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SOBOLEV SPACES OF DIFFERENTIAL FORMS
AND DE RHAM-HODGE ISOMORPHISM

JOZEF DODZIUK

0. Introduction

In this paper we examine conditions under which integration of forms over
simplexes of a smooth triangulation of a complete oriented Riemannian
manifold M induces an isomorphism between simplicial ZΛcohomology and
the spaces of L2 harmonic forms. A theorem of this type was proved in [5] for
the case when M is an infinite Galois covering of a compact manifold. In this
case various constructions and estimates could be done locally in the compact
base and then pulled back to Λf. It was more or less clear that a similar proof
could be given in a more general setting provided the manifold under
consideration satisfies certain uniformity conditions. The conditions we shall
use were formulated originally by Aubin [1] in his work on Sobolev spaces of
functions on Riemannian manifolds.

Condition I. The manifold M has the injectivity radius d > 0.
Condition Cm. The curvature tensor R and its covariant derivatives VιR9

0 < / < m, are uniformly bounded.
Clearly, if M is a covering of a compact manifold, Condition Cm holds for

every m > 0 and so does Condition I. Existence of complete metrics satisfy-
ing condition Cm for an arbitrary m > 0 on every open manifold was
established recently by R. Greene. In general if Cm holds for some m > 0 the
two Sobolev norms involving derivatives of order up to m + 2 (one using the
Laplacian, the other using covariant derivative) are equivalent. This is suffi-
cient to obtain enough control over constants in Sobolev inequalities for the
purpose of establishing the de Rham-Hodge isomorphism.

This paper consists of two sections. The first section treats various Sobolev
spaces and inequalities. We obtain a generalization of certain results of Aubin
[1]. The proofs are based on a theorem of Chernoff [3] which can be
interpreted as stating that compactly supported C 0 0 forms are dense in
certain Sobolev spaces. We believe that the results in this section have
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significance beyond the application presented in the second section, which
consists of the proof of the de Rham-Hodge isomorphism along the lines of

[5].
During the work on this paper, I benefited a great deal from conversations

with E. Calabi and J. Kazdan. In particular, Kazdan brought Aubin's work to
my attention. Min-Oo helped me with an example showing that curvature
assumptions are necessary in Theorem 1.3. I am grateful to all of them.

1. Sobolev spaces of differential forms

Throughout the paper M will denote a complete oriented Riemannian
manifold of dimension N. The Riemannian metric induces inner products in
fibers of various tensor bundles on M. We will denote by < , > these
pointwise inner products, and by | | the corresponding norms. The global
(integrated) inner products and norms are given by

(<x,β)0
M

\\a\\l = f \<x\2dV,

where dV is the volume element of the metric. If a, β are differential forms of
the same degree, then

(«,/?)o= I «Λ*A

where * is the Hodge operator. A tensor a is square-integrable (in L2) if it is
measurable and | |α | | 0 < oo.

Definition 1.1. (a) The Sobolev space AkfP(M) is the space of differential
forms on M of degree p, which are in L2 together with their covariant
derivatives of orders up to k. The Sobolev norm for ω E A ktP(λf) is defined
by

k

IIMII* = Σ HV'ωllo.

(b) The space A k'p(M) is defined for even integers k, k = 2m, and consists
of /?-forms ω on M for which both ω and (/ + Δ)mω are square integrable.
The norm in A k'p is given by

|M| Λ = | |(/ + Δ)wω||0.

In this definition the derivatives are taken in the sense of distributions, and Δ
denotes the Laplace operator.
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The spaces A*tP are well suited to obtaining pointwise estimates of forms
and their derivatives in terms of L2 norms of high covariant derivatives (cf. [2]
where the completion of the space of compactly supported C°° forms with
respect to ||| \\\k was studied). The advantage of AktP is that C0 0 forms with
compact support are dense in these spaces. More precisely we have the
following theorem due to Chernoff [3].

