ON THE LOWER BOUND FOR THE INJECTIVITY RADIUS OF 1/4-PINCHED RIEMANNIAN MANIFOLDS

JEFF CHEEGER & DETLEF GROMOLL

The purpose of this paper is to prove that if M is a compact simply **connected riemannian manifold whose sectional curvature** *K* **satisfies 1/4 <** $K \leq 1$, then every closed geodesic has length $\geq 2\pi$, or equivalently, the injectivity radius of the exponential map is $\geq \pi$.

This result, which for example, is necessary for the proof of Berger's rigidity theorem [1], [2], is well known in the even dimensional case (assuming only $0 \lt K \leq 1$, and in the odd dimensional case [6] provided one assumes $1/4 < K \le 1$. The case $1/4 \le K \le 1$ is treated in [7], but the argument **seems to be somewhat unclear at several points. Our proof is in spirit a modification of the ideas in [7],**

We will use some fairly general standard facts about lifting curves by the exponential map exp: $TM \rightarrow M$. Our basic references are [2] and [4]. For $m \in M$, \exp_m is the restriction of \exp to the tangent space M_m of M at m. All **curves under consideration will be continuous and parametrized on [0, 1]. Let** *P* **denote the set of all curves in** *M,* **and** *P* **the set of vertical curves** *c* **in** *TM* **emanating from the zero section, i.e.,** $c = \pi \circ \tilde{c}$ is constant, $\tilde{c}(0) = 0 \in M_{c(0)}$ where π : $TM \rightarrow M$ is the natural projection. Throughout this paper, we will use the topology of uniform convergence for P , \tilde{P} , and any subset.

Let Exp: $\tilde{P} \rightarrow P$ denote the continuous map induced by exp, Exp(\tilde{c}) = **exp** \circ \tilde{c} . The image of Exp is the set of *liftable* curves; any $\tilde{c} \in \tilde{P}$ is a *lift* of $c = \text{Exp}(\tilde{c})$. We call \tilde{c} a *regular lift* if \exp_m has maximal rank $n = \dim M$ at all points $\tilde{c}(t)$, $0 \le t \le 1$, $m = \pi \circ \tilde{c}(0)$, or equivalently, $\pi \times \exp$ has maximal rank 2n at all $\tilde{c}(t)$. Clearly, any $c \in P$ has a unique lift if it has a regular lift, **but in general need not have a regular lift or any lift at all. All regular lifts** form an open subset $\tilde{Q} \subset \tilde{P}$, and Exp imbeds \tilde{Q} homeomorphically onto an *open* subset $Q \subset P$. We are particularly interested in the set of closed curves $P_0 \subset P$. Lifts of closed curves, if they exist, need not be closed. P_0 certainly

Received April 26, 1979. This paper is essentially the content of a preprint [3] which appeared in 1972 while the first author held a Sloan fellowship. Both authors were partially supported by NSF Grant MCS 7509458A02.

contains the Exp-image of the closed curves \vec{P}_0 in \vec{P} . Finally, let $Q_0 = P_0 \cap$ \tilde{Q} denote the set of closed regular lifts, which is open in \tilde{P}_0 . It follows from the above that Exp maps \tilde{Q}_0 homeomorphically onto an open subset Q_0 of P_0 . We conclude this discussion with two simple

Remarks. (1) Any geodesic $c \in P$ always has a canonical (radial) lift \tilde{c} , regular or not, which is never closed.

(2) Suppose for some $m \in M$ and $r > 0$, \exp_m is nonsingular on the open ball $U_r(m) = \{v | ||v|| < r\} \subset M_m$. Let $c \in P$ be piecewise differentiable, $c(0)$ $=$ *m*, of length $L(c) < r$. Then $c \in Q$, so *c* has a unique regular lift $\tilde{c} =$ Exp⁻¹(c), and $\tilde{c}(t) \in U_r$, $0 \le t \le 1$. In essence, this is a consequence of the Gauss lemma.

Since we have to employ some arguments from Morse theory, we will also work with the standard approximations of P_0 by the finite dimensional subspaces $\Omega^{\le a}$ of all closed broken geodesics c of energy $E(c) \le a$, with break point parameters chosen as usual, sufficiently fine and fixed for an energy level $b \ge a$ large enough in a given situation. Let $\Omega^{< a}$ denote the open subset of all curves in $\Omega^{\le a}$ whose energy is strictly less than a. Observe that $\leq a$ need not be the closure of $\Omega \leq a$. The critical points of the energy function *E* on these free loop spaces are precisely smoothly closed geodesics in M.

