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Dedicated to Professor Buchin Su on his 80 th birthday

Smooth fibrations of spheres by great spheres occur naturally in the study of
the Blaschke conjecture. In fact, if M is a Blaschke manifold, m is a point of
M, TmM is the tangent space of M at m, exρw: TmM -> M is the exponential
map at m, and Cut(w) is the cut locus of m in M, then exp^(Cut(m)) is a
sphere Sm in TmM of center 0, and expw: Sm -» Cut(w) is a smooth great sphere
fibration of the sphere Sm. For general information of the Blaschke conjecture,
see [2].

If K is the real, complex, quaternionic or Cayley algebra, n is the dimension
of K as a euclidean space, which is 1,2,4 or 8, and S2n~ι is the unit
(In — l)-sphere in the euclidean 2«-space K X K, then there is a natural
smooth great (n — l)-sphere fibration of S2n~x such that any (w, w), (u\ w') G
S 2 "" 1 belong to the same fibre iff either w = w' = 0 or uw~λ — u'W~λ. When
n > 1, this fibration, as well as isomorphic ones, is often referred as the Hopf
fibration. Related to this result, Adams' theorem [1] says that a smooth
fibration of S2n~λ by (n — l)-spheres can occur only when n— 1,2,4 or 8,
and a classical theorem of Hurwitz [4] says that any division algebra K, which
possesses a norm such that for any t>, w E K, | vw | = | v \ | w \ , must be the real,
complex, quaternionic or Cayley algebra. If n — 1 or 2, then any ^-dimensional
division algebra is the real or complex algebra, and any fibration of S2n~x by
(n — l)-spheres is unique up to an isomorphism. Hence in these cases, the
correspondence between ^-dimensional division algebras and smooth great
(n — l)-sphere fibrations of S 2 "" 1 is trivial.

In this paper, we show that for n — 4 or 8, each ^-dimensional division
algebra K determines a smooth great (n — l)-sphere fibration of S2n~\ and
every smooth great (n — l)-sphere fibration of S2n~\ up to an isomorphism, is
determined by an ^-dimensional division algebra K. However, it is possible
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that two division algebras, not isomorphic to each other, may determine
isomorphic smooth great (n — l)-sphere fibrations of S2n~λ. Such an example
can be found using division algebras constructed in Bruck [3].

We also show that any division algebra of dimension > 1 contains the
complex algebra as a subalgebra. Results of a subsequent paper of the author's
joint work with Herman Gluck and Frank Warner will be used to show that
any smooth great 3-sphere fibration of S 7 is isomorphic to the Hopf fibration,
and hence any Blaschke manifold which has the integral cohomology ring of
the quaternionic projective 2-space H P 2 is homeomorphic to H P 2 .

The author wishes to express his gratitude to many colleagues of his for
numerous dicussions, and especially to McKenzie Y. Wang for bringing
Bruck's paper to his attention, and to Stephen S. Shatz for showing him an
algebraic proof of the result that any division algebra of dimension > 1
contains the complex algebra.

Throughout this paper, R denotes the real algebra, and C the complex
algebra. Let K be the euclidean w-space, n> I, which is often regarded as a
vector space over R. By a regular multiplication on K, we mean a bilinear
function

m:KXK->K

such that for any α,ί)GK with a ¥= 0, each of

m(v, a) = fc, m(a,w) = b

has a unique solution in K. K together with a regular multiplication on K is
called a regular algebra which we also denote by K. If m is the only regular
multiplication on K under our consideration, we often write υw in place of
m(t>, w). We note that a regular multiplication may not be associative, and a
regular algebra may have no identity, and that a regular algebra may not have
a norm such that the norm of a product is equal to the product of the norms.
On the other hand, it can be shown that any 1-dimensional regular algebra
must be R, and that the dimension of any regular algebra is 1,2,4 or 8. A
division algebra is defined to be a regular algebra having an identity. Notice
that the real, complex, quaternionic and Cayley algebras are division algebras.

Let {el5 -,£„} be a basis of K as a vector space over R. Then for any
bilinear function m: K X K -> K, there are n3 real numbers aijk, /, j9 k =
1, ,«, such that

( n n

Σ v&> Σ wkek] = Σ Σ
i=\ k=\ y

Hence regular multiplications are always smooth.
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Proposition 1. Any \-dimensional regular algebra is the real algebra.

