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1. In a recent paper [2], C. Badji used harmonic theory to prove that if D is
a C°° strongly pseudoconvex domain in a Kahler manifold of nonnegative
bisectional curvature, then the Dolbeault group Hιι(D) vanishes. Now it is
implicit in the arguments of [4] that under the same hypothesis, -logp
(p = distance to the boundary dD) is strictly plurisubharmonic so that D is in
fact a Stein manifold and hence Hpq(D) = 0 for all q ^ 1. With the availa-
bility of [7], even more general statements can be made under weaker hypothe-
ses. It therefore seems worth while to explicitly write down some of these
theorems for future references. Deferring the technical definitions to the next
section, we may state the main theorem as follows.

Theorem. Let M be an n-dimensional Kahler manifold {not necessarily

complete), and D be a relatively compact domain in M. Then D is strongly

q-pseudoconvex (1 < q < n), // for some neighborhood W of dD in M the

bisectional curvature of M is q-positive in W Π D, and D is weakly hyper-q-con-

vex. Furthermore, D is q-complete if any of the following holds:

(i) The bisectional curvature of M is q-nonnegative in all of D and is q-positive

in W Π D for some neighborhood WofdD in M, and D is weakly hyper-q-convex.

(ii) The bisectional curvature of M is q-nonnegative in all of D, and D is C 0 0

hyper-q-convex.

(iii) The bisectional curvature of M is q-nonnegative in all of D, D is weakly

hyper-q-convex, and there exists a continuous function f: D -» R which is in Ψ(q)

onD.

Corollary. Let M be a Kahler manifold whose bisectional curvature is q-non-

negative. Then M has no exceptional analytic sets of dimension not less than q.
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In this theorem there is no need to make any assumption on the bisectional

curvature of M outside D. However, in part (ϋi) above the existence of such an

/ would follow, if M is complete and its bisectional curvature is everywhere

ήr-nonnegative and is ^-positive outside a compact set [7, Theorem 3], Note that

many variations on this theorem are possible. Indeed, the crucial argument of

such a theorem in its various guises always involves showing that a certain sum

of second variations of arc length is positive (cf. [4, pp. 177-178] or [7, Lemma

6]). Since the second variation formula is itself the sum of a boundary term

involving the Levi form of 3D and an integral involving the bisectional

curvature of D, suitable assumptions on 3D and on the bisectional curvature of

D balancing one against the other will always insure the positivity of the

resulting sum. Thus while [4, Theorem 1] assumes the pseudoconvexity of D

and the positivity of the bisectional curvature in D, it is obvious that it could

have assumed instead the strict pseudoconvexity of 3D and the nonnegativity

of the bisectional curvature. This observation explains the remark in the

opening paragraph as well as the proofs to be given below. We leave the

precise enumeration of the other possibilities to the reader.

The above theorem has been known to the author for some time (when

q — 1 it was of course also known to R. E. Greene), but the thought of actually

writing down the details came only after the receipt of the Badji preprint [2].

The author wishes to thank Dr. Badji for the courtesy of sending this preprint.

In the meantime, the author received the preprint [5] which contains among

other things the case q = 1 in (ii) and (in) of the above theorem as well as the

case q — 1 in the Corollary. It should be made clear however that the Corollary

was added only after reading [5], and that its proof uses the argument in [5].

2. We first recall some definitions, A C°° function T on an ^-dimension

complex manifold M is strongly q-pseudoconυex if its Levi form LΎ has at least

n — q + 1 positive eigenvalues at each point of M M is strongly q-pseudocon-

υex (resp. q-complete) if it possesses a C°° exhaustion function which is

strongly <?-pseudoconvex outside a compact set (resp. strongly #-pseudoconvex

everywhere), [1]. A domain D in M is said to have C°° boundary 3D if 3D is an

imbedded C°° real hypersurface of M\ in this case, D is said to be a C 0 0

domain. Let M be Kahler. Then D or 3D is said to be C 0 0 hyper-q-conυex if D

is C 0 0, and each x G 3D admits a local defining function φ of 3D at x (i.e.,

locally 3D = φ~\0), Φ\D<0 and \dφ(x)\= 1) such that the eigenvalues

λj, ,λπ_ 1 of the restriction of the Levi form Lφ to the maximal complex

subspace of the tangent space Tx(dD) of 3D at x satisfy Σf=1 λy > 0 for all

1 <j] < n — 1, [3]. It is natural to consider the case of a C 0 0 domain D which

merely satisfies ΣJ=ι λj. >0 for all 1 <jt ^ n — 1; for a reason which will
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become obvious, we adopt the ad hoc terminology that such a D or 3D is C°°

q-convex. Next, recall the class of continuous functions Ψ(q) from [7]. A set of

vectors {Zλ,- - -,Zq] in TXMis e-orthonormalif | G(Zi9 Zj) — δ/y | < ε for /, j —

