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1. Introduction
While convex sets in Riemannian manifolds have similar local properties as

convex sets in Euclidean space, their behavior in the large can be very
different. If one chooses an appropriate notion of convexity, however, global
similarities exist and two of them will be discussed in this paper. First, we
generalise the following theorem of Euclidean geometry to the Riemannian
case:

Monotony Theorem. Let D C Rm+1 be a compact set containing a convex
set C. Then the m- dimensional Hausdorff measures of the topological boundaries
satisfy

For a proof note that the metric projection P: Rm+1—»C onto C is
distance-nonincreasing and maps dD onto dC.

The Riemannian version of this monotony theorem is Theorem 1 in §3. The
appropriate assumption is that C is totally convex in D. For 2-dimensional
Riemannian manifolds a related problem has been treated in [11, 4.14].
Theorem 1 improves this result even for dimension 2. In §4 the case of
equality in Theorem 1 is investigated. Under additional curvature assump-
tions we obtain a splitting theorem for the Riemannian structure of D — C.

Subsequently we treat the topological implications of total convexity. In
Theorem 4 we prove that the inclusion i: C -^ D is a homotopy equivalence
provided C is totally convex in the locally convex set D. This result may be
viewed as a counterpart to the fact that all convex sets in Euclidean space are
contractible, hence homotopy equivalent. A corollary to Theorem 4 states
that the only totally convex set in a compact connected Riemannian manifold
MisM itself. This result is used in §4.

Received December 6, 1979, and, in revised form, April 10, 1981. Work partially supported by
the program Sonderf orschungsbereich 40 "Theoretische Mathematik" at the University of Bonn.



334 VICTOR BANGERT

Finally we note that some of our results have simpler proofs if one
considers sublevels of convex functions instead of totally convex sets. How-
ever, contrary to the Euclidean case, there exist totally convex sets which
cannot be sublevels of convex functions; cf. [1, p. 94]. For sublevels of convex
functions a slightly weaker form of Theorem 4 has recently been proved in
[10].

2. Notation and definitions

Throughout this paper M will denote an (m + l)-dimensional, smooth,
connected manifold with complete Riemannian metric < , > and Levi-Civita
connection V. We denote by TΓ: TM->M the tangent bundle, and by σ:
TιM->M the unit tangent bundle of Λf. Let d: M X M -> R be the metric
induced by < , >, and let B(p, ε) be the closed metric ball about/? of radius ε.

A function /: M -> R is convex if for every geodesic c in M the function
/ o c is convex.

For the convexity of sets we shall use the following notions.
Let C be a nonvoid closed connected subset of M.

(i) C is strongly convex if for/?, q EL C the minimal geodesic segment pq is
unique within M and pq C C.

(ii) C is locally convex if for all p G C there exists ε > 0 such that
C Π B(p, ε) is strongly convex.

(iii) Suppose the interior D of D Q M contains C. Then C is totally convex
in D if any geodesic c: [0, 1] -> D which joins two points of C is contained in
C. In the case D = M, C is simply said to be totally convex.

Obviously both (i) and (iii) imply (ϋ). Details concerning these definitions
can be found in [2] and [7].

We are now going to describe the integration theory by means of which we
calculate the boundary volumes of sets.

A subset L of M is a λ>dimensional strong Lipschitz submanifold of M if
locally L is the graph of a Lipschitz function defined on R*, i.e., for every
p G L there exist a chart <f>: Uφ -» R m + 1 of M at/? and a Lipschitz function/:
U->Rm+ι~k defined on an open subset U of R* such that φ(L n t/φ) =
{(xj(x))\x Ξ U}; cf. [16]. Then a: U^> L, <x(x) - φ~\x, f(x)) is called a
coordinate system of L at p. The notions "measurable" and "set of measure
zero" make sense on L since they are invariant under locally bilipschitz
homeomorphisms. L is said to be differentiate at/? G L if one (and hence
every one) coordinate system α of L at p is differentiate in α~\p). Let L'
denote the set of points at which L is differentiate. By Rademacher's
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theorem (cf. [8]) L — V is a set of measure zero. For p e L the tangent

space TpL of L at p is defined as the linear span of the vectors

{da/dxι\a~\p), , θα/ax^αΓ 1^)}. The fc-dimensional volume element

of M is the symmetric form dvoljj* = : dvolΛ defined by

k

(2.1) / A dvolfc := / h o α d v o l i ^ ,
JL

 Ju \dxι

dvolk(p): (TpM)

dvolt(/»)(β,, • • - , < % ) - (det<α,, α,» 1 / 2 .