Proof. Let K be a 1-dimensional regular algebra, and let a be an element of
K different from the zero of K. By definition, ae — a for some e E K. e is
different from the zero of K; otherwise, a — ae — a(0e) — 0(ae) = Oe = e,
contradicting to our assumption.

Let a - te, t E R. Then t ^ 0, and te = (te)e = te2 so that e2 - e. Hence e
is the identity of K, and K can be naturally identified with R by setting re = r
for all r G R .

Theorem 1. Any division algebra of dimension > 1 contains a subalgebra

isomorphic to the complex algebra.

Corollary 1. Any 2-dimensional division algebra is the complex algebra.

Let K be a division algebra of dimension n > 1, and let S2n~ι be the unit
(n — l)-sphere in K. We may assume that the identity e of K is contained in
Sn~ι; otherwise all we have to do is to use a new norm on K which is equal to
I e I"1 times the old one.

Lemma 1. The map f: Sn~ι -> Sn~ι defined by f(x) = x2/\x2\ is of degree
2.

Proof. Let

φ:Sn~ι X Sn~ι -> Sn~ι

be the map defined by

φ(x, y) = xy/\xy\ .

Notice that φ is well-defined and continuous, since xy E K — {0} for any
x, y E K - {0}.

Let Δ be the diagonal set in Sn~ι X Sn~~\ Let Sn~ι be oriented, and let
Sn~ι X {e}, {e} X Sn~ι and Δ be so oriented that the natural projection of
each of them onto Sn~ι is orientation-preserving. Let

φ*: Hn_λ(S"-'X S«~ι)-* H^S"-1)

be the induced homomorphism of integral homology groups by φ. Then

so that

Since φ(x, x) = f(x) for any c E S"~\ our assertion follows.

Proof of Theorem 1. By Lemma 1, the map
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defined by g(x) = x2 is onto. Therefore there is an element i of K — {0} such

that

i2 = g ( 0 = -*-

The linear 2-subspace of K having {e, i} as a basis is clearly a subalgebra of K

isomorphic to C.

As mentioned earlier, Stephen S. Shatz has an algebraic proof of Lemma 1,

and hence Theorem 1 can be proved algebraically.

Theorem 2. Let Kbe a regular algebra of dimension n > 1, and let S2n~ι be

the unit (In — \)-sphere in the euclidean In-space K X K. Then K determines a

smooth great (n — \)-sphere fibration of S2n~ι such that any (w, w), {u\w') E

S2n~ι belong to the same fibre iff either w = w' = 0 or u — vw and u' — vw' for

some t )GK. Moreover, the fibrations determined by two isomorphic regular

algebras are smoothly isomorphic.

Notice that if K is the complex, quaternionic or Cayley algebra, then the

fibration determined by K is the Hopf fibration.

Proof. Let Σ" = KU {oo} be the one-point compactification of K. Then

Σn can be made a smooth manifold as follows. For any u E K — {0}, we let

λ M : Σ " - { 0 } - K

be the homeomorphism such that λM(oo) = 0 and vλu(v) = u for any v EK —

{0} = Σ" - (0, oo}. Since λM: K - {0} -> K - {0} is a diffeomorphism, there

is a smooth structure o n Σ " such that the inclusion map of K into Σn is a

smooth imbedding, and λM is a diffeomorphism for some u E K — {0}. The

smooth structure on Σn is independent of the choice of u. In fact, for any

M, ur E K — {0}, u and u' can be joined by a smooth path in K — {0}, and

hence λM, \u,\ K — {0} -> K — {0} are isotopic.

Let

π:S2n-] -»Σn

be the map such that τr(w,0) = oo for any u E Sn~\ and π(u, w)w — u for any

(w, w) E S2n~ι with w ^ O . Since the multiplication on K is bilinear, it follows

that π~ιv is a great (n — l)-sphere in S 2 " " 1 for any υ E Σn.

