If m = 1, so
that M is a simple closed curve, then there will be a finite number of normals
in η~\p) Π Λf which we can call (ql9 /?),• -9(qk9 p) for any p G Λf. Since
P> 4ι>''' Ak m u s t be distinct we can order them by choosing a direction on the
curve M, and this determines cross-sections σ,: M -> M\ i— 1, ,k of the
covering map η \ M' by putting ot{p) — (qi9 p) where we suppose/?, ql9- -,qk

is the given order. But if M' has a cross-section, it is trivial, so again φ | M1

must be a homeomorphism.

Now consider π <> (η | AT)"1: M -> M. This is a continuous map with no
fixed point. Since any map of Sm into itself with no fixed points is homotopic
to the antipodal map which has degree (-l) m + 1 , we deduce that TΓ ° (η | M')~x

and hence m \ M' have degree ± 1.
Theorem 3.2. Let M C Rn be totally focal where M is homeomorphic to Sm.

Suppose that for some x E Rw\η(Γ), there are I points in η~ι(x) Π Nk(M).
Then for any p E M, N* Π M contains at least I points.
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Proof. In [2] we showed that Rπ\η(Γ) is connected and contains Af, and
that each connected component of N(M)\T is a covering of Rn\η(T). In
particular the conditions imply that Nk(M) is an /-fold covering of Rn\η(T).
Thus η'\M) Π Nk(M) must be an /-fold covering of Λf. But from Theorem
3.1 this covering must consist of / connected components Λfl5 -,Mι such that
η I Λff is a homeomorphism for i = 1, , /. Also m \ M{. Mi -> M is of degree ± 1
and so, in particular, must be onto. Thus for any p G M there exist points
?„• -,?, such that (/?, qt) G Mt C #*(M). That is, qw , ί # G # / Π Λ/.

Note that this theorem can be interpreted in terms of distance functions. The
conditions are equivalent to Lx having / critical points of index k, and the
conclusion is that for any/? G Λf there exist qί9 ,qt G M such that L , ,L
all have/? as a critical point of index k.

The next theorem can be interpreted in terms of height functions. It says
that if one height function has a critical point of index k, then for every point
p G Λf there is some height function which has p as a critical point of index k.
With this interpretation it is seen to be similar to the above theorem. However
there is some difficulty of defining the index in N( Λf) \ f, and our statement of
Theorem 3.3 avoids this. It can be considered as a limiting case of Theorem
3.2, when x tends to a point at infinity.

Theorem 3.3. Let Λf CR" be totally focal where Λf is homeomorphic to Sm.
Let U be a component of N(M)\t. Then for all p G M there is an infinite
normal in U Π τr~x{p).

Proof. By Theorem 3.2 we know that, for any p G Λf, N™ is not empty
since Nm(M) cannot be empty. Also from Theorem 2.1 we know that it is an
open convex subset of Λ .̂ Since Nm(M) is itself open in N(M), this is
sufficient to deduce that Nm(M) is a fibre bundle over Λf with fibre which is
solid. Hence there is a continuous cross-section μ: M -> Nm(M); see [7, p. 55].

Now for each p G Λf all the intersections of the line in Np joining p to
η o μ(p) with Fp must lie on the segment, in Np, between /? and η ° μ(p). So
the segment of this line from p to the point at infinity which does not contain
η o μ(p) lies entirely in Np°. This gives a map φ: M X / -> Pn \η(t) in which
the image of (/?, 0 is (/? - tx)/{\ - t) if η o μ(p) = χ9 t Φ 1 and [x - p] if

ημ(p)

Now consider U C N(M) \f. This is a covering space of P"\η( t) and so
contains a connected covering space AT of Af. By Theorem 3.1, η \ Mf is a
homeomorphism, and we can put ψ0 = (η \ Λf')"1: Λf -* Λf'. Now we consider
the covering map η \ U and apply the covering homotopy theorem to ψ0 and φ.
We obtain a lifting ψ: M X / -* U of φ with ψo(p) = ψ(/>,0). The image
ψ(Λf X {1}) consists entirely of infinite normals, that is, ψ(Λf X {1}) C
U\N(M). Put ψj(/?) = ψ(/?, 1) for all/? G Λf.
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We now wish to show that for all p E M, ψx(M) Π π~x{p) is not empty.
Now by Theorem 3.1, π ° ψ0: M -> M has degree ± 1 , and by construction
π o ψ0 is homotopic to 7r o ψ1# So TΓ ° ψj also has degree ± 1 and thus must be
onto. This is precisely what we required to prove the theorem.

4. Totally focal embeddings of S 2 in R4

We now specialise the results in the previous section to the case when M is
homeomorphic to S2 and M C R 4 .

Theorem 4.1. Let M CR 4 be totally focal where M is homeomorphic to S2.
Then M is a round sphere lying in a hyperplane 0/R4.

Proof. If NX(M) is empty, then no nondegenerate distance function can
have a critical point of index 1. Hence they must each have just one maximum
and one minimum. In other words the embedding is taut, and the result follows
from[l].