Theorem 1.2. For every integer m > 1, the operator (I + Δ)m is essentially

self-adjoint as an operator on A OyP(M) (the Hilbert space of L2 p-forms) with

the domain consisting of all compactly supported C°° p-forms.

Remark. Denote by AP(M) the space of C°° p-fovms with compact
support, and let T = (/ + Δ)m. The theorem says that f, the closure of Γ,
satisfies T = T* and, clearly, T* = T*. According to definitions, the domain
of T* is precisely A2m>p(M\ and the domain of f is the closure in A2m'p(M),
of AP(M\ i.e., C°° forms with compact support are dense in A2mtP(M).

The following theorem is both less and more general than Theorem 2 of [1].
It is less general since we obtain only I? estimates rather than Lp ones for
oo >p > 1. However Aubin considers functions only, and the Sobolev spaces
in his paper analogous to our Aι'p(M) are completions of the spaces of C°°
/7-forms ω with |||ω|||Λ < oo, whereas we consider all forms whose distribu-
tional derivatives are in L2. Moreover, we make no assumptions about the
injectivity radius.

Theorem 13. If M is complete and satisfies Condition C 2 m , then

A2m+2'P(M) = A2m+2-p(M) (i.e., they are equal as abstract vector spaces, and

the two norms are mutually bounded). In particular AP(M) is dense

A2m+2>P(M).

Proof. It is very easy to see that for ω G A2m'p(M), (I + Δ)mω is in L2 and

0 4 ) l|ω||2m < C|||ω|||2m,

for every integer m > 0 with the constant C depending only on N = dim M
and m. Thus the natural mapping of A2m>p(M), into A2m*p(M\ is bounded. In
view of Theorem 1.2 it will suffice to prove that there exists a constant Cx > 0
depending only on the bounds of \R\, \VR\, , |V2mΛ|, such that for every
<o G Ap(M)

0 5 ) II

holds. It will be convenient to replace || | | 2 m + 2

 b y a n equivalent norm

II Wlm + r

m+l

Nlίπ+2 = Σ HΔ'ωllo.
1=0
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and prove

0-5;,) IIHIl2*+2 < CίiμilL+2. ifω
where the constant C[ depends only on the bounds of |V(R|, 0 < / < m.

Consider first the case m = 0. The Weitzenbock identity Δω =V*Vω + i^ω,

where V* is the formal adjoint of V and Rp is an algebraic operator involving

the curvature tensor, implies

(1.6) (Vω, Vω)0 = (Δω, ω)0 - (i^ω, ω)0

for ω EL A*!(M). Since Condition Co is assumed to hold, ||Vω||0 can be

estimated in terms of \\ω\y2. In order to estimate ||V2ω||0 we introduce some

notation. <3l will denote an algebraic operator defined in terms of the

curvature tensor R, and c will stand for a constant depending on the bound

of \R\. The Bianchi identity yields

(i.7) v*v= -vv* = a.
To complete the proof of (1.50) we estimate the L2 norm of V2ω using (1.6)
and (1.7):

^ = ( V * V V < 0 ' V ω ) o = ( V V * V ω > V <°)o(I 8)

< ||V*V<o||2 + c||Vω||0 < ||V*Vω||2

On the other hand, by Weitzenbock identity we have

(1.9) ||V*Vω||0 < ||Δω||0

(1.5J) follows by combining (1.6), (1.8) and (1.9).

The proof of (1.5^) for m > 0 is inductive and follows a similar pattern. In

the estimates below c will denote a positive constant depending on bounds for

\R\, \VR\, , |V2mi?|. To prove (1.5^) if (1.5^1_1) has been verified we have

to estimate ||V2 m + 1ω||0 and ||V2 m + 2ω||0 in terms of | |ω||im + 2 for ω E

A*(M).Ύh\xs

||V2-+1ω||2 =

By the inductive assumption, || V2mω||0 < c||ω||2m < cllωll^+j and therefore

(1.11) ||

In this inequality ε > 0 is arbitrary and will be specified shortly. Because of

this last inequality it suffices now to estimate || V2m+2ω||0. Now

||V2 w + 2ω||2 = (V2m+2ω, V2/w+2ω)0 = ((V*)2 m + 1V2 / w + 2ω,
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Using the Bianchi identity and integration by parts repeatedly as in (1.8) we
obtain