There is a smooth imbedding

given by

go(v,w) = ( t ; w / / | ϋ w | 2 + l , w / / | ι w | 2 + l ) ,

and for any v E K, πgo({t>} X Sn~ι) = v. Also there is a smooth imbedding

g p S " " 1 X (Σn- {0}) ^ S 2 " " 1
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given by

and for any v EΣ" - {0}, πgx(Sn~] X {v}) = v. Hence

π:S2n~ι ^Σn

is a smooth great (n — l)-sphere fibration.
Let Kx be a regular algebra isomorphic to K, and let

be the smooth great (n — l)-sphere fibration determined by Kl5 where S2n~ι is
the unit (2n — l)-sphere in 1^ X Kx. Then πx: S2n~λ -> Σx is smoothly isomor-
phic to π: S2n~ι -> Σn. In fact, if/: Kj ^ K is an isomorphism, then

fXf:Kx X K ^ K X K

defined by (/ X f)(uX9 wx) = (fuλ, fwx) is a nonsingular linear map so that

h:Sx

2n~] ->S2n~ι

defined by λ(«,, wx) = (fux, fwx)/\ {fux, fwx) \ is a diffeomorphism. It is easy
to see that h maps fibres of πx: S2n~λ -> Σ" into fibres of π: S2n~ι -» Σn.
Hence the proof is completed.

As a consequence of Theorem 2 and Adams' theorem, we have
Corollary 2. The dimension of any regular algebra is 1,2,4 or 8.
Let GL(K) be the group of nonsingular linear maps of K into K. Two regular

multiplications m and mx on K are said to be equivalent if there exist
μ, v, ω E GL(K) such that «i,(^ X ω) = μm, that means, the diagram

is commutative.
Proposition 2. Let m and mx be equivalent regular multiplications on the

euclidean n-space K. Then the smooth great (n — \)-sphere fibrations of S2n~ι

determined by the regular algebras (K, m) and (K, mx) are smoothly isomorphic.
Proof Let

π:S2"-1 -^Σ", πx:S
2n-χ ^Σ^

be the smooth great (n — l)-sphere fibrations determined by (K, m) and
(K, mx). Since m and mx are equivalent, there are μ, v, ω E GL(K) such that
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mx(y X ω) = μm. Then / x X ω : K X K ^ K X K i s a nonsingular linear map so
that h: S2n~ι -> S2n~ι defined by h(u, w) = (/AM, ωw)/\ (μu, ωw) | is a diffeo-
moφhism. It is easily seen that h maps fibers of π: S2n~ι -* Σn into fibres of
7Γj. O -» 2 . ] .

Proposition 3. On the euclidean n-space K, any regular multiplication is

equivalent to one having an identity.

Proof. Let m be a regular multiplication on K, and let

Φ , * : K - {0} ^GL(K)

be the smooth maps such that

Φ(v)w = m(v, w), Ψ(w)t> = m(t>,w).

L e t e G K - {0},let

μ, P, ω: K -> K

be the elements of GL(K) given by

μ(w) = Φ(e)~Xu, v(v) = ϋ, ω(w) = ^(e)~^(e)w,

and let m' be the regular multiplication on K such that

m'(v X ω) = μm.

Then for any v\ w' E K - {0},

Therefore

m'(e9w') = Ψ(e)"1Φ

so that

e = m ' ( e , e) = Ψ(e)"

From the last equality, we infer that Φ(e)~ιΨ(e)e = e and hence

m'(υ'9 e) - *(e)"1γ(φ(e)"1Ϋ(β)β)t?/ = v'.

As a consequence of Propositions 2 and 3, we have
Corollary 3. Any smooth great (n — \)-sphere fibration of S2n~ι determined

by a regular algebra is smoothly isomorphic to one determined by a division

algebra.

Now we are in a position to construct, from a given smooth great (n — 1)-
sphere fibration of S2n~\ an ^-dimensional division algebra K such that the
smooth great (n — l)-sphere fibration of S 2 "" 1 determined by K is smoothly
isomorphic to the given one. Since it is trivial for n — 1 or 2, in the following
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we assume that

n = 4 or 8.

Let K be the euclidean w-space, and Sn~ι the unit (n — l)-sρhere in K. Let
GL(K) be the group of all nonsingular linear maps of K into K, and SL(K) the
subgroup of GL(K) consisting of all the g E GL(K) with det g = 1.