We show that the above is the only case by assuming that Nι(M) is not
empty and getting a contradiction. By Theorem 3.2, if N\M) is not empty,
then Λ̂ 1 is nonempty for all p E M. Also N2(M) is not empty, and again by
Theorem 3.2, N* is nonempty for all p E M. So we have Np°, Np

ι and Np are
all nonempty. Thus since the closures of Nι(M) and N°(M) U N2(M) in
N(M) \ f are distinct components of N(M) \ f, Theorem 3.3 implies that these
components intersect Np\Np for all p E M. Thus Np and Λ̂ °, the closures of
Np and Np U Np in Np \ Γ, must intersect the line at infinity. This means that
the conic Fp in Np must intersect the line at infinity in distinct points. Also
since every line through p intersects Fp in real points, if Fp is a proper conic,
then p must lie inside it. Thus the polar line of p with respect to the conic Fp

intersects the line at infinity in Np. Let Lp be the projective line through p
which intersects this polar line at infinity. Then the two points in which Lp

intersects Fp are separated by p and the point at infinity on Lp, that is, there is
one in each direction from p along Lp = LpΠ Np. Now U {Lp: p E M} is a
vector line bundle over M and so must be trivial. Thus we can pick out a
direction along Lp9 and so find a cross-section oϊN(M) which lies in Γ and has
multiplicity 1. Therefore corresponding to this field of critical normals there is
a tangent field of principal directions. But the tangent bundle of M has no
1-dimensional vector subbundle, and so we arrive at a contradiction. This
proves the theorem.

Of course this theorem immediately raises the question as to whether there
exists a totally focal embedding of S2 in R5 which does not have image a round
sphere. Using Theorems 3.2 and 3.3 it is possible to show that the focal set Fp,
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which is a quadric, must be a cone in Np. However, this does not seem to give
enough information to construct a cross-section in Nι(M), as in the proof of
Theorem 4.1.

5. Totally focal embedding of S1 in R"

We need rather different techniques to deal with the case when M is a simple
closed curve in Rn. Thus the methods in this section tend to be rather ad hoc.

Theorem 5.1. Let M CR" be totally focal where M is a smooth simple closed
curve. Then M is a round circle lying in a plane.

Proof. The focal set in any normal projective (n — l)-plane N consists of
just a projective hyperplane. Thus Fp is a projective (n — 2)-plane in Pn. But
by Theorem 3.2, for all p E Λf, Np is nonempty and therefore Fp is an
(n - 2)-ρlane in R".

We divide the proof of this theorem into two cases. In the first case we
suppose that M contains a semicircle A lying in a 2-plane. So there exist an
(n — 2)-plane Λ in Rw and c E Λ such that A is a semicircle centre c lying in
the 2-plane through c orthogonal to Λ. So if p and q are the endpoints of A,
then Np = Nq. Also Fr — A for all r E A. The crucial observation is that the
normal planes to A fill up Rw, that is, Rn = U {Nr: r E A}. Thus if x E τj(Γ)
there exists some r E A such that x E Nr and hence x E Fr — A. Thus η(T) C
Λ, and so Fr — A for all r E M. Lemma 2.3 and Theorem 2.4 show that the
curve M must be a plane circle with axis Λ, which must be the circle centre c
since it contains the semicircle^.

The theorem will be proved by assuming next that M does not contain any
plane semicircle and obtaining a contradiction. So suppose M contains no
plane semicircle.

We have shown in Theorem 3.1 that η~\M) consists of a finite number of
connected components Λf0, Mx, -,Mk say, such that η \ Mi is a homeomor-
phism for each i. Let σz: M -> M be defined by σ, = 9Γ o (η | M,)"1. Then
σo(/?),•• -,σk(p) are distinct points in M and are the feet of the normals
through/?. Since M is homeomorphic to S1, we can fix on an orientation and
order these feet around the curve so that they are σo(/?), σx(p)9"-9σk(p) in
that order. Thus σo(p)=p corresponds to the zero normal, σλ(p) must be a
maximum point for the distance function Lp9 σ2(p) will be a minimum point,
and so on.

We now concentrate on oλ and observe that the length of the normal
|| p — σx(p)\\ is a smooth function on M. We will show that it is constant. Let
p be a point where this length is minimum or maximum, and put q — oλ(p).
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Then clearly the line joining/? to q is a double normal, that is, it is normal to M

at both/? and q. We let A be the arc of M from/? to q in the agreed direction so

that the distance function Lp has no critical points on A except for a minimum

at/? and a maximum at q. This means that Fp must intersect the segment/?# at

a point c which must be the only point in which η(f) intersects the projective

line through these points. Let γ: / -> Pn\τj(Γ) be a path mapping the unit

interval into the segment of this projective line through /? and q, which does

not contain c. Given any starting point in vfλ(p) this can be lifted to a unique

path in N(M)\t with endpoint in rfι(q). Clearly if we start with (/?,/?) G

Tf *(/?), we obtain γ0: / -> N(M) \ f given by yo(t) = (/?, γ(0) so π o γo(/) = p

for all t G /. Similarly if we start with (q, p) G η~\p), we obtain yx: I ->

N(M)\T given by γ,(/) = (q, y(t)) so m o γ^/) = ^ for all ί G /. Now sup-

pose we start with some other point (r,/?) G η"^/?). We obtain γ': / ->

iV(Λf)\f, and this path does not intersect γ0 or yλ so π ° y'(t) φ p or #

whatever t G /. But since r is a critical point of the distance function Lp9 it

does not lie on A. Since π o y'(I) is connected, we conclude that π o y'(I) C

M\A. In particular π ° y\I) & A, and this means that the distance function

Lq has no critical points on A except for/? and q. This means that/? = σk(q).

