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FLAT LEFT-INVARIANT CONNECTIONS
ADAPTED TO THE AUTOMORPHISM

STRUCTURE OF A LIE GROUP

ALBERTO MEDINA PEREA

Suppose that A' is a Lie group with Lie algebra K, and further that Aut(^)
(respectively \nt(K)) is the group of automorphisms (resp. interior automor-
phisms) of the algebra K. The local automorphism (resp. local interior auto-
morphism) structure of K is the principal fiber bundle of frames obtained by
the extension to Aut(K) (resp. lni(K)) of a left-invariant parallelism of K. Its
fibers are unique, up to a right translation in K9s frame bundle R(K). In this
article we commence a study of left-invariant locally flat connections adapted
to the structures defined above.

INTRODUCTION. PRINCIPAL RESULTS
The problem of finding those Lie groups (necessarily solvable) which admit

complete, locally flat (that is, of zero curvature and torsion), left invariant
connections is an open problem (cf. J. Milnor [12]). In fact, few groups which
possess such connections are known. One of the difficulties encounted while
searching for necessary conditions for the existence of such connections is the
fact that the relationship between the algebraic structure defined by the
connection and that of the Lie algebra is not a priori, sufficiently strong to
ensure any consequences for the group structure. Therefore it seems natural to
consider, for a first approach to the problem, those connections which are
more intrinsic—that is to say—those connections which are adapted to certain
left-invariant G-structures over the group, where G is a linear group of
automorphisms of the Lie algebra of the group under consideration. Suppose
that K is a Lie group with Lie algebra K, and further that Aut(K) (respectively
Int(A^)) is the group of automorphisms (resp. interior automorphisms) of the
algebra K. The local automorphism (resp. local interior automorphism) struc-
ture of K is the principal fiber bundle of frames of K obtained by the extension

Communicated by A. Lichnerowicz, September 17, 1980. This article was written while the
author was an Associate Professor at the Savoie University, France.



446 ALBERTO MEDINA PEREA

to Aut(K) (resp. lnt(K)) of a left-invariant parallelism of K. Its fibers are
unique, up to a right translation in Kns frame bundle R(K).

In this article we commence a study of left-invariant locally flat connections
adapted to the structures defined above. The existence of one such connection
over K implies that the group K is solvable (§1,3). This follows from the fact
that the Lie product of K is given by the commutator of a particular
left-symmetric product on K which we call a derivation product.

At the base of our results is Theorem Γ (§11,2) which is concerned with the
structure of the left-symmetric derivation (l.s.d.) algebra. By recalling that flat
connections are locally flat connections with trivial holonomy groups, this
theorem can be given in terms of Lie groups in the following manner.

Theorem 1. Suppose that K is a connected and simply connected Lie group

with Lie algebra K. If there exists on K a flat left-invariant connection adapted to

the Aul(K)-structure, then K can be written as a unique direct product of two

normal subgroups Ko and K^, which satisfy the following conditions:

(1) Ko is a simply transitive group of affine transformations of the affine space

sub-adjacent to the Lie algebra Ko.

(2) The linear components of the action ofK0 on Ko are automorphisms ofK0.

(3) K^ is a central subgroup of K.

(4) K^ acts by affine transformations on K^ leaving one point fixed.

It is considerably easier to verify the truth of the converse of this theorem.
Among the more important consequences of this theorem, one notes the
following.

2.3.2. Corollary. Suppose that K is a connected and simply connected Lie

group with Lie algebra K. If on K there exists a flat left-invariant connection

adapted to the Aut(K)-structure, then Kpossesses one such connection which is

also complete.

2.3.4. Corollary. Suppose that K is a Lie group with Lie algebra K, that K

has a nondiscrete center, and that there exists on K a locally flat left-invariant

connection adapted to the Aut(K)-structure. If K, considered as a group of affine

transformations, acts transitively on K, then K contains, in its center, nontrivial

one-parameter subgroups of translations.

To better appreciate the importance of the last result, one only has to note
that simply transitive groups of affine transformations do not in general
contain nontrivial one-parameter subgroups of translations. In [2] L. Aus-
lander has provided an example of this situation, and as well, has conjectured
the existence of such subgroups where the group in question is nilpotent.
Corollary 2.3.4 gives a proof of the conjecture for the case where the linear
components of the elements of the group K are automorphisms of the algebra
K.
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We complete this introduction with a few notes concerning the organization
and contents of the different sections of this article. The first section is
concerned with the relationship between the real or complex left-symmetric
algebras of finite dimension and left-invariant affine structures over Lie
groups. In the absence of any sufficiently complete reference for this study we
have included certain facts which are more or less well known.

The second section constitutes the heart of our work. In the first paragraph
we complete the study, undertaken in [4], of locally flat left-invariant connec-
tions over K adapted to the Int(ijΓ )-structure. In particular, we show that such
connections are complete. As far as we know this result and Theorem 1.4 (see
[4]) give the first systematic examples of simply transitive Lie groups of affine
transformations which are not necessarily nilpotent [12]. The second paragraph
is concerned with locally flat left-invariant connection adapted to the automor-
phism structure of a Lie group. In particular this section contains the proof of
Theorem 1. Each case is well illustrated with examples.

Finally, in the third section, we concern ourselves with the problem of the
existence of those connections studied in this article. We prove that every Lie
group K with a discrete center and a commutative derived group has a locally flat

left-invariant connection adapted to the lτύ,(Ky structure. We exhibit one of

these groups which has, up to isomorphism, a single connection of this type.
This example permits us to construct solvable Lie groups which do not admit
locally flat left-invariant connections adapted to their automorphism structure.

In this article k denotes the field of real or complex numbers. The vector
spaces and algebras over k which we consider are of finite dimension. The Lie
groups considered are assumed to be connected. For a Lie group K we denote
its Lie algebra by K, and its universal covering group by K. By a left-invariant
connection on K we shall mean a connection invariant under left-translations.
The author is indebted to Pierre Molino for extremely helpful suggestions.

I. PRELIMINARIES: LEFT-INVARIANT LOCALLY FLAT
CONNECTIONS AND LEFT-SYMMETRIC ALGEBRAS

There are very strong ties between the theory of real or complex left-
symmetric algebras of finite dimension and the theory of left-invariant affine
structures over Lie groups. In this section we briefly recall these ties and
interpret various properties of left-symmetric algebras in terms of Lie groups.

In all that follows k is either the field of real numbers or the field of complex

numbers.
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1. Locally flat manifolds and left-symmetric algebras

Consider a C°°-differentiable manifold M and the space T(TM) of sections

of its tangent bundle. Let V be a linear connection on M. Then for all

elements X and Y of T(TM) and each couple / and g of differentiate

functions on M, we have

(1.0) ViχY=gVχY, Vx(fY) = X(f)Y + fVx(Y)

The two tensor fields C and T defined on M respectively by

C(X,Y) = X?[XtY]- [Vjr,Vy],

T(X9Y) = vxY-VYX-[X,Y],

for elements X and Y of T(TM) are called respectively the curvature and

torsion tensors of V. The connection V is locally flat if the tensors C and T

are identically zero. If, in addition, v has trivial holonomy [18], then as the

manifold Mis assumed to be connected, V is said to be flat. We say that the

manifold M is locally flat (resp. flat) if there exists a locally flat (resp. flat)

connection on M.

Note that if the tensor field C is zero, then the vector space T(TM) is an

algebra with product XY — VXY, and has the following property for all

elements X, Y and Z of T(TM):

(1.1) (XY)Z - X(YZ) = (YX)Z - Y(XZ).

Any vector space equipped with a bilinear product which satisfies this condi-

tion is called a left-symmetric algebra [16]. It is easy to verify that if A is a

left-symmetric algebra, then A is a Lie algebra under the product (x, y) -> xy

— yx. This Lie algebra is said to be sub-adjacent to the left-symmetric algebra

A.

If V is locally flat, the canonical Lie structure of T(TM) coincides with the

Lie structure sub-adjacent to the product XY = VXY. We say in this case that

the left-symmetric product is compatible with the original Lie structure.

It is evident that M is locally flat if and only if T(TM) has a left-symmetric

product, which is compatible with its canonical Lie structure and satisfies the

following conditions

(1.0') (gX)Y=g(XY)9 X(fY) = X(f)Y + f(XY),

for all appropriate elements.