(1.12) l

where E is quadratic in covariant derivatives of ω of order not exceeding
2m + 1, and linear in covariant derivatives of R of order less or equal 2m (cf.
(1.8)). The terms in E involving derivatives of ω of order 2m + 1 can be
estimated using (1.11). It is here that one has to take ε > 0 sufficiently small
in order to absorb ||V2m"l"2ω||o appearing on the right-hand side inequality on
its left-hand side. The inductive assumption (1.5^f_1) and Conditions Cm

enable us to estimate the remaining terms in E yielding

(1.13) | |V2 w + 2ω||2 < c(||(V*VΓ+1co||o + | |ω| | 2 m + 2 ).

Finally (V*V)m+1 is the leading term of Δm + 1, and the Weitzenbock identity,
Condition Cm and (1.5JW_1) imply that

(1.14) + 1 2

Now (1.14), (1.13) and (1.11) prove (l.5'm), which completes the proof of
Theorem 1.3.

We now give an example of a surface M whose curvature is unbounded
and for which Afp =£A2yP. Let M be R2 equipped with the metric

ds2 = dr2+f(rfdθ2.

We shall specify the function / later. The Hodge * operator satisfies *dr =
fdθ, *dθ = -dr/f. It follows that if ω is a C°° form of degree one such that

ω = ̂ rτdr + d£ forr > 1,
A?)

then Δω = 0 for r > 1. Therefore if ωG A°*p, then ω G AXp. On the other
hand, |ω|2 = 2//2 on r > 1 and dV = / dr dθ. Thus ω is in L2 if and only if

dr

7 < 0 0

By Weitzenbock identity Δω = V*Vω - (/"//)ω. Thus if Δω is in L2 and V2ω
is square-integrable, then V*Vω and (f'/f)ω are in L2. But (f"/f)ω is in L2

if and only if

^ oo.
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Hence to construct an example in which ω, Δω are in L2 but V2ω is not we
have to exhibit a function for which /J° dr/f(r) < oo and /J° (f")2/f3 dr =
oo. An example of such a function was provided by Min-Oo. We can take for

/ any C °° function such that

/w- 1
- sin(r4) if r
r

The above example shows that some curvature assumptions are necessary for
the conclusion of Theorem 1.3 to hold. We remark that the method of §4 of
[3] implies that V * V = Δ - <3l is essentially self-adjoint on AP(M) together
with all its powers provided Δ — 91 is bounded from below (i.e., if (Δω, ω)0 -
(9lω, ω)0 > c(ω, ω)0 for every ω E A]?). This semiboundedness would be
implied by the boundedness from above of the highest eigenvalue of 91 and
in particular by our Condition Co. This however is not sufficient for our
purpose.

The following result of Cantor [2] will be needed in the second section.
Proposition 1.15. Suppose M satisfies Conditions Co and I. Let d > 0 be the

lower bound of the injectivity radius of M, and let 0 < r < d, I > 0, k > 0,
/ + N/2 < k. Then there exists a constant c > 0 such that for every ω E
A f p(M) and every x E M

_ \Ψ'ω\2dV
j = θVBr(x)

where Br(x) is the ball of radius r around x.

\l/2

|V^ω|2rfF| ,

2. DeRham-Hodge isomorphism

The main result of this section is a generalization of Theorem 1 of [5]. The
proofs are very similar to those in [5] and will be only sketched.

We shall need a cohomological description of the spaces %P(M) of L2

harmonic/7-forms, 0 < p < N (cf. [5, (2.8)] but note the difference in nota-
tion):

ZKp = {ω E A2k>p\dω = 0},

(2.1) Bkp =
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where k > 0, 0 < p < N, and the closure is taken in the topology of A2kiP.
The following proposition was proved in [5], In view of Theorem 1.2 the proof
is valid in a more general setting and yields

Proposition 2.2. The spaces Hkp are independent of k. More precisely, for
every k > 1,0 < p < N9 Z

k'p admits an orthogonal direct sum decomposition

%P Θ BKp .