For a bounded measurable function h: L -»R with compact support in the

range α( ί/) of a coordinate system a of L we define

iSL W dxK
dxk I

Since the formula for changes of variables is valid for locally bilipschitz

homeomorphisms, (2.1) is independent of the choice of α. Thus using an

appropriate subdivision of L into measurable subsets we can define a mea-

sure vol* on L in such a way that locally the integral with respect to vol* is

given by (2.1). On the set of λ>dimensional strong Lipschitz submanifolds,

volfc coincides with the Λ>dimensional Hausdorff measure C3dc induced by d;

cf. [8, 3.2.5 and 3.2.46]. However, we will not use this fact, but work with our

analytical definition instead.

Finally, let H C M, L C N be strong Lipschitz submanifolds of Rieman-

nian manifolds M, AT, respectively and suppose dim H = dim L = k. If /:

H —» L is locally Lipschitz and K C H is measurable, we have the following

formula:

(2.2) Γ |det/Jdvolf > vo\N

k{f{K)\

where the equality holds if f\K is injective. This follows from [8, 3.2.5] after

everything is reduced to locally Lipschitz functions from Rk to R*, since for

differentiable / at p, |det/J(/>) is computed with respect to the scalar

products induced on TpH and TΛp)L.

The admissible sets in our monotony theorem will have the property

defined below. A closed nonyoid subset D of Λf is said to have strong

Lipschitz boundary, if D = D and dD = D - D is a strong Lipschitz sub-

manifold of M. If dD ψ 0 , then dD separates M; hence dim dD = m. By [16,

Theorem 6.1], every locally convex set with nonvoid interior has a strong

Lipschitz boundary. Actually the boundaries of locally convex sets satisfy

even stronger regularity conditions; cf. [2].

The nonstandard integration theory described above is used since it enables

us to calculate the boundary volumes of convex sets by analytical means.
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Adding smoothness assumptions to our theorems would not simplify the
proofs essentially except that one could use the standard integration tech-
niques in this case. Note however that the problem of approximating an
arbitrary convex set by convex sets with smooth boundary is still open.

3. The monotony theorem

In this section we prove Theorem 1, the monotony theorem for Rieman-
nian manifolds. Formulas (3.1)-(3.3) below play a crucial role in our proof;
they are closely related to Santalo's formula (cf. [12, p. 488]). Since (3.1)-(3.3)
are known in the smooth case (cf. [5, §VIΠ, 8]), we only give the arguments
which are necessary to generalize (3.1)^(3.3) to the Lipschitz case.

We first note some generalities on the Riemannian structure of TιAf. On
TM we will use the canonical metric defined by requiring that for all t; G TM

τr# θ K: TVTM^ T^M θ T^M

be isometric, where T^M θ Tπ(p^M denotes the orthogonal sum, and K is
the connection map of the Levi-Civita connection. TιM will be endowed with
the metric induced by the inclusion TιM^> TM. Then σ: TλM-* M is a
Riemannian submersion. Considering M as the 0-section of TM we can use
the volume elements dvol^ := dvol™ on both TλM and M. The volume of
the standard λ -sphere is denoted by vol(Sk). According to liouville's theo-
rem the gepdesic flow

Φ: TιM XR^TιM

preserves dvol2m+1.
Throughout this section, A denotes a closed nonvoid subset of M with

strong Lipschitz boundary B, and & := σ" 1 ^), Φ := σ~ι(B). The inner unit
normal (vector field) N: B' —> % is measurable and defined at points of
differentiability of B. We set

® + := {v\v e σ-\B') and <o, N o σ(ϋ)> > 0}.