To obtain left-symmetric algebras of finite dimension it suffices to take for

M a Lie group K and to suppose that K has a locally flat left-invariant

connection. In fact, by identifying the Lie algebra K with the left-invariant

vector fields on K, we see that K is a finite dimensional left-symmetric

sub-algebra of the algebra T(TK). Conversely, if K is such that its Lie algebra
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K is sub-adjacent to a left-symmetric algebraic structure we find that there

exists a locally flat left-invariant connection on K which, because of the

properties (1.0'), extends to T(TK) the product given on K. If K and K are

complex, the induced connection on K is adapted to the complex structure.

Further, if the left-symmetric product on K is associative it is easy to check

that the induced connection is also right-invariant. The following result has

apparently been known for some time (see, for example, p. 12, p. 186]) but we

have not noticed any reference for its proof.

1.1. Proposition. Let K be a Lie group. Then K has a locally flat bi-inυariant

connection if and only if its Lie algebra K is sub-adjacent to an associative

product on K.

Indeed, when the connection is left-invariant the Lie structure of K is

compatible with the left-symmetric product. When the connection is bi-

invariant, it is also invariant for all interior automorphisms T -» στσ~ι of K.

Thus the differential, at the origin, of Lσ © Rσ-{ is an automorphism of the

left-symmetric algebra K. Consequently we have the following identity for

elements α, b and x of K.

Άdx(ab) = zdx(a)b + βad^fc).

So we see that the left-symmetric product is associative.

2. Etale affine representations of Lie groups

We consider a vector space V over k and we make the usual identification of

the group of affine transformations of V with the semi-direct product V X

GL{V\ of the additive group Fand the linear group GL(V).

2.1. Definition. Let K be a Lie group, and V a vector space over the same

field k. An etale affine representation of K on V is a Lie group homomorphism

p: G -* VX GL(V) for which there is one point υ of Vfor which the orbit of υ

for p is an open subset of V, and the isotropy group of v for p is discrete.

Etale affine representations are a basic tool used in the works of J. L. Koszul

and E. B. Vinberg [7], [16] concerning bounded domains and homogeneous

convex cones.

Consider an etale affine representation of K over V: p(σ) = (ζ?(σ), Fa), for

all elements σ of K. If x -> (q(x), fx) is the induced infinitesimal representa-

tion, and v is a point of V with open orbit and discrete isotropy, then the

vector space homomorphism x -> q(x) + fx(v) is bijective. For all elements a of

K we set

(2.1) La = Kl°fa°h'
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It can be immediately verified that the mapping a -> (a; La) is an affine
representation of the Lie algebra K9 which is isomorphic, in such cases, to the
representation x -* (q(x), fx). Further, asα-> (a, La) is a Lie algebra homo-
morphism of K into V X gl(V% so the Lie structure of K is compatible with
the left-symmetric product defined by ab = La(b) — Rb{a). Consequently a
point v with an open orbit and a discrete isotropy for an affine action of G on
V determines a locally flat left-invariant connection defined'by (2.1). This
connection is just the pullback, by the covering mapping, of the connection
induced on the orbit of v by the usual connection on V.

Let Ω be the set of points of V with open orbits and discrete isotropies for
the action p. If vι and v2 are two points of Ω which belong to the same
connected component of Ω, then it is easy to see that they define isomorphic
left-symmetric products on K. In particular, if Ω = V, the representation
p = (<2, F) determines a unique left-symmetric algebraic structure over K. In
the case where k is the field of complex numbers we remark that if an open
orbit exists, it is necessarily unique.

If K is simply connected, the existence of a left-symmetric structure over K,
compatible with the Lie structure of K, is equivalent to the existence of an
affine representation of K with a point with an open orbit and a trivial
isotropy.

3. Geometric interpretation of some properties of left-invariant algebras

Let (Q, F): K -> V X GL(V) be a finite dimensional affine representation
of a Lie group K. Thus K acts on Fby the affine transformations: σv = Q(σ)
+ Fσ(v) for elements σ of K and v of V. The following four assertions are seen
to be equivalent from the definitions.

(i) There exists a fixed point for the action defined by (Q, F).
(ii) (Q, F) is isomorphic to a linear representation.

(ϋi) (Q, F) is isomorphic to F.
(iv) Q is a 1-cobord for the linear representation F. That is, there exists an

element w of V such that Q(σ) — Fσ(w) - w for all elements σ of K.
From an infinitesimal point of view the assertions above correspond to the

following conditions for the affine representation of the Lie algebra K: K -> V

(i) There exists an element a oϊ V such that q(x) + fx(ά) — 0 for all
elements x of K.

(ii) (#, /) is isomorphic to a linear representation,
(iii) (q, f) is isomorphic to/.
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(iv) q is a 1-cobord for the representation/. That is, there exists an element e
of Vsuch that q(x)—fx(e) for all elements x of K.

We will assume that (£>, F) is etale, and consider a point v of V with an
open orbit and a discrete isotropy. From what we have seen in §2, the
representation (q, f) is isomorphic to the affine representation of K: a ->
(a, La). Therefore we conclude from the above that if (Q, F) leaves a point of
V fixed, there exists a point e of V such that x — Lx(e) — Re(x) for all
elements x in K.

In summary, we can say that a simply connected Lie group K admits an etale

affine representation which leaves a point fixed if and only if K is sub-adjacent to

a left-symmetric product having a right identity.

Now we identify the space V considered as a vector space, with the vector
hyperplane V X {0} of VX k, and we identify V, considered as an affine
space, with the affine hyperplane V X {1} of VX k. Having made this
identification we can regard the affine representation p — (Q, F) as a linear
representation of G by endomorphism of V X k:

Evidently VX {1} and VX {0} are invariant under p. Let H be a Lie
subgroup of K, and suppose that p/H is completely reducible. Then there
exists a subspace W complementary to VX {0} in VX k, which is invariant
under p/H, and, a fortiori, W intersects the affine hyperplane VX {1}.
Therefore the point p = W Π (VX {I}) is a. fixed point of H, and so H is
contained in the isotropy subgroup of/?.

Suppose for an instant that K is semi-simple and that the α affine represen-
tation (0, F) is etale. Then we can conclude from the above [3, Chap. Ill, p.
286] that the left-symmetric algebras K, possesses a right identity element e.
We thus have that ade = Le — Re with Re = id where Le and Re are left and
right multiplications by e. Consequently the traces of these endomorphisms
satisfy

Tr(ade) = Ύτ(Le) - Tr(id) = Tr(Le) - n,

where n is the dimension of K. Then as the derived ideal fy(K) of the Lie
algebra K is equal to K, and x -> adx and x -> Lx are the Lie algebra
homomorphisms, so Tr(ade) = Tτ(Le) - 0 = n, which is absurd. In conclu-
sion, α Lie group that is semi-simple will not admit an invariant locally flat

connection. This result has been known by the geometers of Grenoble for some
ten years. From an algebraic point of view we can affirm that Lie algebras K
sub-adjacent to left-symmetric products are neither semi-simple. More gener-

ally J. Helmstetter has shown in [5] that ty(K) C K.
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Now consider the case where (<2, F) is transitive. Then the orbit of every
point of V is open since it is precisely V. This tells us that for every element v
of V, the linear homomorphism ψo: x -» q(x) + fx{υ) is surjective. In particu-
lar, if v has discrete isotropy, then (q, f) is isomorphic to the representation
x ^ (x, Lx) with Lx = Ψo"1 ° Λ ° Ψι» and consequently, for all elements α of K,
the endomoφhism Λ: -> x + Λα(x) of A' is an isomorphism. This is the
motivation for the following definition.

3.1. Definition. Let A be a left-symmetric algebras over the field k. A is
said to be transitive if for all elements a of A the endomoφhism of the vector
spaced given by x -> x + Ra(x) — x + xa is an isomoφhism.

If ΛΓ is the universal covering group of K, then the following assertion is
evident.

The action of K on the space V is simply transitive if and only if the Lie

structure of K is sub-adjacent to a transitive left-symmetric algebras structure.

We remark that if the set Ω of points with open orbits and discrete isotropies
for the action (Q, F) coincides with V, then (β, F) determines a unique
left-symmetric product on K. Further, the assertion mentioned above enables
us to conclude that a Lie algebra sub-adjacent to a transitive left-symmetric
product is necessarily solvable. In fact, if the action of K is simply transitive,
then K and V are diffeomoφhic as manifolds; on the other hand, if K is not
solvable, then it contains nontrivial compact subgroups, and K is not diffeo-
moφhic to V.