1, -,q, where G is the Hermitian inner product on TXM given by the Kahler

metric. Given K C M and positive constants ε and η, define £(AΓ, ε, η) to be

the set of all C 0 0 functions / defined on K such that if {Z,, -,Zq} is an

ε-orthonormal set in TXM (x E K\ then Σf=ιLf(Zi9 Z, ) ^ η. Now let ί/be an

open set in M. Then a function F EΨ(q U) iff for each compact subset K of

U, there exist positive constants ε and η and a sequence {/•} C £(ίΓ, ε, η) such

that / converges uniformly to F on ^ . If U' — M or there is no danger of

confusion, we will simply write Ψ(q) in place of Ψ(q; U). It follows easily

from the considerations in [7, §2] that this definition of Ψ(q) coincides with

that given in [7]. Note that by definition, Ψ(q) consists of continuous func-

tions, and that if β 0 0 (or in case there is any confusion, β°°(£/)) denotes the C 0 0

functions on ί/, then Q°° Π Ψ(q; U) consists of exactly those C°° functions/

on U such that the sum of any q eigenvalues of Lf at any point of U is positive.

In particular, any function in β 0 0 Π Ψ(q) is strongly g-pseudoconvex. More-

over, [7, Proposition 1] shows that Q°° Π Ψ(q) is dense in Ψ(q) in the

C°- topology.

A domain D in a Kahler manifold M is said to be weakly hyper-q-conυex if

for every x E dD there exists a neighborhood Vx of x in M such that Vx Π D

admits an exhaustion function which belongs to Ψ(#; Vx Π D). The following

lemma gives the relationship among the various domains; its proof will be

given at the end of §3.

Lemma. Let D be a C°° domain in a Kahler manifold M. Then the following

hold:
(i) IfD is C°° hyper-q-convex, then it is weakly hyper-q-conυex.

(ϋ) Suppose in addition the bisectional curvature is q-nonnegative in a neigh-

borhood ofdD, then D is C 0 0 q-convex iff it is weakly hyper-q-convex.

We conclude this section by defining the ^-positivity of the bisectional

curvature. Let M be Kahler and let x E M. If X and Y are nonzero vectors in

TXM, the bisectional curvature determined by X and Y is by definition

H(X, Y) = R(X, JX9 7, JY)/(\ X\2 - I Y\2\ where R is the curvature tensor
of M. The bisectional curvature of M is q-nonnegative (resp., q-positive) in an

open set U if for every x E U and for every orthonormal basis

{el9Jek9'"9eH9JeH} of TXM and 0 ^ X E TXM, Σ?=ιH(X, e<)> 0 (resp.,

ΣJ=ιH(X9 et) > 0). See [7] for further details.

3. We now supply the proofs of the preceding theorem, corollary, and

lemma. The reader is assumed to be acquainted with [4] and [7].
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We first prove the first assertion of the theorem concerning the strong

gr-pseudoconvexity of D. Since D is weakly hyper-^-convex, each x E 3D has a

neighborhood Vx such that Vx Π D admits an exhaustion function φ which

belongs to Ψ(q; Vx Π D). By the density β 0 0 Π Ψ(q; Vx Π D) in Ψ(q; Vx Π D),

we may further assume that φ is β 0 0 . If {>,} is a sequence of regular values of φ

such that η T oo, then {Φ"1^,)} * s a sequence of β 0 0 real hypersurfaces in

Vx Π D which are β 0 0 hyper-#-convex and approximate Vx Π dD from within.

The proof of Theorem 1(A) in [4] coupled with the technique in §3 of [7] now

yields the following assertion: Let p: D -> [0, oo) denote the distance from the

boundary 3D. Then there exist a neighborhood W of 3D in M and a β 0 0

increasing convex function χ: (-oo,0) -» R such that χ(-p) T oo near 3D and

χ(-ρ) G Ψ(#; JF Π D). Again using the density of β 0 0 Π Ψ(#; W Π D) in

Ψ(#; Ŵ  Π D) in the C°-topology, we obtain a T G β 0 0 Π Ψ(q; W Π D) such

that T T oo uniformly near 3D. By shrinking W if necessary, we may assume T

is a β 0 0 function defined on D. This proves that D is strongly g-pseudoconvex.

Continuing with the same notation, we shall go on to prove part (i) of the

theorem. Indeed, let { ί j be a sequence of regular values of τ such that tι/\ oo.