Now suppose G C B is measurable, and § + := σ-1(G) Π ® + . Obviously
S X R is a (2m + l)-dimensional strong Lipschitz submanifold of TιM X R.
Endowing TιM XR with the Riemannian product structure we can apply
(2.2) with K := S+ X [0, .y] and F := Φ|ft X R , F : 9 X R-* TιM. Then

(3.1) vol2m+1(Φ(§+ X [0, ,])) < f |det Fjdvol2L«,

where the equality holds if Φ|§ + X [0, s] is one-to-one. For v E $ ' and
t e [0, s], we can compute |det FΦ\(Ό9 t) as in the smooth case. Using the fact
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that Φ preserves dvol2/M+ i9 we get

Since the right-hand side is independent of t we easily conclude from (2.1)

(3.2) / |det Fjdvol&fi = * / <* ° <*>)> υ>dvol2w.

At all points of differentiability of %, the map σ|S : © -» £ has the defining
property of a Riemannian submersion. Using (2.2) and the same arguments as
in the smooth case this implies that for every nonnegative measurable
function/: ® ->R

/ dvol2m = / ( / / dvolm)dvolw.

Since o~ι(p) C TιM is isometric to the standard sphere, we can compute

f
V

σ (t;), ϋ>dvolm = — wol(Sm-1)
m

Hence

(3.3) JΓ+<JV σ(t>), t>>dvol2m = ^voKS-'

We note that combining (3.1)—(3.3) proves Santalo's formula in the Lipschitz
case.

Santalo's formula.

vol 2 m + 1(Φ(S+ x[0,5])) < 1 vol(S>»-ι)volm(G)s,

where the equality holds if Φ|S+ X [0, s] is one-to-one.
A geodesic c: [α, b]->A with c(α) E 3̂ 4, c(b) G 3̂ 4 and c((α, b)) C J will

be called a chord of Λ (of length L(c)). Theorem 1 will be obtained as a
corollary to the following more quantitative result.

Proposition 1. Let A C M have strong Lipschitz boundary B = dA and
finite volume volm+1(^4). Suppose G is a measurable subset of B with volm(G)
> volm(2? - G). Then the infimum t0 of the lengths of chords of A with both
end-points on G satisfies

Remark. In particular we prove the existence of such chords with the
inclusion of the cases volm(i?) = oo or G = B.

Proof. For v e Φ + we define s{v) := supί^lΦ^t; E ί for ί G (0, s)}.
Then s(v) > 0 since 5 is differentiate in σ(ϋ). If c: [α, 6] -»^4 is a chord of
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A, and c(a) E G, c(b) E B - G, then c(f>) E σ " 1 ^ - G) - Φ + = : (® -
9)- Obviously Santalo's formula holds for {% - β)~ as well. Hence

(3.4) vol2 m + 1(φ((® - g)"X [0, s])) < ^wol(Sm-ι)wolm(B - G)s.

Now let us assume that for some fixed O O w e cannot find a chord of A
with both end-points on G and length < t. This implies

(3.5) If v E @+ and s(v) < t, then Φ^v E ( $ - §)".

Our proof consists in finding a lower bound on the volume of

g+ := {φ5ϋ|ϋ 6 § + , 0 < ί < min{ί, s(t?)}}.

which in turn yields an upper bound on t. (3.5) implies that for all ε E (0, t)

Φe(§ΪLε) - Φ((® - 9)~x[0, ε]) C 9* - 9e

+.

Using (3.4) we conclude

vol2 m + 1(β ί

+)-vol2 m + 1(g,+_ e)
(3.6) 1

> vol2m+1(βe

+) - — vol(Sm-χ)\ol(B - G)ε.

Setting % := {ϋ e § + | J ( U ) > ε} we have U e > 0 ^e = ^ + , Φ^^ X [0, ε]) C
ge

+, and Φ\ΰUe X [0, ε] is one-to-one. From (3.1) and (3.2) it follows

where

Φ(«De X [0, ε]) - ε f (N o σ(ϋ), t?>dvol2m,

lim Γ (N o σ(ϋ), ϋ>dvol2m = ( (N ° σ(t>), ϋ>dvol2m.