From the point of view of connections, the transitivity of a left-symmetric
algebras K is equivalent to the fact that the left-invariant associated connection
on K is complete.

The problem of finding those Lie algebras which are sub-adjacent to a
left-symmetric transitive product is an open problem. In fact, very few such
algebras are known [12]; we will give here some new examples.

The following notion was introduced by J. Helmstetter in [5],
3.2. Definition. Let A be a left-symmetric algebras. We say that A is

nilpotent if, for all elements a of A, the right multiplication Ra of A is a
nilpotent endomoφhism.

It is evident that left-symmetric nilpotent algebras are transitive. Conversely,
if A is a left-symmetric transitive algebra over an algebraically closed field,
then A is nilpotent. In fact, if A is transitive the right multiplications Ra of A
have no nonzero eigenvalues.

It may turn out that Definition 3.1 is superfluous. That is to say, all
transitive algebras may be nilpotent. However, at the time of writing this
article we are unaware of the complete answer to this question. For the
algebras we consider below the two notions are equivalent.
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We return to the affine representation (Q, F), and assume that it is etale.

Suppose that G contains, for the representation, a nontrivial translation of V.

Infinitesimally this is just the existence of a nonzero element x of K such that

q(x) Φ 0 and fx = 0. For the affine representation of the Lie algebra K: a ->

(a, La) defined for some point of Ω, this tells us that there exists a nonzero

element a of K such that La = 0.

Let A be a left-symmetric algebra, and consider the set N(A) = {a G A] La

= 0). Evidently N(A) is a right ideal of A. Thus as α -> Lα is a Lie algebra

homomorphism, N(A) is a Lie ideal of A Therefore N(A) is a bilateral ideal of

y4. We propose

3.3. Definition. The kernel ideal (or simply, the kernel) of a left-symmetric

algebra A is the bilateral ideal of A defined by

N(A) = {a G Λ VΛ: EA9ax = 0}.

This being given, we have

For the representation p, K contains nontrivial one-parameter subgroups of

translations if and only if the left-symmetric algebra K defined by p, has a nonzero

kernel ideal.

There exist left-symmetric nilpotent algebras for which the kernel ideal is

zero (see [2]). L. Auslander has conjectured, in the language of Lie groups, that

a left-symmetric transitive algebra, for which the subadjacent Lie algebra is

nilpotent, has a nontrivial kernel ideal. In our opinion this assertion remains to

be demonstrated despite the proof given in [14].

II. LEFT-INVARIANT CONNECTIONS ADAPTED
TO THE AUTOMORPHISM STRUCTURE.

LEFT-SYMMETRIC DERIVATION ALGEBRAS

1. (a) Locally flat left-invariant connections and certain

left-symmetric structures

Let A'be a Lie group with Lie algebra K, and let Aut(^f) and lni(K) denote

respectively the group of automorphisms and the group of interior automor-

phisms of the Lie algebra K. We identify K with the left-invariant vector fields

on K, and consider a base B = {el9 e2, -9en) of K. B is a principal fibre

bundle of frames of K with trivial structural group. The right action of A u t ( ^ )

on B defines a bundle of frames of K:

P= {{el9e29 ' ,en}σ'9σEAiit(K)}9
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which is a principal fibre bundle with structure group Aut(K). We say that p is
the bundle of (local) automorphisms of K defined by the parallelism B of K.
The bundle of K given by the restriction of P to the group lnt(K) is the bundle
of (local) interior automorphisms of K defined by B. The bundles determined
by two invariant parallelisms of K are conjugates of each other. We propose

1.1. Definition. Let K be a Lie group with Lie algebra K. The automor-
phism structure (resp. the adjoint structure) of K is the principal fibre bundle
on K obtained by extension to AΛX\(K) (resp. to Int(^)) of a left-invariant
parallelism of K.

We recall that the structures of Definition 1.1 are unique up to a right-
translation in the frame bundle R(K) of K. As the vector fields et are invariant
under left-translations of K, it is evident that these translations are automor-
phisms of the structures defined above. Therefore we say that these structures
are left-invariant. We remark that the adjoint structure is invariant by interior
automorphisms of K and that consequently it is also invariant under right-
translations of K.

To our knowledge, P. Molino seems to have been the first author to be
interested in the study of these structures. In [13] he demonstrates the transitiv-
ity of the adjoint structure. This property is also true for the automorphism
structure of K. We also remark that the O-Cartan-connection on K is adapted
to the structures of Definition 1.1; in particular, their first structure functions
("premiers tenseurs de structure") vanish [15].

We consider now locally flat invariant connections on K, adapted to the
automorphism structure. We denote by der(^) and ad(^) respectively the Lie
algebras of the derivations and the interior derivations of the algebra K. If v
is a left-invariant connection on K9 it is evident that V is adapted to the
automorphism (resp. interior automorphism) structure of K if and only if the
linear mapping θ: K ^ gl(K) defined by θ(x) = vx takes its values in the
algebra det(^) (resp. ad(^Γ)). We propose

1.2. Definition. A left-symmetric algebra A over k is said to be a derivation
(resp. interior derivation) algebra if its left multiplications La or its right
multiplications Ra are derivations (resp. interior derivations) of the Lie algebra
A. In this case we say that the left-symmetric product is a derivation (resp.
interior derivation) product.

The Lie group K possesses a left-invariant locally flat connection adapted to
the structure of its automorphisms (resp. interior automorphisms) if and only if
the Lie algebra K is sub-adjacent to a left-symmetric derivation (resp. interior
derivation) product.
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(b) Locally flat invariant connections adapted to the adjoint structure

1.3. Proposition. Let A be a Lie algebra over k, and let f be an endomor-

phism of the vector space A. The product {a, b) -» ab — [f(a), b] on A defines a

left-symmetric product compatible with the Lie structure of A if and only if the

following two conditions are satisfied for all elements a and b of A:

[a,b]=[f(a),b]+[a,f(b)], [/(a), f(b)] =f[a,b] (mod Z(A)),
where Z(A) is the center of the Lie algebra A.

The proof of the proposition is immediate.

Study of the endomorphism/ produces the following result (see [4]).

1.4. Theorem (G. Giraud, A. Medina). Let K be a Lie group with Lie algebra

K. Then K admits a locally flat left-invariant connection adapted to the adjoint

structure if and only if K has a decompostion as a direct sum of three vector

sub-spaces Ko, Kλ, K#, which satisfy the following conditions:

[Ko> Ko] = [κl9 κx] = \κQ, KΔ = \κl9 KJ = o,
(13)

For the details of the demonstration of this theorem see [4] or [11].

1.5. Remark. If there exists an endomorphism /, that decomposes K as

above, we can modify/ so that the supplementary condition, Z(K) C KQ9 is

satisfied [11]. This condition implies that [KQ9 Kγ] C Ko.

1.6. Examples. Conditions (1.3) and the above remark imply that ^ 0 is an

Abelian ideal of K, which also contains Z(K) and ^(K) = [K, K]\ thus the

algebra K is 2-solvable. That is to say, ty(K) is Abelian.

(a) If ^ 0 or Kλ is zero, then K is 2-nilpotent, that is, fy(K) C Z(K).

Conversely, let K be 2-nilpotent, and B be a subspace complimentary to ty(K)

in K. We obtain a decomposition as in the theorem by setting

K0 = Z(K), K{=0, K* = B,

or alternatively

(b) Every Lie algebra K, which is a semi-direct product of two Abelian

algebras, is sub-adjacent to a left-symmetric interior derivation product. In

fact, if K — Ko X Kl9 it suffices to define the product by ab = [a09 b]9 where

a0 is the component of a in Ao. The product on K defined by a.b = -ba gives

K an algebraic structure of type Px in the sense of [4].

This example enables us to say that every non-semi-simple Lie group of

dimension < 3 admits a locally flat left-invariant connection adapted to the

adjoint structure.
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In §111 we will show that every 2-solvable Lie algebra, for which the center is

zero, falls in the class of this example. A particular case is given by the Lie

λ -algebra with base {e^- .e^, for which the product is defined by the

following rules:

[el9ej] = βj for ally > 2,

[ei9 ek] = 0 for all/, k >2.