Let Li be a normed real vector w-space, and S"~x the unit (n — l)-sphere in
Lt,i = 1,2. A diffeomorphism /: S"~ι -> S%~λ is called a linear diffeomor-
phism if there is a nonsingular linear map g: Lx -» L2 such that for any

Lemma 2. Whenever g E GL(K), we have a linear diffeomorphism

g:Sn~ι -*Sn~ι

defined by g(x) = g(x)/\ g(x) | . Conversely, whenever f: Sn~ι -» Sn~ι is a
linear diffeomorphism, there is a unique g E GL(R) such that g— f and det g =
± 1, andgrg~λ is in the center ofGL(K)for any g' E GL(K) with gf - f. Hence

= {g\gGSL(K)}

acts on Sn~ι as a smooth transformation group.
For any map α: S"~ι -> SL(K), we have a map a: Sn~ι -* 5L(K) defined by

α( ϋ) = α( ϋ ), called the associated map of α.
Lemma 3. L<tf S^""1 6e Sn~ι or a great (n - \)-sphere in S2n~\ i = 1,2.

ΓΛe« αA2j //«ear diffeomorphism f: S"~ι -> .S2"""1 mφί gr̂ α/ drcfe mίo greα/
circles, and any map f: S"~ι -> 52""1 wΛ/cΛ wα/?5 gre^/ circles into great circles is

a linear diffeomorphism.

Lemma 2 is quite obvious and Lemma 3 is a consequence of the well-known
theorem in projective geometry that any map of a projective space of dimen-
sion > 1 into itself which maps projective lines into projective lines is a
projective transformation.

Let

π:S2n~ι -*Σn

be a given smooth great (n - l)-sphere fibration of S2n~\ We first observe
that Σ" is homeomorphic to the w-sphere. In fact, if Sn is a great rc-sphere in
S2n~ι containing a fibre F, then F is a great (n - l)-sphere in Sn, and Σ" is
obtained from a closed hemisphere in S"2 with boundary F by identifying F to
a single point.

Let Fo and Fx be two distinct fibres. Whenever x is a point of S2n~ι — Fi9 Ft

and x determine a great w-sphere in S 2"" 1. The closed hemisphere in this great
H-sphere of boundary Fi containing x will be denoted by Ftx.
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Let

h0: S2n~ι - F, -> F09 hx:S
2n~ι -F0^Fλ

be the smooth maps such that for any x E S2n~ι — Fx_i9 h((x) is the point of
intersection of Fx_tx with Fi9 i = 0,1. Let

Then

π X V S 2 "" 1 - Fx -> (ΣM - ( x j ) X F09

hιXπ:S2n-ι-F0^FιX.(Σn-{x0})

are diffeomoφhisms, which are local trivializations of the fibration over
Σ" - {xx} and Σ" - (x0) respectively.

Let 5 be the (n — l)-sphere of unit tangent vectors of Σ" at x0 with respect
to any preassigned Riemannian metric on Σn. Then for any (t>, w) G S X Fθ9

there is a tangent vector τ(t>, w) of Fxw at w> such that

dπ(τ(v,w)) — v.

Now we define a smooth map

ξ: SXFO^FX

as follows. Let (v,w) G S X Fo. Then there is a smooth map /: [0,1] -> /̂ w
such that /(0 = w iff ί = 0, and /'(0) = τ(ϋ, w). It is not hard to see that
lim^o Fof(t) exists and is a closed hemisphere of boundary Fo with τ(υ, w) as
a tangent vector at w. ξ(ϋ, w) is defined to be the point of intersection of

The following lemma plays a key role in our paper.
Lemma 4. For any v E 5, w -> £(t>, w) is a linear diffeomorphism of Fo onto

Fx, and for any w E JP0, v -» ξ(t), w) w α /i/ieαr diffeomorphism of S onto Fx.