This implies, in consequence of (3.3) and (3.6), that for the function
As) : - vol 2 m + I(g;)

lim inf ! (/ [/) -/(< - β)) > lvol(S-- I )(v6L(G) - volm(5 - G)).

Since our assumption on t is a fortiori satisfied for all s e (0, /), the preceding
formula holds with t replaced by s for all s G (0, /). Hence /(0) = 0 implies

At) > -^vol(S'"-1)(volm(G) - volm(5 - G))t.

By definition we have §,+ Q &, hence

Λ 0 < vol2m+1(<£) = vol(5m)volM+1(^).

The above two inequalities prove our claim.
Remark. The estimate in Proposition 1 is sharp for A = a standard

hemisphere and G = B = dA, but not in general. It can be sharpened, for
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example, by introducing the infimum of the lengths of chords of A joining G
and B - G as an additional parameter.

Theorem 1. Let C C M be totally convex in D Q M. Siφpose C Φ 0,
voln+iCO - C) < oo and D has strong Lipschitz boundary. Then volm(3C) <
volm(3Z>).

Proof. By assumption we have C Q D. Hence A := D — C has strong
Lipschitz boundary 5 = 9 C u dD; cf. [16, Theorem 6.1]. Since C is totally
convex in D, there does not exist a chord of Λ with both end-points on 3C.
Hence the assumption of Proposition 1 cannot be satisfied for G := 3C, i.e.,

- voim(az>).

Remark. If C = 0, then C = dC, and one can even prove 2 volm(3C) <

4. The splitting theorems

In this section we investigate the case of equality volm(3C) = vo\m(dD) in
Theorem 1. Examples on surfaces of revolution show that in this case the
Riemannian structure of D - C can still vary quite freely. Under suitable
assumptions, however, every component of D — C splits isometrically into a
product of a real interval with a component of dC.

Proposition 2. Let C C M be totally convex in D Q M. Siφpose C Φ 0,
D - C is compact, andwolJdC) = volm(3Z>) > 0.

(i) If D has a strong Lipschitz boundary, then D is locally concave, i.e.,
M — D is locally convex.

(ii) If D is locally convex, then dD is a totally geodesic hypersurface.
Remark. In case (ϋ) the set M - D is even totally convex in M — C. It is

rather doubtful that this should be true in the general case as well.
Proof. Let E c TιM denote the set of vectors v G σ~ι(dD) such that

there exists tv > 0 with exp(fo) G D - C for all / G (0, tΌ). Choose tΌ G
(0, oo] to be maximal with this property. Proposition 1 and volm(3C) =
vo\m(dD) imply tv < oo and exρ(tΌv) G dC for almost all v G E. Now sup-
pose (i) is not true. Then there exist points p0, q0 G M - D at arbitrarily
small distance, in particular d(p0, q0) < d(dC, dD), such that the geodesic
segment poqo intersects D. Hence there exist open sets U, V Q M - D such
that for all p G U, q G V the geodesic segment pq intersects D while
pqn c = 0. Let 0 C Γ 1 ^ be the set of tangent vectors to such segments.
Then Θ is open, Θ n E ψ 0 , and exp^υ) G dD for all v G θ n E. Since
for every p G (3D)' the set E n TJM contains an open hemisphere of T*M,
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we get vol2m(Θ Π E) > 0 contradicting exρ(^t ) G dC for almost all v e 2s.
Thus (i) is proved, (ϋ) is an obvious consequence of (i).

Theorem 2. Let C C M be totally convex in the locally convex set D C M.
Suppose CΦ0, D - C is compact, and volm(3C) = volm(3D) > 0. // the
sectional curvature of M is nonnegative on D — C, then the components of
D — C are isometric to the products of real intervals and the boundary compo-
nents of C.

Remarks. 1. Examples on a paraboloid of revolution show that it does not
suffice to assume that C and D are locally convex and C Q D.