(c) There exist 2-solvable algebras which do not satisfy Theorem 1.3 (see [4]).

There also exist 2-solvable Lie groups for which the adjoint structure is not

flat in the sense of the theory of G-structures. This is the case for a simply

connected group for which the Lie algebra K, is given by

[eλ9e3] = [eλ, e4] = [e2, e3] = [e2, e4] = 0 ;

U\> ei\ = *s> [e\, es] = έ?3, [e29 e5] = e 4 ;

In fact, a direct calculation shows that the first prolongation (ad(^)) ( 1 ) (see

[15] for the definition—"Γespace de prolongement") vanishes. This example

was provided by G. Giraud.

We now consider the problem of finding when the connections of Theorem

1.4 are complete.

1.7. Theorem. Every locally flat left-invariant connection adapted to the

adjoint structure of a Lie group K is complete.

Under the hypothesis of the theorem the Lie algebra K of the group K is

sub-adjacent to a left-symmetric product of type ab — [f(a\ b]. From §1.3, the

connection defined by this product is complete if and only if the left-symmetric

algebra K is transitive. We prove this theorem by showing that the left-

symmetric algebra K is nilpotent (Lemma 1.9 below).

We begin with the following proposition.

1.8. Proposition. Let A be a left-symmetric algebra over a field k. Then the

following four assertions are equivalent:

(a) for all elements a of A, the left-multiplication La is a derivation of the Lie

algebra A,

(b)for all elements a of A, the right-multiplication Rais a derivation of the Lie

algebra A,

(c) for all elements a of A, the bilinear mapping on A (b,c) -»(ba)c is

symmetric,

(d)for all elements a and b of A, RbRa — Lba.
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The demonstration of the proposition is trivial: in fact, in every left-

symmetric algebra we have the identities La — Ra = adα;

a[b, c] - [ab, c] - [b, ac] = (ca)b - (ba)c9

for any elements a, b and c of A.

1.9. Lemma. Let A be a left-symmetric algebra over k. If the left-

multiplications La are interior derivations of the Lie algebra A, then the left-

symmetric algebra is nilpotent.

Demonstration. Let/be an endomorphism of the vector space A such that

La — ad / ( α ) for all elements a of A. Theorem 1.4 tells us that the Lie algebra is

solvable; in fact, A is 2-solvable. Let N be the maximal nilpotent ideal of the

Lie algebra A; N is determined by the fact that N = {a E A;ada nilpotent}.

Further, N contains the derived Lie ideal tf)(A) — [A, A],

Using Proposition 1.8 we see that for all elements a oϊ A, (Ra)
2 — Lai =

ad/ ( a2 }. So by Proposition 1.3, f(a2) =f[f(a), a] E Z(A) + <*D(Λ), and conse-

quently ad/(α2} is nilpotent. As the endomorphism (Ra)
2 is nilpotent, Ra is also

so.

This finishes the demonstration of the theorem.

Note that if A is an algebra as those of the lemma, and B is a Lie ideal of A

(resp. a Lie sub-algebra invariant under/), then the fact that La — ady(β) for

all elements a of A implies that B is a bilateral ideal (resp. a sub-algebra) of the

left-symmetric algebra. In particular, this proves

1.10. Proposition. A locally flat left-invariant connection adapted to the

adjoint structure of the Lie group K induces a connection of the same nature on

every normal subgroup of K.

To finish this paragraph we include with the following result:

1.11. Proposition. Let K be a Lie group. Then K possesses a locally flat

bi-invariant connection adapted to the adjoint structure if and only if K is

2-nilpotent, that is, if and only if the derived group ofKis central.

Demonstration. Let K be the Lie algebra of K. If K is 2-nilpotent, then the

derived Lie ideal ^(K) — [K, K] is contained in Z(K\ and thus the mapping

K -* KX ad(^), x -> (x, i ad x ) , is an affine representation of the algebra K.

The induced connection on K by this representation is the O-Cartan-connection.

Further, the fact that the ideal ty(K) is central implies, via the Jacobi identity,

that Lab — LaLb for all elements a and b of K, where La = ^adα. Thus the

left-symmetric algebra K is associative, and so the connection is bi-invariant

(Proposition 1.1, § 1).

Conversely, suppose that K has a connection as that of the theorem. Then

there exists a decomposition K — Ko + Kλ + K+ of the vector space K which
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satisfies conditions (1.3) with Z(K) CK0. The linear endomorphism / of K

given byf(a) = aι-\-ja^ defines a locally flat left-invariant connection adapted

to the adjoint structure of K. We set ab = [f(a)9 b] for all elements a and b of

K\ evidently (ab)c — 0 for all elements a, b and c of K. Thus this product is

associative if and only if for all elements a, b and c of K we have a(bc) — 0.

Then a(bc) = [aλ9 [bλ, c0]] = 0, and [b, c] = [b0, cλ] + [bλ9 c0] + [b» c J imply

that [a, [b, c]] — 0 for all elements a, b, and c of K.

2. Flat left-invariant connections adapted to the automorphism structure

Let K be a Lie group with Lie algebra K. From the preceding paragraph, we

know that the existence of a (locally) flat left-invariant connection on K

adapted to the automorphism structure is equivalent to the existence of a

left-invariant derivation product compatible with the Lie product of K.

2.1. Examples of left-invariant derivation algebras.

(a) Let A be a left-symmetric commutative algebra. The Lie algebra sub-

adjacent to A is Abelian, and so for all elements a of A, the left-multiplication

La or the right-multiplication Ra is a derivation of the Lie algebra A. Thus A is

a left-symmetric derivation algebra. We remark in passing that the algebra A is

also associative. In fact, [Lα, Lh] = L[ab] = 0 for all elements a and b of A,

and consequently

(ab)c = b(ac), a(bc) = b(ac)

for all appropriate elements. Thus we have

(ab)c - a(bc) = c(ab) - a(cb) = c(ab) - c(ab) = 0.

This example shows that there exist left-symmetric algebras which are not

transitive. We also note that the derivations La are interior if and only if the

algebra A has a trivial product.

(b) Let A be a vector space over k with the basis {>,}, 1 < / < 5. We

consider the bilinear product defined on A by

Leι = Le2 = 0, Le3(eι) = Le3{e2) = -eu Lti(e4) = LC}(e5) = eu

M*.) = L 4 e i ) = LJe2> = Le}(e2) = -eu
Le4(e3) =Le5(e3) = e^ -e2,

Lei{e,) = i(e, + e2) = L,s(e4) = Lt4(e5) = L,5(e5),
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with the other products defined to be zero. It can be directly verified that this
product is left-symmetric. The product of the Lie algebra, sub-adjacent to the
above algebra satisfies

[ e λ 9 e 2 ] = 0 , [ e u e 3 ] = e r [ e l 9 e 4 ] \

[ e l 9 e 5 ] = [ e 2 9 e 3 ] = [ e 2 9 e 4 ] = [ e 2 9 e s ] = e x ;

[ e 3 9 e 4 ] = [ e 3 9 e 5 ] = e 2 ; [ e 4 9 e s ] = 0 .

We remark that Lej and Le4 = Les are exterior derivations of the Lie algebra A
consequently A is a left-symmetric derivation algebra. Note also that A is a
left-symmetric nilpotent algebra, and that the Lie ideal fy(A) admits a compli-
mentary sub-space S in A, which satisfies the condition [S, S] C Z(A).

(c) Let A be a 2-solvable Lie algebra—that is, a Lie algebra such that the
derived ideal fy(A) is Abelian. Suppose further that A decomposes as a direct
sum of sub-spaces A = tf)(A) θ S with [S, S] C Z(^4). For elements a of 4̂, we
denote by a^ and <z5 the respective components of a in ^(^4) and S. Let /be
the endomorphism of the vector space A defined by f(a) = a^ + \as for all
elements a of A. Then we set

A direct calculation shows that the product ab — La(b) on A defines a
left-symmetric derivation algebra compatible with the Lie structure of A.

A particular case of this example is given by the Lie algebra a over k with
basis {ez}, 1 < / < 5, defined by the following products:

k , e y ] = 0 , \<i9j<3; [eue4]=el9 [e2,e4]=e2,

[e3, e4] = e39 [el9es] = -el9 [e29 e5] = [e39 e5] = [e49 es] = 0.

(d) Let A be the Lie algebra over k with basis {ez}, 1 < / < 5, defined by

+ 7 if / <j and / + 7 < 5,

0 i f i + 7 > 5 .