Proof. Let t> E 5 and let /: [0,1] -» ΣΛ — {JCJ be a smooth map such that
/(*) = x0 iff t = 0, and/'(0) = υ. Then for any w E Fo, we have a smooth map
fw: [0,1] -> F,w such that < = /. Clearly fw(t) = w iff / = 0, and /;(0) =
τ(ϋ, w). Moreover,

Let C be a great circle in Fo. Then for any / E (0,1 ], Ct = {/w(0 | w E C} is
the intersection of π~xf(t) with the great (n + l)-sphere in S2n~ι determined
by Fx and C, so that it is a great circle in π~ιf(t). Therefore hx(Ct)9 which is the
intersection of Fx with the great (n + l)-sphere in 5 2 " " 1 determined by Fo and
Q, is a great circle in f1^ Hence | (υ , C) = l im^ 0 hx{Ct) is a great circle in Fx.
From this result and Lemma 3 we conclude that w -> ξ(v, w) is a linear
diffeomorphism of Fo onto Fx.
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Let w E Fo. For any great circle C in S we have a great (n + l)-sphere Sn+ι

in S2n~ι containing Fo such that for any υ G C, τ(t>, w) is a tangent vector of
S"4"1 at w. It can be seen that ξ(C, w) is the intersection of Fx and Sn+ι so that
it is a great circle in Fx. Hence by Lemma 3, v -»£(t>, w) is a linear diffeomor-
phism of S onto Fj.

Since Σ" is 1-connected, we may assume that π: S2n~ι -* Σn is oriented.
Then for any υ E 5, w -> ξ(v, w) is an orientation-preserving linear diffeomor-
phism of Fo onto Fλ. We let 5 be so oriented that for any w £ F 0 , u ^ { ( u , w )
is also an orientation-preserving linear diffeomorphism of S onto F,.

Let S"1"1 be naturally oriented, and let us identify Fo, F, and 5 with S"7"1 by
orientation-preserving linear diffeomorphisms. Then ξ: S X Fo -> F, becomes a
smooth map

SIS"" 1 X 5"1"1 -* S"~]

such that for some smooth maps

φ9t:S
n-ι->SL(K),

we have
ί(υ,w) = φ(ϋ)w = ψ (w)ϋ,

where φ, ψ: 5"1"] -> *SL(K) are the associated maps of φ and ψ.
The following result can be proved in the same way as Proposition 3.
Lemma 5. For any e E Sn~\ we let

μe = ψ(e)~\ ve = identity, ωe = ψ(eylφ(e),

let

φe,ψβ: S" - SL(K)

fee ί/ie smooth maps defined by

f^iS" 1" 1 X

/Λe smooth map defined by

Φβ(^) ~ Ψe(^) = identity,

ξe(v,w) =φe(v)w = ψe(w)o,

w/zere φe, ψe: 5
W ~ ! -> SL(K) are /Λe associated maps ofφe and ψe.
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Lemma 6. K can be made a division algebra with identity e such that for any

υ,w 6S"" 1 ,

ξe(υ9w) — vw/\υw\ .

The following results are needed in the proof of Lemma 6.
Sublemma 1. Let U be a nonnull open subset of R, and let v, ω: U -» R and

a: R -> R be smooth maps such that

a(r)>0

for any r G R , and

α ( r ) - l + ω(,)r

for any r G R and s E U. Then

v — ω, a = 1.

Proof. By hypothesis,

α(r)(l + ω ( ^ ) r ) = 1 + v(s)r.

Partially differentiating the equality with respect to s, we obtain

<x(r)ω'(s)r = v'(s)r.

Therefore

a(r)ω'(s) = ̂ (.).

If ωX )̂ ^ 0, then α(r) = v'(s)/ω'(s) which is independent of the choice of r.
Therefore a(r) — α(0) = 1 and hence

a= 1.

If ω'(s) = 0, then '̂(.y) = 0. Therefore there are v, ω G R such that

, x 1 + ^
a(r) = -r—• .

v 7 1 + ωr
Since α(r) > 0 for all r E R, it follows that ^ = ω. Hence a(r) — 1 for all
r E R or

α = 1.
Sublemma 2. Lei λ 1 ,λ 2 ,μ 1 ,μ 2 ,α : R-*Rfce smooth maps such that

a(r)>0

for any r G R , and

= \+λ(s)r + λ(s)r2

1 + μλ(s)r + μ2(s)r2

for any r, s E R. 7%ert e/YΛ̂A* λ l 9 λ 2 , /i l 5 /A2 ̂ ^ constant maps or a— 1.
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Proof. By hypothesis,

α(r)(l + μx(s)r + μ2(s)r2) = 1 + λ,(j)r + λ 2 ( j )r 2 .