2. The author does not know if the assumption "D locally convex" is
necessary. It can be omitted if, in addition to the other assumptions, D — C is
contained in the domain of a convex function which is nowhere constant on
D — C, e.g., if M is noncompact and of nonnegative sectional curvature.

Proof. Denote by p: D -* R, ρ(/?) := d(p, 3D) the inner distance function
from 3D. Since the curvature is nonnegative on D — C, the function ρ\D — C
is concave, i.e., ~p\D - C is convex; cf. [7]. Set a := min(p|C). Then a > 0
since C C D. For 0 < r < a the sets rD := p~ι([r, oo)) are totally convex in D
and d(rD) = p~\r). Hence vol^p-V)) < volm(9D) by Theorem 1. Since C is
totally convex in rD C D for 0 < r < a, we obtain volm(θC) < vo^Oo'^r)).
Hence

volm(p-\r)) = volm(dD)

for all 0 < r < a. By Proposition 2 the hypersurface 3D and its parallel
hypersurfaces p~ι(r) (0 < r < a) are all totally geodesic. Hence the flow of
- Vp induces an isometry between p~1([0, a]) and p~\a) X [0, a].

Now provided D - C is connected we prove dC = p~ι(a), hence D - C =
p"!([0, a]). Since p~\a) is totally geodesic and C CαD is totally convex in D,
the set C π P~!(Λ) = 3C Π P~ ! (^) is totally convex in the compact Rieman-
nian manifold p~\ά). By Corollary 1 in §5 the set dC Π p~\a) contains a
component N of ρ-1(α). Then N X [0, α] C p~\a) X [0, α] corresponds to an
open and closed set in D - C. Hence N = ρ~\a) = 3C and D - Cc^dC X
[0, α]. If D — C is not connected, one can apply these arguments to each
component of D — C separately.

We are now going to prove a splitting theorem in the case of nonpositive
sectional curvature. At no extra cost we get a slight generalization of Theo-
rem 1. For a path-connected subset A of M we denote by ττx(A,p) the
fundamental group of A at/? G A, and by iAJίjτλ(Ayp)) its image under the
inclusion iA: A -» M.

Theorem 3. Let M be a complete Riemannian manifold of nonpositive

curvature. Suppose that D is a connected subset of M with strong Lipschitz
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boundary containing a locally convex set C, and that D — C is compact. If

(*) i<Λ«i(C>P)) = iD (*ι(D>P))>

then volm(3C) < volw(3Z>). // in addition C c D and volm(3C) = volm(3£>)
> 0, then the components of D — C are isometric to the products of real
intervals and the boundary components of C.

Remark. If C is locally convex and C Q D, then (*) implies that C is
totally convex in D. The converse is true, if D is locally convex.

Proof. We use the universal Riemannian covering/: M' -» M to construct
a retraction P: D -> C which is locally distance-nonincreasing. Choose con-
nected components C and D' off~\C) and/^Z)) such that C C D'. Then
C" is totally convex; cf. [2, (2.12)]. By [6, Proposition (3.4)] the metric
projection P': M' —> C onto C" is uniquely defined and distance-non-
increasing. Because of (*) a map P: D —> C can be defined by
P ° (f\D') := /o (PΊ/)'). Then P is locally distance-nonincreasing. Hence
volm(3C) < volm(3D) follows from (2.2) as soon as we have proved P(dD) =
dC. As a consequence of (*) the distance function p': Af'->R from Cr