On this basis the matrix of a derivation of the algebra A is given by

D =

0
2a

y
ω

0

0

3α

Y

ω — δ

0

0

0

4α

0

0

0

0

5a

Knowing these derivations, we can find all the left-symmetric derivation
products compatible with the Lie structure of A. Essentially there are two
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families of such products, of which one is

Leι=

0
0
8
ε
V

0
0
1

CO

Ά

0
0
0
1

ω — 8

0
0
0
0
1

0
0
0
0
0

L.=

0
0
0
CO

η

0
0
0
1

μ

0
0
0
0
1

0
0
0
0
0

0
0
0
0
0

with all the other products being zero, and the coefficients δ, ε, v, ω, η and μ

belonging to k.

We consider the derivation D of the algebra A defined by D^e^) = iei9

I < i <5. The product ab — L'ab on A, where Lr

a — D~ι o adα o D9 makes A a

left-symmetric algebra. This product is compatible with the Lie structure of A

but the multiplications La are not all derivations of the Lie product. For

example, we have

K\eλ,e2] = L'eι(e3) = D~ι[eu3e3] = \eA,

whereas

[L'eex,e2] +[eλ9L'ee2]=[09e2]

(e) Let A be the Lie algebra of dimension 5 over k defined by the following

identities:

[el9e3] = e59 [e29 e3] = 0, [e39 e4] = 0,

[e],e4) = 0.

A left-symmetric derivation product on A compatible with the Lie structure is

obtained by taking for the left-multiplications the following endomorphisms:

Consider the Lie algebra (extension of A) A' — A X ke6 of dimension obtained

from A by imposing

[eλ,e5]=e6, [ei9e6]=0 for 1 < i < 6 .

The endomorphisms of Λ',

define on ^4' a left-symmetric derivation product compatible with the Lie

structure.

By a series of such extensions we can obtain a Lie algebra, of any order of

nilpotency, sub-adjacent to a left-symmetric derivation product.
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Observations. (Γ) We are unaware of any example of a Lie algebra with an

order of solvability greater than 2, which has, as its product, the commutator

of a left-symmetric derivation product.

(2) For other examples see §3 below and [11].

2.2. Elementary properties of left-symmetric derivation algebras.

2.2.1. A l.s.d. algebra with a left (or right) identity is commutative and

associative.

In fact, if there exists an element e of A such that Le — /, then the identity

mapping is a derivation of the Lie algebra A, and so A is commutative.

2.2.2. Every characteristic Lie ideal of a l.s.d. algebra is a bilateral ideal of

the algebra.

An ideal of a Lie algebra A is characteristic if it is invariant under every

derivation of A. As the algebra A is l.s.d., all the left-multiplications La and all

the right-multiplications Ra of A leave such an ideal invariant.

2.2.3. Every Lie algebra sub-adjacent to a l.s.d. algebra is solvable.

This results from the following facts:

(i) The radical of a Lie algebra, A, is a characteristic ideal and hence a

bilateral ideal of A.

(ii) There exist no semi-simple Lie algebras sub-adjacent to a left-symmetric

product (see §1,3).

2.2.4. A left-symmetric algebra 5 is a l.s.d. algebra if and only if for all

elements a and b of A we have Lab — Ra° Rh (see Proposition 1.8, §1).

2.2.5. For a l.s.d. algebra the following identities are true:

L[atb]=[La9Lb] = [Ra9Rb].

The first identity defines the left-symmetric algebra, and the second recalls

2.2.4.

2.2.6. For a l.s.d. algebra, we have, for all elements a, b, c and doίA,

{ab)(cd) = (ac)(bd).

In fact, using 2.2.4 we obtain (ab)(cd) = {(cd)b}a = {(bd)c}a = (ac)(bd).
2.2.7. The center of a l.s.d. algebra coincides with the center of the

sub-adjacent Lie algebra and consequently is a commutative and associative

bilateral ideal.

Recall that the center of an algebra A consists of those elements z of A,

which commute with A, and for which the following associaters are zero:

(z,α,Z>), (α,z,Z>), (0, Z>, z),

for all elements a and b of A. Since for a left-symmetric algebra we have

(a, b, z) = [z, ab] - [z, a]b - a[z, b],
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so in order to verify 2.2.7 it suffices to show that (z, a, ft) = 0 for all elements

z of the center Z(A) of the Lie algebra A and a and ft of A. After 2.2.4 we have

(z, β, ft) = (zα)ft - z(αft) = (az)b - (ab)z

= (ftz)α - (z6)β = (ftz)α - (bz)a.

2.2.8. If Z(4) is the center of a l.s.d. algebra, then Z(A)^(A) = 0. In fact,

for all elements z of Z(A) and a and ft of Λ we have from 2.2.7 and 2.2.4, that

z(ab) = (za)b = (ba)z = z(ba).

2.2.9. For a l.s.d. algebra the following identity is true:

(bc)a2 = (cb)a2.

From 2.2.4 it follows that R2

a = L f l2 is a derivation of the Lie algebra A;

however R2

a is a derivation if and only if [ftα, c#] = 0 for all elements a, ft and

c oίA, so (ba)(ca) = (ca)(ba). Then 2.2.9. results immediately from 2.2.6.

2.3. A structure theorem and its corollaries. The object of this section is to

present our principal result and to give the demonstrations of some of its

consequences.

Theorem 1'. A left-symmetric derivation algebra A over k has a unique

decomposition as a direct sum of bilateral ideals, Ao and A#9 which satisfy the

following conditions:

(1) Ao is a nilpotent algebra containing the derived Lie ideal

(2) A^ is an algebra with an identity and is contained in the center

Z(A) of A.

Moreover, the kernel ideal N(A) of A vanishes if and only ifA0 does, and N(A)

is contained in Ao when Ao is not just zero.

Observation. Note that the theorem shows that every non-nilpotent l.s.d.

algebra contains an idempotent in the sense of A. Albert: in fact the identity

element e of A^ is one such idempotent [1, Lemma 9, p. 25]. Further, as every

element a of A can be written as

a = (a — ae) + ae

with (a — ae) E Ao and ae E A^, and the subspaces Ao and A# are bilateral

ideals of A, the decomposition of A, A — Ao® A^ can be called a Pierce

decomposition of A, [l,p. 24].

2.3.1. Theorem 1. Let K be a simply connected Lie group with Lie algebra K.

Suppose there exists on K a locally flat left-invariant connection adapted to the

Aut(K)-structure. Then K has a unique decomposition as a direct product of two

normal subgroups Ko andK* ofK, which satisfy the following conditions:
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(\) Kois a simply transitive group of affine transformations of the affine space

sub-adjacent to its Lie algebra Ko.

(2) The linear components of the action of Ko on Ko are automorphisms of the

Lie algebra, Ko.

(3) K^ is a central subgroup ofK.

(4) // K+ is the Lie algebra of K^ then the group K^ acts by affine

transformations of K^ which leave one point fixed.

Demonstration of Theorem 1. Under the hypothesis, the Lie algebra K is

sub-adjacent to a l.s.d. product, and there exists an etale affine representation

p: K ^ K X Aut(K) of K. Using Theorem V we see that the algebra K

decompose as a direct sum of two bilateral ideals Ko and K^ of K. Let Ko and

K^ be two simply connected subgroups of K having respectively the Lie

algebras Ko and K^. Evidently K is the direct product of Ko and K^. Also, as

Ko and K+ are Lie ideals of K, and K^ is central, so the groups Ko and K^ are

normal subgroups of K, and K^ is contained in the center of K.

Further, as the left-symmetric derivation sub-algebra Ko (resp. Ko) is

nilpotent (resp. has an identity), so the group Ko (resp. K^) is a simply

transitive group (resp. a group leaving one point fixed) of affine transforma-

tions of Ko (resp. KJ (§1,3).

2.3.2. Corollary. Let Kbe a Lie group with the properties in Theorem 1. Then

K admits aflat left-invariant complete connection adapted to the Aut(K)-structure.

Demonstration. Under the hypothesis the product of the Lie algebra K is

the commutator of a l.s.d. product; nevertheless, this product is not, a priori,

transitive. With the aid of Theorem Γ we can change the product in order to

obtain one which does enjoy this property. Consider the decomposition K —

Ko θ K^ given by Theorem Γ. For elements a and b of K we denote their

product by ab, and for an element x, of K we denote its components in Ko and

K^ respectively by x0 and x*. For all elements a and b of K we define

o = aobo, a^πnb* - 0

= fl-

it is immediately verified that these relations define a nilpotent l.s.d. product

compatible with the Lie structure of K.