Partially differentiating the equality with respect to s, we obtain

αίrXμίί ί)r + μ'2(s)r2) = λ',(ί)/- + λ' 2(ί)r 2.

Therefore

a(r)(μ\(s) + μ'2(s)r) = λ\(s) + λ'2(s)r.

Assume first that μ\(s) = 0. Then

\\(s) = a(0)μ'2(s)0=0,

so that

a(r)μ'2(s) = λ'2(s).

If μ'2(s)=Q, then λf

2(s) = 0. Hence λ 1 ,λ 2 ,/x 1 ,μ 2 are constant maps. If

μ'2(,y) ^ 0, then there is a nonnull open subset 1/ of R such that for any s G ί/,

μ'2O) 7̂  0. Therefore for any r G R and j G £/, a(r) = λ'2(j)/μ'2(j) which is

independent of the choice of r. Hence α(/ ) = «(0) = 1 or a = 1.

Assume next that μΊ(j) ^ 0. Then there is a nonnull open subset U of R

such that μΊ(j) T^ 0 and

λ\(s) = a(0)μ\(s) = μ\(s)

for any s Ez U. Therefore for any r G R and 51 G {/,

Hence by Sublemma 1,

α = 1.

Proof of Lemma 6. In this proof, we drop the subscript e from £ e, φe, \pe so

that ξ, φ, ψ are actually ξe, φe9 ψe of Lemma 5.

Let

Φ , Ψ : K - {0}

be the maps such that for any ϋ , w G K — {0},

Then for any v, w G K - {0},

Φ(u)e = v = Ψ(e)f, Ψ(w)e = w = Φ(e

(t?)w|= Ψ(w)v/\Ψ(w)v\ .
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If we are able to show that for any v9 w E K — {0},

Φ(i))w = Φ(w)v,

then K can be made a division algebra such that for any t>,wEK— {0},
vw = Φ(v)w = Ψ(w)v so that for any υ, w E Sn~ι, ξ(t>, w) = vw/\ vw | .

In the following, we let v and w be two fixed elements of K — {0}. If v = re
for some r E R, then

If w = re for some r E R, then Φ(t?)n> = / Φ(t>)e = rΨ(e)ϋ = Ψ(w)v. Hence
we may assume that υ,w & Re. Let γ be the real number such that

Φ(v)w = yψ(w)v.

We claim that γ = 1.
Assume first that e, v, w are not linearly independent. Then for some

U t' E R,
w = te + t'v, t' Φ 0

Let {el9' - -,en} be a basis of K such that

ex - e,e2 = v,

and let γ,, , γ B E R b e such that

* ( e 2 ) e 2 = Yi^i + ••• +yneH.

I f ϊ i = Ϊ3 = Ϊ4 = = yπ = 0, then

which is impossible. Therefore γ^ Φ 0 for some A: Φ 2. We may assume that

In fact, if γ! = 0, then yk φ 0 for some k > 2, so that by replacing ek by
e£ "*~ e\ w e obtain a new yλ different from 0.

For any r, 5 E R, there are smooth real valued functions

a = a(r), β = β(s)

such that

Φ(ex + re2)e2 = aΨ(e2)(ex + re2), Ψ(ex 4- se2)e2 = βΦ(e2)(ex + se2).

Clearly α(0) = 1 and a(r) φ 0 for all r E R. Hence α(r) > 0 for all r E R.
Similarly 0(0) = 1 and β(s) > 0 for all J 6 R . NOW

Φ(e, + re2)(ex + ̂ e2) = Φ(ex + re2)ej H- ̂ Φί^j + re2)e2

= βj + re2 + 5αΨ(e2)(e, + re2)

= e, + re2 2 ^ γ ^ ! γ n M )

= ex + r0e2 + ̂ 2 + / ^ ( γ ^ + +yneH).
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Since the coefficients of e,, ,βn in Φ(eλ + re2)(eι + se2) and those in
Ψ(ex + se2)(eι + re2) are proportional, we infer that

rsayx _ / + ία + rcαγ2 _ ayk

" rβ + 5 + /sjβγγ2 Ί7

Therefore

— \)/3 + j8γγ2)r - (jSγγ,

By Sublemma 2, either α = 1 or

((/? - \)/s + βyy2y = (βyΎιy = (γ2 + j Y l - tfγγ,)' = (iSγ,)7 = 0.