We now prove a crucial fact about limits of closed lifts which is quite general. For any curve c and $0 \le s \le 1$, let c_s be the curve given by $c_s(t) = c(st)$, and let *c*⁻ denote the reversed curve, $c^-(t) = c(1-t)$. By c_s^- we will mean (c_s) ⁻.

Lemma 1 (Lifting lemma). Suppose, for some $r > 0$ and all $m \in M$, \exp_m is *nonsingular on the open ball* $U_r(m) \subset M_m$. Let $c \in P_0$ be in the closure of $Exp(\tilde{P}_0) \cap \Omega^{<4r^2}$. Then either $c \in Q_0$ (and thus is not a closed geodesic if *nonconstant*), or both $c_{1/2}$ and $c_{1/2}^-$ are geodesics of length r with conjugate end *points. Furthermore,* $C = Q_0 \cap \Omega^{<4r^2}$ *is a connected component of* $\Omega^{<4r^2}$.

Remarks. (3) $\Omega^{\leq 4r^2}$ is a manifold, so its connected components are pre cisely its pathwise connected components. But $\Omega^{\leq 4r^2}$ need not be a manifold (with boundary) if $4r^2$ is a critical value of the energy E. To avoid difficulties, we will mostly work with connected, rather than pathwise connected compo nents.

(4) If we replace the assumption $exp_m|U_r(m)$ nonsingular for all m by the assumption $\exp_{c(0)}|U_r(c(0))$ is nonsingular and leave the rest of the hypothesis unchanged, then the conclusions of Lemma 1 continue to hold for the loop space at $c(0)$. But this is not sufficient for our purposes.

Proof. We can assume that at least one of the two branches $c_{1/2}$, $c_{1/2}^-$ (say $c_{1/2}$) is not a geodesic, or if so, is free of conjugate points. Note that

¹/₄-PINCHED RIEMANNIAN MANIFOLDS 439

 $L(c_{1/2}) \le \sqrt{E(c_{1/2})} \le r$, with equality iff $c_{1/2}$ is a geodesic of length r. Therefore, by Remarks 1 and 2, $c_{1/2} \in Q$. But Q is open, so in fact $c_s \in Q$ for some $1/2 < s \le 1$. Then, again by Remark 2, $c_{1-s}^- \in Q$. By hypothesis, there exists a sequence $\tilde{c}_i \in \tilde{P}_0$ with $Exp(\tilde{c}_i) = c_i$ converging to *c*. Now $(\text{Exp}|\tilde{Q})^{-1}$ is well-defined and continuous, so it follows that $\text{Exp}^{-1}(c_{i,s}) = \tilde{c}_{i,s}$ $\phi \tilde{c}_s$, and $Exp^{-1}(c_{i,1-s}^-) = \tilde{c}_{i,1-s}^- \rightarrow \tilde{c}_{1-s}^-$.

Since $\tilde{c}_{i,s}(1) = \tilde{c}_{i,1-s}(1)$ for all i, we have $\tilde{c}_s(1) = \tilde{c}_{1-s}(1)$. Thus \tilde{c}_i converges to some $\tilde{c} \in \tilde{Q}_0$, and $Exp(\tilde{c}) = c \in Q_0$, $C = Q_0 \cap \Omega^{<4r^2}$ is open, and we have just shown it is also closed in $\Omega^{<4r^2}$. Therefore C is a union of connected components of $\Omega^{\lt d_r^2}$. If C_1 is any component of C, then C_1 contains a closed geodesic on which *E* takes its minimum value. Since C contains no nontrival closed geodesics, it follows that $C = C₁$ is connected.

We need the following result from Morse theory.

Lemma 2. Let *f* be a smooth function on the differentiable manifold X of *dimension k, and p a possibly degenerate critical point of index > 2 (or a regular point) with f(p)* = *a. Then there exists a neighborhood N of p such that* $N \cap X^{\leq a}$ is (pathwise) connected and dense in $N \cap X^{\leq a}$.

Proof. We may assume $X = \mathbb{R}^k$, $p = 0$, $f(0) = a = 0$. If 0 if a regular point, our claim is trivial. Otherwise, according to the generalized Morse Lemma in [5], we have, after a change of coordinates near the origin in $\mathbf{R}^k = \mathbf{R}^2 \times \mathbf{R}^{k-2},$

$$
f(x, y) = -||x||^2 + g(y),
$$

on some neighborhood U, where g is a smooth function in \mathbb{R}^{k-2} . Now choose $d, r > 0$ such that $(x, y) \in U$ and $g(y) < d^2$ on