induces a function p: Z) -^ R by p ° (/|Z>') = P Ί ^ ' Since D — C is compact,
p is bounded. Now for every/? e 3 C there exists a geodesic c: [0, oo) -» M'
such that c(0) = p, P ' ° c(ί) = /? and p' ° c(ί) = t for all ί > 0; cf. [6, Lemma
(3.2)]. Since p'\D' is bounded, we get P'(3Z)') = 3C, hence P(dD) = 3C. If
volw(3C) = volm(3Z>), we conclude that (P\dD\p is isometric for ahnost all
p EL dD. Now p is C 1 on Z> - C, and P*(Vρ) = 0 whenever P^ is defined.
This implies that Vp\p is orthogonal to TpdD if (PlβZ))^ is isometric. Hence
the derivative of the Lipschitz function ρ|3Z> vanishes almost everywhere.
Thus p is constant on connected components of 3D. Since p' is convex, we
conclude that D is locally convex. Then C is totally convex in D provided
C C D. Since P* | TpdD is isometric for almost all p G dD and since
volm(3C) = volm(3Z>) > 0, we have C φ 0. By Proposition 2 the hyper-
surface dD is totally geodesic. Since the components of dC are parallel
surfaces of components of 3Z>, our claim easily follows from the curvature
assumption.

5. Topological properties of totally convex sets

In [7] Cheeger and Gromoll proved that the inclusion of a compact totally

convex submanifold into a complete connected Riemannian manifold is a

homotopy equivalence. By the "Soul Theorem" [7] this statement is also true

for compact totally convex sets in a complete Riemannian manifold of

nonnegative curvature. We are going to generalize these results in several

respects.
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Theorem 4. Let C, D be subsets of a complete Riemannian manifold M. If

C is totally convex in D, and D is locally convex, then the inclusion i: C -» D is

a homotopy equivalence.

Corollary 1. The only totally convex set in a compact connected Riemannian

manifold M is M itself.

The main step in the proof of Theorem 4 is the following.

Lemma 1. Under the assumptions of Theorem 4 any Lipschitz map g:
(Dn, dDn) -> (A C) is (A Cyhomotopic to a map into C.

Proof. Since D is connected by assumption, the statement is true for
n = 0. For n > 1 we consider g as a map from Dn~x into an appropriate
space of curves. Applying a special energy-decreasing deformation Φ to g we
can deform g to a map into C since our assumptions imply that Φ has no
stationary points outside C. Similar deformations have been used on the
space of closed curves to construct closed geodesies; cf. the appendix to [12].
Here we consider the space

Ω « {γ|γ: [-1, 1] -> D Lipschitz, γ(-l) G g(dD»), γ(l) G C}

endowed with the metric ^ ( γ o , Yi) •= max d(yo(t), γ^O)- On Ω we have the
lower semicontinuous functional "energy" E: Ω->R, E(y) := /li|γ|2(0 Λ.
For K > 0 we set Ωκ = ^ ( [ O , *]) C Ω. The Lipschitz map g: (/)", 9Z)n)->
(D, C) gives rise to a continuous map G: (Dn~\ HDn~ι)->(Q, Ω°) which
maps x G Dn~ι to the curve GO) G Ω, G(»(0 := g(x, tyjl - |x|2 ). A
(Ω, Ω°)-homotoρy of G induces a (D, C)-homotoρy of g. Hence it suffices to
prove that G is (Ω, Ω°)-homotoρic to a map into Ω°. We are now going to
define the deformation ^D. If L is a Lipschitz constant for g, choose κ0 > 2L2.
Then G(Λ ) G Ω*° for all Λ: G D " " 1 . Choose a neighborhood U of C such that
the metric projection P: U^-> C onto C is uniquely defined and locally
Lipschitz; cf. [15, Theorem 1]. Set

K = [p G M|There exists * G Z>Λ such that d(p, g(x)) < V^o },

and choose ε > 0 with the following properties:
(i) ε is smaller than the minimum of the injectivity radius on K,

(ϋ) if p, q G D n K and d(p, q) < ε, then the shortest geodesic segment
pq from/? to q is contained in D; cf. [2, (1.2)],

(iii) {q G K\d(q9 C ) < ε} C I/.

Finally we choose a partition -1 = s0 <Sγ < < O 2 A : _ 1 < ̂  = 1 of

[-1, 1] such that ^ - st < ε2/κ0 for i = 0, , 2k - 2. Note that γ G Ωκ°

implies γ([-l, 1]) c K and d\y(s^ γ(^ l+2)) < C*,+2 " ^>o <*?• H e n c e w e
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can define continuous energy-decreasing maps 6ύι: Ω"0—^"0 and <Φ2: Ω*°—»
Ωκ° respectively by

^iYl[J2i> ^21+2] = shortest geodesic from y(s2i)

^ Y l t ^ -i* S2i+ι] = shortest geodesic from y(s2i_x)

toY(*2/+i)> I <i <k9

^lΎl^ik-v S2k\ ~ shortest geodesic from y(s2k-.\)

to P(y(s2k)).