In the first case,

(β - \)/s + i8γγ2 = γ2 + j Y l - ^ γ γ , , jSγγ, - βyλ.

Since Ŝγt Φ 0, it follows from the second equality that γ = 1. Then the first
equality becomes

Therefore β - 1 = 0 or β - 1. In the second case, /?'(.?) = 0 so that β(s) =
jB(O)= l.Then

0 = (γ2 + jγ, - JjSγγ,)' = γ^l - γ),

so that γ = 1. Therefore a = 1. Hence we always have

α = l , 0 = l , γ = l .

Since ϋ = e2 and w = tex + t'e2, it follows that when ί = 0,

Φ(υ)w = ΐfΦ(e2)e2 = t'Φ(e2)e2 = Φ(w)v,

and when t φ 0,

Φ(υ)w = rΦ(e2)(e! + (/70^ 2 ) = ί Ϋ ( ^ i + ( ' 7 0 ^ ) ^ 2 = ¥(w)t>.

Assume now that e, t», w are linearly independent. Then there is a basis

{el9- ',en} of K such that
eλ = e,e2 = t>,e3 = w.

Let Y!, ,γΛ E R be such that

Then

Φ(^l + ^ 2 ) ( e l + Se3) = e\+ re2

^{ex + se3)(ex + re2) = ex+ rβe2 + se3 + rsβy{yxex + +ynen).
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Therefore

1 + rsayx _ r + rsay2 _ sa + rsay3 _ ayk

1 + rsβyyx " rβ + r ^ γ γ 2 ~ s + rc/?γγ3 ~ jβγγ^'

We may assume that one of γ,, γ2, γ3 is not 0. In fact, if γj = γ2 = γ3 = 0,
then for some k > 0, yk Φ 0. By replacing ekby ek + eλ we obtain a new yλ

different from 0.
If either yλ or γ3 is not 0, from

1 + rsayx sa

1 + rsβyyx s + rsβyy3

we obtain that

1 +
1 + (γ3 + sβyyx - syx)r'

By Sublemma 1, a = 1, so that

or

( i 8 γ - l ) ( γ 3 - 5 γ 1 ) = 0.

Since either γj and γ3 is not 0, it follows that βy — 1 = 0. Hence

γ = l , i 8 = l , α = l .

If γ2 is not 0, we have

Similarly,

γ = l , α = l , 0 = l .

Since v = e2 and w = e3, it follows that

Φ(υ)w = Φ(e 2)e 3 = Ψ(e 3)e 2 = Ψ(w)υ.

Hence the proof of Lemma 6 is completed.
Theorem 3. Let Kbe a division algebra of dimension n, n = 4or$, and let

π:S2n-1 -*Σn

be the smooth great (n — \)-sphere fibration determined by K as seen in Theorem
2. Then K can be recovered from the fibration by the construction given above.

Proof. Let

Fo= {0} XS"~\ Fx = SH-lX{0}9
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and let Σn be assigned a Riemannian metric such that the smooth imbedding p

of Dn = {x E K11 x \< 1} into ΣM given by

w/)/\ vw | 2 + 1 , w//| UW | 2 +

is isometric. Then we have natural linear diffeomorphisms of Fo, Fx and S onto

Sn~\ of which the first two are projections and the last is (dp)'1.

Let us use these diffeomorphisms to identify Fθ9 Fλ and S with Sn~ι. Then

ξ: S X FQ -> f1! becomes

f: S"*"1 X S"1"1 -> Sn~ι

defined by

ξ(v,w) = vw/\vw\ .

Hence the regular multiplication constructed in Lemma 6 is the same as that in

K.

Theorem 4. Let

π:S2"-1 -*Σn

be a given smooth great (n — \)-sphere fibration, n — 4 or 8, and let K be the

n-dimensional division algebra constructed from thefibration as seen earlier. Then

thefibration is smoothly isomorphic to that determined by K.