Let Λ = Fp Π Fq so that Λ is a hyperplane in Np Π Nq and passes through c.

We now carry out a similar argument to the above. Suppose x G (Np Π Nq)\A

and lies on the same side of Λ as /?. We join p to x by a path γ: / -> (i^,

ΠTV̂ ) \Λ, and by the same argument as before deduce that Lx has no critical

points on A apart from p and q. Further, since γ does not intersect the

hyperplane at infinity, the lifted path must he in N°(M) or N\M). We

deduce that p is a minimum for Lx and q is a maximum. Thus, for all

x G (Np Π Nq)\A lying on the same side of Λ as /?, A must lie outside the

open ball, centre JC, radius ||x — /? II and inside the closed ball, centre x9 radius

IIx — q ||. There is a similar argument with/? and q interchanged.

The only way in which this is possible is that c is the mid-point of the

segment pq in R", Λ is perpendicular to pq9 and A lies on the sphere, centre c,

whose focal set is Λ. This means that Λ C Dr for all r G A. By Lemma 2.3, if

dim Λ = n — 2, then A is a plane semicircle, and we are assuming that M does

not contain a plane semicircle so we assume dim Λ = n — 3 and Fp φ Fq. This

means of course that Npφ Nq.

We next observe that if r, s G M are any two points, then Nr Π JV, is

nonempty. In fact either Nr = JV, or iVr Π Ns is a hyperplane of Nr. But / r is

also a hyperplane of iVr since dim M = 1. Thus # r Π /; = Fr Π (iVr Π JV5) is

nonempty and either Fr = Fs or Fr Π jζ is a projective (Λ — 3)-plane which

could lie in the hyperplane at infinity. Let us write A for the projective
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(n — 3)-plane in Pn which contains Λ. Then A is a hyperplane of F, and if
FrΦFp, then so is Fp Π Fr. Thus either A C Fr or A Π Fr is an (n - 4)-plane.

Let us consider the case when for some r 6 M, A Π Ff is an (n - 4)-plane.
Then for every s E A, Fs intersects Fr in an (n — 3)-plane and contains the
(n — 3)-plane A. Thus Fs Π Fr must contain both the (n — 4)-plane A Γ\ Fr

and some point x in Fr which is not in A. Thus Fs contains both x and A, and
must be the unique projective (n — 2)-plane which contains both x and A.
Thus Fs must lie in the unique hyperplane of P π which contains both A and Fr.
Call this Π.

S o F 5 C Π for alls E A, and therefore by Theorem 2.4, A lies on a circle or a
line in Rw. But A cannot lie on a line since pq is a double normal, so A is a
plane semicircle, and this contradicts our assumption that M does not contain
a semicircle.

This leaves the alternative that A C Fr for all r G M, and hence by Lemma
2.3, M lies on a 2-sphere or a 2-plane in Rn. Since we are assuming that A is
not a plane semicircle, M must lie on the 2-sphere with centre c and diameter
\\p-q\l

So we have shown that if p is a point such that \\p — ox(p)\\ is minimum or
maximum, then q — ox{p) and p are antipodal points on this sphere. Thus
II r — ox{ry\ is constant for all r E M, and | |r — σ^r)!! is the diameter of the
sphere.

Thus if q = σx(p)9 then p = σ{(q). But we have shown that p = σk(q).
Hence k = 1. This means that η: N(M)\T -> Rπ\η(Γ) is a 2-fold covering.
Hence every nondegenerate distance function Lx, x E Rn \τj(Γ), has just two
critical points, a minimum and a maximum. Thus M is taut and so must be a
round circle in a 2-plane [1]. This contradicts the assumption that M contains
no plane semicircle, and completes the proof of the theorem.

References

[1] S. Carter & A. West, Tight and taut immersions, Proc. London Math. Soc. 25 (1972) 701-720.
[2] , Totally focal embeddings, J. Differential Geometry 13 (1978) 251 -261.
[3] , A characterisation of isoparametric hypersurfaces in spheres, to appear in J. London

Math. Soc.
[4] T. E. Cecil & P. J. Ryan, Tight spherical embeddings, Lecture Notes in Math. Vol. 838,

Springer, Berlin, 1979, 94-104.
[5] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
[6] S. S. Chern & R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79

(1957)306-318.
[7] N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, 1951.
[8] R. J. Walker, Algebraic curves, Princeton University Press, Princeton, 1950.

UNIVERSITY OF LEEDS, ENGLAND