Now Φ: Ω*0-^*0 is defined by D̂ := % ° Φj. Obviously % <3)2
 a n d ^

are (Ωκ°, Ω°)-homotopic to the identity. Hence <Φ ° G is (Ω*0, Ω°)-homotopic

to G. Our claim is an easy consequence of the following property of Φ:

(*) For every K G (0, κ0) there exists δ > 0 such that fy(Qκ+δ) C Ω16"*.

Suppose (*) is not true. Then we can find a sequence cn in Ω such that

lim E(cn) = lim E^c^) = K. Since ΛΓ is compact, we may assume that

I*111 cn(s2i) = : c(^2i) exists for 0 < i < k. We define c G Ω by
c l [ s>2i» ̂ 21+2] = shortest geodesic from c(s2i)

t o φ 2 / + 2 ) , 0 < / < A : .

Then we have 6ύιc = c and c = lim ^c, , . Now

if γ|[^, si+ι] is a shortest geodesic for 0 < i < 2k. Hence E(c) = lim

= /c and E(%c) = lim £(Φ 2 (^i c «) ) " κ ^ ^ w e δ e t ^ ( c ) =

0, which implies that c G Ω is a nonconstant geodesic with c(l)

in contradiction to the total convexity of C in D. Hence (*) is proved.

Proof of Theorem 4. Theorem 4 follows from Lemma 1 by algebraic

topology. It suffices to prove that πn(D, C) is trivial for all n > 0; cf. [14, p.

405, Corollary 24]. Hence we need to know that Lemma 1 is true for not only

Lipschitz maps but also all continuous maps. Using the fact that there are

neighborhoods U of C and V of D and locally Lipschitz deformation

retractions of U (resp. V) onto C (resp. £>), one can reduce the continuous

case to the Lipschitz case by standard approximation arguments.

The following corollary replaces [4, Theorem 4] which has been referred to

in [3].
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Corollary 2. In addition to the hypotheses of Theorem 4 assume that D — C

is connected. Then D — C is compact if dD is nonvoid and compact.

Remark. If D — C is not connected, Corollary 2 applies to each compo-
nent V of D — C separately, i.e., V is compact if V Π 3D is nonvoid and
compact.

Proof. Theorem 4 implies Corollary 2 by algebraic topology. We first
show that the inclusion Hm(dC) -> Hm(D - C) is an isomorphism. Let U C
D be a neighborhood of C such that the metric projection P: {/-» C is
uniquely defined and such that for every q G U the geodesic segment qP(q)
is contained in U; cf. [15, Theorem 1], Using a partition of unity one can
construct a continuous function /: dC -> (0, oo) such that the set {p G
M\d(p9 C) < 2/0?)} is contained in U. Set V := {p G M\d(p, C) </(/?)}.
Then (Z>, C) (resp. (D - C, 9C)) are deformation retracts of (Z>, F) (resp.
(D - C,V - C)). Hence C can be excised from (D, C)/and Theorem 4
implies that Hm(dC) —> Hm(D — C) is an isomorphism. We will use homol-
ogy with ^-coefficients. Then Hm(dD) φ 0 since dD is a compact m-dimen-
sional manifold. Hence the inclusion

Hm(dC) θ HjfiD) -• /ίm(Z) - C)

has nontrivial kernel. By the long exact sequence of the pair (Z) — C, 3C U
ΘZ)), this implies Hm+ι(D - C, 3C u 3/)) ^ 0. But for a connected (m + 1)-
dimensional manifold X = D — C with boundary dX = 3C U 3Z>, we have
Hm+ι(X, dX) φ 0 only if X is compact. This can be seen by applying [9,
Corollary 22.25] to the double of X.
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