Proof. With respect to a preassigned Riemannian metric o n Σ " , there is a

8 > 0 such that if Dδ is the closed n-disk in the tangent space of Σn at x0 of

center 0 and radius δ, then the exponential map exp imbeds Dδ smoothly into

Σ" — {xx}. Let D be the compact smooth ^-manifold obtained from the

disjoint union of Σ" — {x0} and S X [0, δ) by identifying every (t>, t) G S X

(0, δ) with exp tv E Σn X {x0}. It is clear that D is a smooth closed «-disk, and

its boundary is S X {0} = S.

Let

be the smooth imbedding such that λ(t>, w) E i^w and πλ(v,w) = exp t> for

any (v,w) E DδX Fo. Then we have a compact smooth (2« — l)-manifold W

obtained from the disjoint union of S2n~x - Fo and S X [0, δ) X Fo by

identifying every O , ί, w) E S X (0, δ) X Fo with λ ( > , w) E S 2 " " 1 - F o . It is

clear that the boundary of Wis S X {0} X Fo = S X F o , and that π: S2n'1 -

Fo -» Σ w — {x0} can be naturally extended to a smooth fibration

π:W-*D.

From the construction of { :SXF 0 ->F,, it can be shown that £ can be

naturally extended to a smooth fibration

ξ:W->Fx
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such that for any x E W — (S X Fo), ξ(x) is the point of intersection of Fox

withFj. Hence

hx = (ξXπ)~ι: FXXD-*W

is a dif feomorphism.

The inclusion map of S2n~ι — Fo into S2n~ι can be extended to a smooth

map

h2:W->S2"-1

such that h2(v, w) = w for any (u, w) E S X Fo — dW. Therefore we have a

smooth map

h = h2hx:Fx X D -* S2n~ι

such that the fibration π: S2n~ι -» Σ" is induced by the projection fibration

FXX D ^ D. Moreover, whenever (w, v), (u\ v') EFXX D, h(u, v) = h(u\ v')

iff either (w, v) = (M', V') or w = w', t», t>r E 5 = dD and for some w, w' E i^.

In the construction of the division algebra K, we identify Fθ9 Fx and S with

Sn~{ C K. Then we have a smooth map

Λ
f 17 s / T\ ^ c>Ίn—1

given as follows. Let us regard D — {xx} as [v E K | 0 < | v | < 1}. Then for

any(w, v) E Fx X (D — {xx}) there is a unique w(w, t>) E Kwitht>w(w, υ) = M.

The map W is given by

h'(u9v) =

(M,0) ifu = x!,

u

+ \w(u,v)\2 ' / l -h | w ( f i , t ? ) |

otherwise.

Now it is not hard to see that the identity map of Fx X D induces a smooth

isomorphism between the fibration π: S2n~ι -*Σn and that determined by the

division algebra K.

Corollary 4. Up to a smooth isomorphism, every smooth great (n — 1)-sphere

fibration of S2n~λ is determined by an n-dimensional division algebra.

Remark. It is possible to have many ^-dimensional division algebras, not

isomorphic to one another but determining isomorphic smooth great (n — 1)-

sphere fibrations of S^*"1. In fact, whenever α, /?, γ, a\ /?', γ ' are positive real

numbers satisfying

a + β + γ - aβy = a' + β' + γ' - a'β'y\
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there is a 4-dimensional division algebra which, as the quaternionic algebra,
has {e, /, j , k) as a basis, but in which the multiplication is given by:

e

i

j
k

e

e

i

j
k

i

i

-e

-y'k

βj

j

j
yk

—e

-a'i

k

k

-β'k
ai

-e

Also for any θ E [0, π/2], there is a 4-dimensional division algebra which has
{e, i, j , k] as a basis and in which the multiplication is given by:

e

i

j
k

e

e

i

j
k

i

i

-e

-k

j

j

j
k

-e cos θ +
-/ cos θ —

i sin θ
esmθ

k

k

-j
i cos θ + e sin θ
-e cos θ + i sin θ

For details, see Bruck [4]. Since all these division algebras are homotopic to the
quaternionic algebra, the smooth great 3-sphere fibrations of Sη determined by
them are smoothly isomorphic to the Hopf fibration.
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