$$
N = \{(x, y) \|\|x\|^2 \le d^2, \|y\|^2 \le r^2\}.
$$

Let $q_0 = (x_0, y_0), q_1 = (x_1, y_1) \in N \cap X^{\leq 0}$. It suffices to construct a continu ous path $\tau: [0, 1] \to N \cap X^{\leq 0}$ from q_0 to q_1 so that $\tau(t) \in N \cap X^{\leq 0}$ whenever $0 < t < 1$. For $x \in \mathbb{R}^2$, let $h(x) = dx / ||x||$ if $x \neq 0$, $h(0) = (d, 0)$. Notice that $f(h(x), y) < 0$ for all $(x, y) \in N$. The path τ can be chosen as the composition of the following four simple curves: First, move (x_0, y_0) linearly to $(h(x_0), y_0)$, then $(h(x_0), y_0)$ to $(h(x_1), y_0)$ through a rotation on the circle $||x|| = d$ keeping y_0 fixed (here we are using index ≥ 2), then $(h(x_1), y_0)$ linearly into $(h(x_1), y_1)$, and finally $(h(x_1), y_1)$ linearly to (x_1, y_1) .

Lemmas 1 and 2 have the following consequence.

Lemma 3. *Assume the hypothesis of Lemma* 1, *and furthermore that any smoothly closed geodesic* $c \in Q_0 \cap \Omega^{<4r^2}$ (necessarily of length 2r) has index \geq 2. Then $\overline{Q}_0 \cap \Omega^{\leq 4r^2}$ is the closure of $Q_0 \cap \Omega^{\leq 4r^2}$, and a connected component of

440 JEFF CHEEGER & DETLEF GROMOLL

Proof. Let $p \in \overline{Q}_0 \cap \Omega^{4r^2}$, and let N be a neighborhood of p in $X =$ for some $b > 4r^2 = a$ as in Lemma 2. We have $N \cap Q_0 \cap \Omega^{4r^2} \neq \emptyset$. But $N \cap \Omega^{<4r^2}$ is dense in $N \cap \Omega^{<4r^2}$ and Q_0 open, so that also $N \cap Q_0 \cap \Omega^{<4r^2}$ $\mathcal{P} \in \mathcal{D}$. Now $N \cap \Omega^{<4r^2}$ is connected, and by the lifting lemma, $Q \cap \Omega^{<4r^2}$ is a connected component of $\Omega^{<4r^2}$. Therefore $N \cap \Omega^{<4r^2} \subset Q_0$, and thus $N \cap$ $\leq 4r^2$ is contained in the closure of $Q_0 \cap \Omega \leq 4r^2$. This implies that $Q_0 \cap \Omega \leq 4r^2$ is the closure of the (connected) set $Q_0 \cap \Omega^{\leq 4r^2}$, and is relatively open (and closed) in $\Omega^{\leq 4r^2}$, which completes the argument.

The following fact is basically standard.

Lemma 4 *(Connectedness lemma). Let f be a smooth proper function on a finite dimensional manifold X. Suppose, for some regular value b, all critical points of f in* $X^{\le b} - X^{\le a}$ *have index > 2 (but are possibly degenerate). Let* C_1, \ldots, C_N be the connected components of $X^{\le b}$. Then $C_1 \cap X^{\le a}, \ldots, C_N \cap$ $X^{\le a}$ are the connected components of $X^{\le a}$. In particular, if $X^{\le b}$ is connected, *so is* X^*

Remark. (5) If in addition, all critical points in $f^{-1}(a)$ have index > 2, then $X^{\le b}$ (path) connected implies that $X^{\le a}$ is also path connected, since by Lemma 2, $X^{\le a}$ is locally path connected.

Proof. Choose a decreasing sequence $b > a_k > a$, $\lim_{k \to \infty} a_k = a$, of regu lar values of f. By standard Morse theory, we can approximate f on $X^{\leq b}$ by a nondegenerate Morse function f_k which agrees with f on $X^{\le a_k} \cup f^{-1}(b)$. If f_k is sufficiently close to f, all critical points of f_k in $X^{\leq b} - X^{\leq a_k}$ will have index ≥ 2 . Then it follows from the Morse inequalities that $H_i(X^{\leq b}, X^{\leq a_k})$ $= 0$ for $i = 0, 1$. Thus $C_1 \cap X^{\le a_k}, \dots, C_N \cap X^{\le a_k}$ are the path connected components of $X^{\le a_k}$. Since the intersection of a decreasing sequence of compact connected sets is connected, the lemma is proved.