Furthermore, when k = 0,

%p Θ P ,

where Bp = {ω E ^ 0 *|« = dη for some-η e Λ0'*-"1}.
Let M be a complete, oriented Riemannian manifold satisfying Conditions

I and Clk with 2k > N/2 - 1. We will prove below that for such M the
spaces %P(M) are isomorphic to simplicially defined iΛcohomology spaces.
For such an isomorphism to hold, the triangulation of M must be sufficiently
regular. The appropriate class of triangulations Λ: ΛΓ-> M are the triangula-
tions satisfying the following conditions:

(i) There exists θ0 > 0 such that for every simplex σ of K of
maximal dimension the fullness 0(σ) of σ satisfies θ(σ) > θ0,

(2.3) (ϋ) there exist cx > c2 > 0 such that for every simplex σ of dimen-
sion N

c2 < vol(σ) < cl9

(iii) there exists a constant c > 0 such that for every vertex v of K
the barycentric coordinate function φΌ: M-»R satisfies |VφJ

Remarks, (a) To simplify notation we identify K with M via h.
(b) A discussion of fullness can be found in [8, p. 125] or [6, §2].
(c) In view of (i), (ϋ) is equivalent to having both upper and lower bound

for diameters of simplexes of K. (i), (ii) together are equivalent to simplexes of
K having a positive lower bound of the volume and an upper bound of the
diameter.

(d) (i) and (ii) imply that the number of simplexes of dimension N meeting
at a vertex of K is bounded independently of the vertex.

Conditions (2.3) are analogous to Conditions Co and /. As a matter of fact,
it follows from an unpublished work of Calabi that a complete Riemannian
manifold satisfying Conditions Co and / admits triangulations satisfying (2.3)
of arbitrarily small mesh.
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The simplicial ZΛcohomology is defined as follows (cf. [5]). An oriented

real-valued cochain/ G CP(K, R) is said to be in L2 if and only if

(2.4) | | / | | 2 = Σ l/(σ)|2<oo.
oPtΞK

The space Cξ(K) of L2 cochains is a Hubert space with the inner product

(2-5) (f,g)

In view of Remark (d) above the restriction of simplicial coboundary

operator dc to C$(K) is a bounded operator from CJ(JT) to Cζ + ι(K). One

can define the combinatorial Laplacian Δc = dcd* + d*dc and the L2-

cohomology as its kernel. The following is an equivalent definition which is

more convenient in the present context:

(2.6)

Hp{K) = Zp(K)/ BP(K) .

The theorem alluded to above takes the following form.

Theorem 2.7. Let M be a complete oriented manifold satisfying Conditions I

and Ck for an integer k > N/2 — 1. Let (K, h) be a triangulation of M

satisfying (2.3). The integration of forms over simplexes of K induces an

isomorphism

The proof will be broken down into a sequence of steps as in [5]. First, the

invariance of H*(K) under subdivisions has to be checked, but as is usual in

this context, it will only hold for subdivisions which are uniform in a rather

technical sense. For our purpose it will suffice to consider the standard

subdivisions of K (cf. [8, p. 358] or [4]).

Lemma 2.8. Let Kλ be the standard subdivision of K. The natural cochain

mapping s: C*(K^) -^ C*(K) restricts to a bounded operator s: C*(AΊ)—»

C*(K) and induces an isomorphism on L2-cohomology.

The proof usually given for finite complexes (cf. [7, Chapter 5], [5, Proposi-

tion 1.2]) works in this case because all operations employed in it are defined

locally, and therefore induce bounded maps on L2 cochains. Lemma 2.8 is, of

course, valid also for barycentric subdivisions.