2.3.3. Corollary. Let Kbe a Lie group with the properties in Theorem 1. Then

K; considered as a group of affine transformations of K, contains nontrivial

one-parameter subgroups of translations if and only if there is no point of K

invariant under K.
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Demonstration. We commence by recalling that the existence of a fixed

point, for the representation of K induced by the infinitesimal affine represen-

tation a -»{a, La) of K, is equivalent to the existence of an element e, of K

such that Re — Iκ. Consider the decomposition K = Ko θ K^ given by Theo-

rem Γ. If Re — Iκ, then Ko — 0 since Ko is nilpotent, and N(K) — 0 by

Theorem Γ,

Conversely, if N(K) = 0, then Theorem 1' tells us that K = K*.

23A. Corollary. Lei K be a Lie group with the properties in Theorem 1, and

suppose that K acts transitively on K, that is, suppose the connection is complete.

Then we have

(1) If K has a non-discrete center, then K contains, in its center, non-trivial

one-parameter subgroups of translations.

(2) If K is not commutative, and Z(6ύ(K)) is the center of the Lie ideal

q)(A), then N(K) Π Z{^{K)) Φ 0.
Demonstration. From the hypothesis and Theorem Γ it follows that the Lie

algebra K is sub-adjacent to a transitive l.s.d. product. Thus under these

conditions the two assertions are direct consequences of EngePs theorem.

To prove the first assertion it suffices to apply EngeΓs theorem to the linear

representation a -> Ra \Z(K) of Lie algebra K, where Z(K) is the center of K.

To prove the second assertion we consider the ideal / = Z(6ίl(K)) of the Lie

algebra ty(K). As Kis a solvable Lie algebra, ty(K) is nilpotent, and hence / is

not just the zero element. The Jacobi identity shows that / is a Lie ideal of K,

and it is directly verified that / is a characteristic ideal. Thus / is a bilateral

ideal of K. Further, for all elements z of /, and a and b of K, we have, from the

definition of /, that R[a,b]z ~ L[a^h]z, and by 2.2.5 we also have [La, Lb] =

[Ra, Rb]. These identities imply that the mapping b -> Rb^ is a linear represen-

tation of the Lie algebra K.

2.4. Preliminary for the demonstration of Theorem Γ. In order to prove the

theorem we will require several lemmas. In particular we use the result of

Fitting [6] concerning the decomposition of a vector space relative to an

endomorphism. At the base of our demonstration we have the following

lemma.

2.4.1. Lemma. Let A be l.s.d. algebra of finite dimension n over the field k.

For all elements a of A we set A0(a) - \jti{Ra)
n and A^(a) = lm(Ra)

n. Then

A0(a) and A^(a) are Lie ideals of A, which satisfy the following conditions:

A = A0(a) θ Am(a)\ <®(A) = [A, A] C A0(A); A^a)

Demonstration. From Fitting's lemma we know that A — A0(a) θ A^(a),

and that the sub-spaces A0(a) and A^(a) are invariant under the endomor-

phism, Ra.
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(i) Consider A0(a). For an arbitrary element d of ty(A) we know from 2.2.9

that a2d — da2 = [a2, d] = a2d for all elements a oϊ A. Then, since Lα is a

derivation of the solvable Lie algebra Λ, the element a2 — La{a) belongs to the

nilpotent maximal Lie ideal of A, [6]. Thus the identities (Ra)
2(d) = Lai(d) —

&da2(d) (see 2.2.4), imply that the restriction of (Ra)
2 (and hence that of Ra)

to tf)(A) is a nilpotent endomorphism. Fitting's lemma then implies that

(ii) Consider A^(a). Here we may assume that k is algebraically closed. For

all elements λ of k* = k - {0}, define Aλ = ker(# α - λl)n. Then Am(a) =

θ λ Aλ. As Λα is a derivation of the Lie algebra A, so [Aλ, Aμ] C Aλ+μ. As

( i ? a ) 2 = Lα2 is also a derivation, so if [Aλ9 Aμ] φ 0, then necessarily λ2 + μ2 =

(λ + μ) 2 and thus λμ = 0. Hence this gives [A^(a), A#(a)] = 0. Further, the

condition fy(A) C A0(a) implies that [^0(βX A*(a)] c ^ o ( β ) w h i l e t^λ' Λμ\

C ^4 λ + μ implies that [A0(a\ A^a)] C ^^(α) . Thus we can conclude that

Am(a) C Z(A). q.e.d.

In order to demonstrate the existence of the decomposition of A, it is

natural, having seen the above lemma, to determine whether the Lie algebra of

endomorphisms of the vector space A generated by the right multiplications Ra

is nilpotent. In fact, we find

2.4.2. Lemma. Let A be a l.s.d. algebra of finite dimension over a field k.

Then the Lie algebra dR(A) generated by the right multiplications Ra of A is

nilpotent.

Demonstration. For all elements a and b of A we have [Ra, Rb] = [La, Lb]

= L[ab] — R[a,b] + &d[a,by τ h u s t r i e Lie algebras tR(A) is formed by the

elements of the form Ra + adfe, where a is an element of A, and b is an

element of ^(A). We require to show that there exists a positive integer / for

which the expression

= [* * * [Rx + ad,, Ra + ad,], ,Ra + adJ

is zero for all elements x and a of A, and y and b of ty(A). As the

right-multiplications Ra are derivations of the Lie algebra A, so tR(A) is a

sub-algebra of the Lie algebra of derivations of A. Thus [Rx,adb] = ad Λ χ ( b ) ,

[[Rχ9 Ral ad J = a d [ Λ χ f Λ β ] ( έ 0 , for all elements α, ft and x of ^ , and Rx(b) and

[.R ,̂ Λa](b) belonging to %A) for elements b of ^(Λ) .

These remarks enable us to say that in the expansion of product (*), we find

that, apart from the term



466 ALBERTO MEDINA PEREA

there are only interior derivations of the Lie algebra A. As the Lie algebra is

solvable, the terms which are interior derivations are zero for sufficiently large

/ for the following two reasons:

(1) the elements of the central nested sequence of the Lie algebra fy(A) are

characteristic ideals of the Lie algebra A they are therefore bilateral ideals of

A,

(2) the central nested sequence of fy(A) converges to zero.

Concerning the term R^a we can show by induction that

Λ = Σ

From Lemma 2.4.1 we see that Rr

a is zero on fy(A) for r sufficiently large, and

that for / — r — 1 sufficiently large the image of Rι~r~x is contained in Z(A).

Thus by 2.3.8 we have ty(A).Z(A) = 0. q.e.d.

The following result is an immediate corollary of the two previous lemmas.

2.4.3. Lemma. Let A be a l.s.d. algebra of finite dimension n over the field k.

For an arbitrary element a of A, the Lie ideals A0(a) and A^(a) of A given by

Lemma 2.4.1 are bilateral ideals.

The following result is a slight modification of a classical result (see [6, p. 39,

Theorem 4]) which we present in a form more suitable to our purposes. To

prove this result it suffices to follow the lines of the proof in [6].

2.4.4. Lemma. Let V be a vector space of finite dimension n over a field k,

and let B be a set of endomorphisms of V. If the Lie algebra (t(B) of

endomorphisms of W generated by B is nilpotent, then

V= Π ker*ΛΘ J ImA",
h<ΞB h(ΞB

and the subspaces Π Λ e β ker hn and Σ Λ e # Im hn are invariant under B.

This being the case, then, in order to examine the bilateral ideals Ao —

Π α G / 4 k e r ( # a ) " and A^ — Σa^A lm(Ra)
n of A, we will examine two sequence

of bilateral ideals of A.

2.4.5. Sequence of kernels of a left-symmetric algebra. Let A be a left-

symmetric algebra, and let N} — N(A) be the ideal kernel of A (see §1,

Definition 3.3). The preimage N2 of N{A/AX) by the canonical homomorphism

jλ\ A -* A/Nλ of left-symmetric algebras is a nilpotent bilateral ideal of A. This

observation enables us to construct an ascending nested sequence of nilpotent

bilateral ideals of A, defined as follows: No — 0, Nx = N(A) and Ni+X is the

preimage of N{A/Nt) by the canonical mapping Jt: A -» A/Nt for i> I.