Then { T " 1 ^ ) } is a sequence of β 0 0 real hypersurfaces in D, which are β 0 0

hyper-#-convex and uniformly approximate 3D from within. The arguments

used for the proofs of Theorems 2 and 4 in [7] are now applicable; they prove

that for some β 0 0 increasing convex function χ 0 : ( - o o , 0 ) ^ R such that

χ 0 t oo near 0, the function χ o (-p), is an exhaustion function of D and is in

Ψ(#; D) because the bisectional curvature is now everywhere g-nonnegative in

D. The density of β 0 0 Π Ψ(q; D) in Ψ(q\ D) allows us to replace χ o (-p) by a

β 0 0 exhaustion function of D, which belongs to Ψ(#; D). This proves (i).

The proof of (ii) is essentially identical with the proof of Theorem 2 of [7],

the only necessary change being in the proof of Lemma 6 of [7]; the latter has

to do with showing a certain sum of second variations of arc length is positive.

That this is so is guaranteed by the β 0 0 hyper-g-convexity of 3D (in the

presense of everywhere #-nonnegative bisectional curvature; see [7, (15)]). See

the discussion after the corollary in §1.

Finally to prove (iii), we have to invoke the generalized Levi form Pf of a

continuous function F, [6], [7]. Under the assumption of (iii), the by-now

familiar arguments of [4] and [7] show that for some β 0 0 increasing convex

function χ,: (-oo,0) -> R, χλ(-p) is an exhaustion function of D, and the

following holds for Xj(-p). Let 8 be a given continuous positive function on D.

Then there exists a continuous positive function ελ on D such that when-

ever x G D and {Zl9-—9Zq} is any ε,(;c)-orthonormal set in TXM,

Σ?=i P(X\(-p))(x, Zt) > -δ(x). By hypothesis, there exists a n / G Ψ(q; D). By
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the density of β0 0 Π Ψ(q; D) in Ψ(q; Z>),/may be assumed to be actually β°°.
Replacing / by ef if necessary, we may also assume / > 0. Now let 8 be any
continuous positive function in D such that for some positive continuous
function ε2 on D9 Σf=1 Lf(Zi9 Z, ) > 2δ(x) for all * G 2) and all ε2(;c)-ortho-
normal sets {Zl9- -,Zq} in TXM. Consequently, r = χx(-p) + /is an exhaus-
tion function of D, and if we denote min{εl9 ε2} by ε, then Σf=1 PT(JC, Z, ) >
8(x) for all x G D and all ε(x)-orthonormal sets {Zl9--,Zg} in TXM. In
particular, T G Ψ(#; Z>). By the usual reasoning, the ^-completeness of D
follows, q.e.d.

Next, we prove the corollary using the idea of [5]. If the corollary is false,
there would exist a compact subvariety S in M of dimension s > q and a
holomorphic map π: M -> M' into a complex space Λf such that π{S) is a
point xr G Λf and π: M — 5 -> M' — {x'} is biholomoφhic. Let Σ' be the
boundary of some ε-ball 2?' relative to some coordinate system centered at
JC' G M'. 5 r is then a G00 strictly pseudoconvex domain. Let B = π~\B') and
Σ = J Γ ' ^ Σ ' ) . Then B is a β0 0 strictly pseudoconvex domain because TΓ is
biholomoφhic in a neighborhood of Σ. By part (ii) of the theorem, there is an
exhaustion function T of B, which belongs to ^(g; B). By the density of
e°° Π Ψ(#; £) in Ψ(q; B), we may assume T is β0 0. Since j > r̂, it is clear that
the restriction r \s is a β0 0 strictly subharmonic function on the regular points
$IS of S and is a continuous function on S. Moreover, since S is compact, ΔT
is bounded below by a positive constant on ^ϋS9 where Δ denotes the
Laplacian of the Kahler manifold $\,S. Since τ\s must attain an absolute
maximum on S, a standard argument shows that such an S does not exist,
q.e.d.

We finally give the proof of the lemma. To prove part (1), let x G dD and let
φ be a local defining function at X satisfying the hyper-g-convex condition at
X. By a standard argument, there exists a G°° strictly increasing, strictly convex
function χ(t) such that χ(φ) has the property that Σf=1 Lχ(φ)(Zi9 Zf) > 0 for
any orthonormal basis {Z,, /Z,, ,Zn, JZn} in TXM. Thus for a sufficiently
small neighborhood Fx of x9 χ(φ) ^ β°° Π Ψ(q; Vx). We may assume that
relative to some coordinate system {z1?- ,zn} centered at x9 Vx is given by
{Σ?=11 z,. | 2 < b) for some ft > 0. Let η = -l/χ(Φ) with χ(0) = 0, and let
τ2 = \/{b - Σ?=11 z,. | 2 ) . Both η and τ2 are in β0 0 Π Ψ(q; Vx Π Z>) so that also
max{τ,, τ2) = T belongs to Ψ(ήf; Fx Π D) (cf. [7, Lemma 2(d)]). T is clearly an
exhaustion function on Vx Π D. This proves (i).