Integration defines a mapping of continuous differential forms into

cochains. We will denote the cochain associated to a differential form ω by

Jω (or jκ co if it is necessary to indicate the triangulation being used). Until
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further notice the only triangulation considered will be the one appearing in
the statement of Theorem 2.7.

Lemma 2.9. Suppose ω G A2(k+l)fP. Then fω is an L2 cochain. Moreover

is bounded, and

This lemma is proved exactly as Lemma 3.2 of [5]. The main point is to use
Proposition 1.15 and Theorem 1.3 to show that / is a bounded operator.

As in [5], we obtain
Corollary 2.10. Integration induces a mapping

f: HP(K).

To show that the above mapping is an isomorphism we use the Whitney
mappings (cf. [8, p. 138], [5], [6]) constructed with the aid of various partitions
of unity. We shall use the barycentric coordinate functions and other func-
tions obtained by smoothing the barycentric coordinates. The following
lemma asserts the existence of well-behaved partitions of unity.

Lemma 2.11. There exists a partition of unity {ψv}vξΞK indexed by vertices

of K such that for every vertex v G K

(i) ψv G C
(ii) supp ψ̂  c Star(ϋ),

(iii) |V'ψJ < C 0 < / < 2k + 2,

where the constant C is independent of the vertex v.

Proof. Let v G K, and let φv be the corresponding barycentric coordinate
function. Define

if * , ( * ) > * .

V
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The function φυ has a pyramid-like graph similar to the graph of ψv, but its
support is well inside Star(t>). Let

δ = sup r(x,y),
v,x €Ξ supp ψvi y EL 3 Star(i?)

where r(x,y) is the geodesic distance between x and>>. It follows from (2.3)
that δ > 0. Let η(r) be a C°° function of r E R such that 0 < η < 1 and

Define φ^ by the formula

Φv(x) = f v(r(
JM

Since M satisfies Condition C2m, the function r\ ,y) has bounded covariant
derivatives of order up to 2m + 2 (cf. [1]). Moreover, it follows from the
definition of φ^ that

Σ Ψw(x) > i

for every x G M. It is now easy to check that the functions ψυ defined by

( Σ ΦW

have the required properties.
Using the smoothed partition of unity {ψv} we can construct a Whitney

mapping W which associates a C 0 0 form We to every cochain c G C*(K).
Because of (2.11)(iii) W gives a bounded operator from Cζ(K) to A*k+2(M)
= >42A:+2(Λf). As a corollary we obtain (cf. [5, Lemma 3.8]).

Lemma 2.12. W induces a mapping of HP(K) into %P(M) and

W = Id.

Therefore /: SK?(M) -> if^(ϋ:) ύ surjective.
Finally, to prove the injectivity of / on ZΛcohomology one uses an

approximation technique as in [5]. Let K = {JζJJlo be the sequence of
standard subdivisions of K = AΓ0. We remark that the sequence of barycentric
subdivisions cannot be used here. The standard subdivisions have the ad-
vantage that Conditions (2.3) will still hold for all subdivided complexes (cf.
[8, p. 348]).

We shall denote by Wn the Whitney mapping constructed using the
barycentric coordinate functions of the complex Kn.
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Lemma 2.13. For every ω G %*(M) and every ε > 0 there exists n > 0
such that

/V00/. Let σ be a closed simplex of dimension N, x E: σ. In view of [6,
Proposition 2.4], \ω(x) - (Wn ° /jςωXx)| can be estimated in terms of
suPyeσl^ωO0l wWch in turn, by Proposition 1.15, can be bounded in terms of
L2 norms of covariant derivatives of ω of order up to 2k + 2 on
Int(Uσ n τ_£ 0τ). This, together with the observation that ω E A\k+Xp by
Theorem 1.3, allows one to complete the proof (cf. [5, Lemma 3.9]).

Injectivity of /: %*(M) -^ H*(K) is an easy consequence of Lemma 2.10
(the proof of Lemma 3.10 in [5] carries over verbatim). The proof of de
Rham-Hodge isomorphism is thus completed.
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