The sequence of ideals Λ̂  will be called the sequence of kernels of A. We

remark that the quotient algebra Ni+l/Nt is an algebra with a trivial product
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sinceN i + λA C Nr WriteN^ = U . > 0 Nt. Then N^ = Nt if and only if Nt = Ni+,.

To study the ideal N^ = N^A) of a l.s.d. algebra of dimension n we make two

remarks.

Remarks (1) There exists an element i of (0,1, •,«} such that Nt — Ni+ι

so that Nt = NJ^A); thus NJ^A) = Nn. That is,

NJA) = [aEA9\fal9 - ,an<ΞA9 (RaRa2 Λ j ί * ) = θ} .

(2) Nt; = Ni+ι if and only if A/Nt is associative, commutative and has an

identity. In particular, A/NJ^A) is an algebra with an identity.

To prove the two remarks it suffices to note that if A is not commutative,

then by Lemma 2.4.1, N(A) Π Z(fy(A)) Φ 0 (see the demonstration of the

Corollary 2.3.4. of Theorem 1). On the other hand, if A is associative and

commutative, we have a decomposition of A as that in Theorem Γ, [1].

2.4.6. Lemma. Let A be a l.s.d. algebra of finite dimension n over the field k.

Then

(1) The ideal NJ^A) is the intersectiion of the bilateral ideals A0(a) of A

defined in Lemma 2.4.1.

(2) A is nilpotent if and only if A — NJ^A).

Before we begin to prove this lemma it is useful to note that there exist

left-symmetric nilpotent algebras for which N(A) = 0. This is the case for the

algebra with basis.{e,, e29e3) over k, for which the nontrivial products are the

following:

e λ e 2 = e 2 9 e x e 3 = - e 3 , e 2 e 3 = e x , e 3 e 2 = e l 9

(see [2]).

Demonstration. The second assertion is an immediate consequence of the

first. To prove the first, let N' be the bilateral ideal Πa(ΞA ker(Ra)
n. It is

evident that N^A) C N'. Suppose for the moment that A^(^) φ N'. Then

there exists an element b of N' such that b is not contained in N^A). Let V be

the image of b in A/NJ^A) by the canonical mapping, and let e be the identity

element in A/NJ^A). Since N^A) Φ N\ so A/N^A) Φ 0 and hence e Φ 0.

Consider the element a of A, for which the image of a in A/NJ^A) is e. Since b

belongs to N\ so Rn

a(b) = 0 and R"(b') = V Φ 0. There is thus a contradic-

tion, and we must conclude that Nf = N^iA).

2.4.7. Demonstration of Theorem V. Existence. The existence of the decom-

position of A is verified by taking Ao = Γ)aker(Ra)
n, A* = Γ\alm(Ra)

n.

Lemmas 2.4.3 and 2.4.4 assure that A = AQΘA^ and that A^ D ^(A), Ao C

Z(A).

Further, Lemma 2.4.6 tells us that Ao — N^{A), and so Ao is nilpotent. Thus

= Ao and A% - A/NJ^A) has an identity (see Remark 2).
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Uniqueness. Let Mt(A), i E N, be the descending nested sequence of vector
subspaces of A defined in the following manner: M0(A) = A, Mλ(A) is the
space generated by the images of the endomorphisms Ra, a EL A, and in
general Mt(A) is the space generated by the images of the endomorphism
Ra^ o Ra^ o . . . o Ra9 where the elements ax, a2,- 9at are from A. From the
identity

(ab)c — a(bc) — (ba)c — b(ac)

which defines the left-symmetric algebra, it results that the Mt{A) are bilateral
ideals of A. Taking M^A) = Π.^QM^A), the uniqueness of the decomposi-
tion of A described by the theorem is assured by the following lemma.

2.4.8. Lemma. Let A be a left-symmetric algebra of finite dimension over the
field k. If A is a direct sum of two bilateral ideals A = Ao θ A^ such that
N^AQ) — Ao, and A^ has a right-identity element, then N^A) = Ao and
M^A) = A*.

Demonstration. First of all, the fact that N^A) = Ao (or the equivalent
fact that M^AQ) — 0) implies that Ao is a nilpotent algebra. Also, if A^ has a
right-identity element, then trivially MJ^AJ — A^ and so N^A^) — 0.
Finally, since A is a direct sum of two bilateral ideals, we have

- NJAO) + N^A.) = NJAO),

III. ON THE EXISTENCE OF LEFT-SYMMETRIC DERIVATION
STRUCTURES COMPATIBLE WITH THE LIE STRUCTURE

We know that every solvable Lie algebra of dimension < 3 over k is
sub-adjacent to a l.s.d. product (1.6(b),§Π). Here we give an example which
shows that this property is no longer true for algebras of dimension 4.

In Lemma 1.2 below, we consider the structures of 2-solvable Lie algebras
with trivial centers. This lemma enables us to show that such algebras are
sub-adjacent to a left-symmetric interior derivation product. This facilitates the
construction of a Lie algebra which has only one isomorphism class of l.s.d.
structures compatible with the Lie structure. By using this algebra we can
construct Lie algebras of arbitrary dimension > 4 which are not sub-adjacent
to a l.s.d. product.

The proof of Proposition 1.1 illustrates the usefulness of Theorem Γ in the
research of l.s.d. algebraic structures compatible with a given Lie structure. It is
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evident that a knowledge of the space of l.s.d. products compatible with a

given Lie structure constitutes the first part of the study of obstructions to the

existence of these products.

1. The existence of a l.s.d. product compatible with

a 2-solvable Lie structure with trivial center

1.1. Theorem. Let Abe a Lie algebra over k. If A is 2-solυable {that is,

is Abelian) and has trivial center•, then A is sub-adjacent to a left-symmetric

interior derivation product.

The theorem is a consequence of the following lemma and Theorem 1.4 of

§Π
1.2. Lemma. Let A be a 2-solvable non-nilpotent Lie algebra of finite

dimension n over k. Then we have the following.

(1) For elements a of A such that adα is not nilpotent,

A =ker(adjπθlm(adjw,

where Im(adα)w is an Abelian ideal, and ker(adα)w is a nonzero subalgebra of A.

(2) If A has a trivial center, then

A = CΘ<3D(Λ),

where C is an Abelian Cart an sub-algebra of A.

Demonstration. Since fy(A) is an Abelian algebra so, for all elements a and

b of A, the linear endomorphism adα ° adΛ is a derivation of the algebra A. In

particular, for every positive integer / we have

(1.1) ( a d β ) W l =[(ada)'x,y] +[x,(adα)'j].

Let a be an element of A such that ad a is a non-nilpotent endomorphism. Then

from Fitting's lemma, A - ker(adα)" θ Im(adα) r t. Since adα is a derivation,

the subspace ker(adα)M is a sub-algebra of A. Further, I m ί a d J " is an Abelian

sub-algebra of A.

Let x belong to ker(adα)w, and let t belong to Im(adα)". Then [x, t] =

[x, (2ida)
ny] for some elementy oίA. Thus by identity (1.1)

and so Im(adΛ)n is an ideal of A.

To treat the second assertion of the lemma we will commence by recalling

the following salient fact: a Cartan sub-algebra C of a Lie algebra A is a

nilpotent sub-algebra of A, which coincides with its normalizer in A (if

[JC, C] C C, then x G C for all elements x of A). We know that ker(ad j " is a
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sub-algebra which coincides with its normalizer in A. If e0 is an element of A,

which is chosen such that ker(ad )n has the smallest possible dimension, then

ker(adβ o)w is a Cartan sub-algebra of A.

We will show that if A is 2-solvable, and Z(A) = 0, then lm(sideo)
n = ty(A).

Consider the commutant of Im(ad^o)" in A: z — {x E A; [x, Im(ad^o)
Λ] = 0}.

Evidently, fy(A) C z. We will now prove that z C Im(ad^o)n since then we will

have %A) C z C Im(ad e o)" C fy(A). Suppose that z ζhm(ad^o)", and let

I = zΠ ker(ade ) n . We will assume for a moment that / is a nontrivial ideal of

the nilpotent algebra, ker(ade o)w then / = Z(ker(adβo)M) ΠIΦO. Consider an

element b of J such that b φ 0. We have [Z>, Im(ad e o)w] = 0, since b E / C z.