To prove (ii), first assume D is G°° ^-convex. We know from the proof of the
theorem that, in the presence of #-nonnegative bisectional curvature near 3D,
the following holds. There exist a neighborhood W of dD in M and a β0 0

increasing convex function χ: (-oo,0) -> R such that χ(-p) t oo near 8Z) (p
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denotes the distance from dD as usual) and such that if 8 is a given continuous

positive function on W Π Z>, then there exists a continuous positive function εx

on W Π D with the property that whenever x E W Π D and {Zk, -9Zq} is

any ε^x^orthonormal set in TXM, Σ^=ιPχ(-ρ)(x, Z, ) > -δ( c). Now fix an

JC0 E dD and let {z^ ,zn} be a coordinate system centered at x0. Choose a

positive number b so small that if Fo = {Σ'*=ι | z, | 2 < 6), then F 0 Π D C ^ Π

Zλ Let δ be a positive continuous function on Fo, so that for some positive

continuous function ε2 on Fo, every ε2(x)-orthonormal set {Zλ9- -9Zq) in TXM

(x E Fo) satisfies Σ?= 11/(Z,, Z,) > 2«(x), where / = \/{b - Σ?=11 z, | 2 ) . Let

η = χ(-p) + /• Then τx E Ψ(#; Fo Π /)) and η T oo near dD. Therefore the

function T = max{/, τx} is an exhaustion function of Fo Π Z>, which belongs to

Ψ(?; *o n ^ ) ^ ^ s shows 2) is weakly hyper-^-convex. To prove the converse,

let D be C°° and weakly hyper-g-convex. Fix an A:0 E dD, and let J^ be a

neighborhood of x 0 such that on Fo Π D there exists an exhaustion function φ

of Fo Π D, which is in Ψ(^r; φ). Let {rz} be a sequence of regular values of </>

such that η t oo, and let Dt = {φ < η}. Thus each Dz C C Fo Π D, and each Dt

is β°° hyper-^r-convex; furthermore, each dDt approximates dD Π Vo (we ignore

the portion of dDt which approximates dV0 Π Z)). In D,, let pz denote the

distance from 3D,, and let p be the usual function on D denoting the distance

from dD. Let F, be a sufficiently small neighborhood of x0 such that F! C Fo

and such that for all y E Fj Π Z>, p ( j ) is reahzed as the length of a unique

geodesic from y to dD Π Vx. Fix such a, y G Vλ Π D, and consider only / so

large thaty E Vλ Π Dz. For each such i, there exist a/?, E 9D and a geodesic of

unit speed ^ joining^ topt with length pt(y). Elementary considerations show

that, after passing to a subsequence if necessary, pt E:Vλ(Λ dDi for all large /

and that pi converges to some p E Vλ Π 3Z), and fz converges to a minimizing

geodesic f joining y to /?. We may as well assume at this point that Fo is so

small that the bisectional curvature is #-nonnegative in Fo, and p is β 0 0 in Fo.

Now at j>, let Ct (resp., C) be the complex subspace of dimension n — 1 in TyM

orthogonal to £ (resp., ?). Then the standard second variation argument (see

especially the proof of Lemma 6 in [7]) shows that for any orthonormal basis

{*?!, Jel9- - ,eM_i, Jen-λ) in C^-l^^p^ejβj) > 0. Since the C/s converge

to C and pz converges uniformly in a neighborhood of y to p, we obtain in the

limit: - Σ J = 1 Pρ(ej9 βj) > 0 for all orthonormal bases (ej, Jeu- -,eπ_!, Jen_x)

in C. This is equivalent to ΣJ = 1 L(-ρ)(ej9 βj) ^ 0 at >>, since p is β 0 0 near j . By

letting ^ approach x 0, we obtain the following: Let p:Vx ^>R be the function

p = -p on Vλ Π Z) and p = the distance from 3D on Vλ - D. Then p is a 6 0 0

local defining function of dD at x 0 such that Σq

j=ιLρ(ej, βj) > 0 at x0 for any

orthonormal basis {eϊ9 Jel9- -,en_l9 Jen_x} of TXQM, which lies in dD. This is

clearly equivalent to the C 0 0 ^-convexity of dD at x 0.
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