Thus b belongs to Z(A\ and b φ 0, which is absurd. Consequently z C

To complete the demonstration it remains to prove the assumption which we

have just made. Let y belong to /, and let b belong to ker(ad^o)
w. Then

[y, b] E ker(ade )" since ker(ade )" is a sub-algebra. Further, [y, b] E fy(A)

C z, and thus [b, y] E /. In addition, for an element 7 of z with j> ς£ Im(ad e o)Λ,

we set y — x + x' with JC E ker(ad^o)
w and x' E Im(ad^o)w. Since x' E z, so

x — y — x' Φ 0 belongs to z.

Demonstration of the theorem. From the lemma, 4̂ is a semi-direct product

of two Abelian algebras. \ί A — Ao X Ax is such a decomposition, in order to

obtain a product of the required type it suffices to take La = ad / ( α ) , where/is

the projection on Ax parallel to Ao.

Observation. If d is an element of Ao, we can obtain a l.s.d. product on A

compatible with the Lie structure, by imposing

2. A Lie algebra sub-adjacent to a unique left-symmetric

derivation structure

Let K be a Lie algebra over k with trivial center. Suppose further that K has

a l.s.d. product compatible with its Lie structure. From Theorem Γ this

product is nilpotent and therefore transitive.

Let K be a simply connected Lie group with Lie algebra K, and let

p: K -> K X GL(K) be the etale affine representation defined by the expoten-

tial of the mapping a -> (#, L f l). As the l.s.d. product on K is transitive, so the

action of K on ^ defined by p is transitive, and thus the set Ω of points of K

which have open orbits and discrete isotropies is, in fact, just K. From §11, 1,
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the left-symmetric product defined by a point of Ω ( = K) is isomorphic to the

initial product, that is to say, isomorphic to the product defined by the origin

of A:.

Note that the above remarks hold if k is the field of complex numbers or the

field of real numbers.

In the following we will construct a 2-solvable Lie algebra with a trivial

center, for which there is, up to an isomorphism, only one l.s.d. structure

compatible with the Lie product.

Let A be a Lie algebra over k with basis {e0, eu e29- ',en}, for which the

product is defined as follows:

, , [*i>ej] = 0 , / , 7 ^ 1; [ e 0 , ^ ] =λiei9i>0,

with λ, E k* — k — {0}, the λ, being pairwise distinct.

From Theorem 1.1, A is sub-adjacent to a left-symmetric interior product. We

will study the space of the l.s.d. products compatible with the Lie structure.

For 0 <y < n, we set D(ej) = Σ"=o a^e^ with atJ G k. If D is a derivation

of the algebra A, then evidently aOj — 0 when j > 0. As well, [Z>(e0), ej] +

[e0, D(ej)] = λjD(ej) implies that
n n

«00λjej + Σ «//V« = Σ λyα,7^i'
i = l i=0

or, equivalently,

(«00λy + ajjλj)ej + Σ «/yλ/̂ / = λy«/7^ + Σ «,yλy^'
iΦj iΦj

and so α ^ = 0, and atj = 0 for / Φj. Now suppose that the relations Leej —

Σ / = o αjy e/ define a l.s.d. product compatible with the Lie structure. Since

Leet — LeeQ — \iei so α? ef - Σ"=ι a
1

lQei — λ,-̂ -, that is, for / > 0 we have

a ° ~ a' ~ λ; « =io «/o = 0 for / ̂  1, / ̂  i. Further, fory > 1 we have a^βj = α/^

and so α^ = 0 for / φj. Thus there remains

L ^ 0 = «ίθ^ ; L ^ / = αί | e | » Let

ej = °»V ̂  '

with

(2) αj, - α;Ό = λ ; .

On the other hand, the relations [Leo, Le] = \jLe tell us that for > 0

«H«/0 ~ «H«?0 = λ/αί :0

Then, since λ, ̂  0, α}, = 0, and thus the second relation and (2) imply that

«!o = o.
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In summary, every l.s.d. product compatible with the Lie structure of A can
be written as follows:

(3) Leo(eo) = 2 <W L j e . ) = λ,e,; Leι = 0, i > 0,
l=\

where the α, are elements of k.
We remark that Le0 = adft, where ft = e0 + Σ"=](-aι/λι)eh so every prod-

uct is defined by interior derivations of the Lie algebra A. Note also that the
space of these products can be identified with the space of endomorphisms/of
the Lie algebra A defined by

f(eo) = eo+i β& Aej) = 0 for; > 0.
1 = 1

The following propositiion shows that these products are isomorphic.
2.1. Proposition. The Lie algebra defined by (1) has, up to an isomorphism,

only one structure of a left-symmetric derivation algebra compatible with the Lie
structure, which is given by (3).

Demonstration. It suffices to show that the following two left-symmetric
structures are isomorphic:

eoeo = 0, eoet = λ ^ , eiej = 0;
n

eo * eo = Σ «,•*,•; to * ei = V ι > ei * ej = °
i=\

Consider the linear isomoφhism/7 of A defined by

Since we have

p(e0) * p(e0) = e o * e o + 2
ί = l

= Σ«Λ+Σ
i=\ 1=1

p is an isomoφhism of left-symmetric algebras, q.e.d.
Note that the couple (/?, v), where v = Σ ^ - α / λ ^ e , , defines an isomor-

phism of the affine space A, for which

La=P° La° P~l> <*=p(a) - La(v)
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for all elements a of A, La and L'a being the left-multiplications associated

respectively to the products considered above. Consequently (/?, v) is an

isomorphism between the affine representations

a-*(a,La), a^{a,L'a).

2.2. Corollary. If A' is a Lie algebra of finite dimension n + 2 > 3, over k,

which is a nontriυial central extension of the algebra A defined by (1), then A' is

not sub-adjacent to l.s.d. product.

Demonstration. The fact that the extension is nontrivial implies that there

are integers / andy such that [ei9 eβ Φ 0.

Consider now the exact sequence of Lie algebras: 0 -» ken+ι -» A' -> A -> 0,

where ken+, is the central ideal of A'.

Suppose that the Lie algebra A9 is sub-adjacent to a l.s.d. product. From

Theorem Γ, this product satisfies the condition L'e — R'e — 0. Thus with

the obvious notation, the l.s.d. product of A' is written:

(m, x)(n9 y) = (w,0)(/i, y) + (0, JC)(Π,0) + (0, x)(0, y)

= (0, x)(0, >>) = (α(x, >^)eπ+1, xy),

where α(x, j ) belongs to k, and Λ:̂  denotes a l.s.d. product on A. Moreover, we

have Im L[mx) C Z{A') for all elements (m, x) of Λ' such that Lx — 0. In

particular, Im L'e/ C ken+x for / = 1,2, ,/i, and so, as L^ is a derivation, we

have

L;.(d) = L; (rf) = 0 for all elements doi^(A).

Consequently, 6D(Λ/) D {ef , ey} and L^.^ — L'eei i^ 0, which is a contradiction.

2.3. Examples. (1) Let A ' b e t h e Lie a lgebra over k w i t h bas i s {eQ9 el9e2,e3}

def ined as follows:

[ έ ? 0 , έ ? , ] = λ έ ? , , [ e o , e 2 ] = - λ e 2 , [ e x , e 2 ] = β e 3 , [ e 3 , A ' ] = 0 ,

where λ and β are nonzero elements of k.

The algebra A' is a nontrivial central extension of the algebra A given by

[el9 e2] = 0 , [e09 ex] = λ e l 9 [eθ9 e2] = - λ e 2 .

The algebra A is 2-solvable and has trivial center. From Corollary 2.2, A' is not

sub-adjacent to a l.s.d. product.

(2) Let A a nonCommutative algebra, suppose that the bracket [a, b] is

always equal to a linear combination of a and b. It is shown that A has this

property if and only if there exist a commutative ideal / of codimension 1 and

an element e0 & I such that [e0, a] — a for every a E /. Proposition 2.1 shows

that the Lie algebra has only one structure of left-symmetric derivation algebra
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compatible with the Lie structure, which is given by

L ί o = ad β o ,L e ( = 0 , « > l ,

where (e 0 , eu -,en} is a basis of A.

Added in Proof. After this paper was written, the author knew a counter-

example given by D. Fried to the Auslander's conjecture.
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