Finally, we need

Lemma 5 *(Index lemma). Let M be odd dimensional with sectional curva* t ure $0 < K \leqslant 1$. Then any nonconstant smoothly closed geodesic $c \in \overline{\mathcal{Q}}_0 \cap \mathcal{Q}$ $\leq 4\pi^2$ (necessarily of length 2π) has¹ index ≥ 2 .

Proof. Recall that by standard index form comparison, $K \leq 1$ implies that for any geodesic in *M* of length *π,* at most the end points can be conjugate, and if this is the case, any Jacobi field vanishing at the end points looks like a Jacobi field on the Euclidean sphere of curvature 1, i.e., is a multiple of a parallel field. Therefore, in our situation, the hypothesis of Lemma 1 is satisfied for $r = \pi$, and the geodesic c has precisely two conjugate points for $t = 1/2$ and $t = 1$, at length π and 2π respectively.

¹ Some further information has been communicated to us by T. Sakai.

We can find broken Jacobi fields *J[±]* along c, not identically zero, where J_+ , J_- are Jacobi on [0, 1/2], [1/2, 1] respectively, and vanish otherwise. Now J_+ and J_- span a 2-dimensional space V on which the index form I is zero. If *V* does not intersect the null space *N* of / nontrivially, then the orthogonal projection of V on the negative eigenspace of I must be an injection which implies index (c) \geq 2. Otherwise, there is $0 \neq J \in V \cap N$. We are working in the free loop space, so *N* consists of periodic Jacobi fields. By the above comparison argument, we have $J(t) = \sin 2\pi t \cdot E(t)$, where *E* is a closed parallel field along c. Using the Synge argument, since *M* is odd dimensional and $K > 0$, M is orientable, and we conclude that there exists a second closed parallel field *F* normal to c. Then *E* and *F* span a 2-dimen sional space on which I is negative definite.

We can now derive our main result.

Theorem 6. *Let M be a simply connected compact riemannian manifold of odd dimension n. Suppose the sectional curvature satisfies* $1/4 \le K \le 1$. Then

(a) $\Omega^{\leq 4\pi^2}$ is the closure of $\Omega^{\leq 4\pi^2}$, and is connected;

(b) $\Omega^{\leq 4\pi^2}$ is contained in Q_0 , and is (pathwise) connected;

(c) *c* ∈ Ω^{≤4 pi ² implies either *c* ∈ Q_0 , *or both* $c_{1/2}$ and $c_{1/2}^-$ are geodesics of} *length π with conjugate end points;*

(d) *any nonconstant smoothly closed geodesic in M has length > 2π and* $index \geq 2$.

Proof. As described in the proof of Lemma 5, $K \leq 1$ implies that the hypothesis of Lemma 1 is satisfied for $r = \pi$. By the same comparison technique, since $1/4 \le K$, any geodesic in *M* of length $> 2\pi$ has index $n - 1 \ge 2$.

We argue first that for any $a > 4\pi^2$, $\Omega^{\le a}$ is connected. If not, let c_1, c_2 be curves in different connected components of $\Omega^{\le a}$. Since *M* is simply con nected, c_1 and c_2 are homotopic. After suitable refinement of the break point subdivision of the parameter interval [0, 1], we can therefore join c_1 and c_2 by a continuous path in $\Omega^{\leq b}$ for some $b \geq a$. So c_1 and c_2 belong to the same connected component of $\Omega^{\leq b}$ for some regular value $b \geq a$, contradicting Lemma 4.

Using Lemma 4 again, we conclude that *Ώ <4™** is connected. Now we apply Lemmas 5 and 3 to obtain that $Q_0 \cap \Omega^{\leq 4\pi^2} = \Omega^{\leq 4\pi^2}$ is the closure of $Q_0 \cap$ ^{\lt 4 π ², which completes the proof of (a). In particular, $Q_0 \cap \Omega^{\lt 4\pi^2}$ is dense,} and by Lemma 1, connected and closed in $\Omega^{<4\pi^2}$. Thus $Q_0 \cap \Omega^{<4\pi^2} = \Omega^{<4\pi^2}$ is connected, which proves (b). The last two statements (c) and (d) are an immediate consequence of (a), (b), and Lemmas 1 and 5.

We conclude our discussion with some remarks. The result in (d) that all

442 JEFF CHEEGER & DETLEF GROMOLL

nonconstant smoothly closed geodesics have index ≥ 2 is rather surprising. One has as immediate consequence (which is not the strongest conclusion that can be drawn) that for any $a \ge 0$, the loop spaces $\Omega^{\le a}$ (and $\Omega^{\le a}$ as well) are pathwise connected; cf. also Remark 5. The last statement holds also in even dimensions under the much weaker assumption $0 \lt K \leq 1$, since by the Synge Lemma, every nonconstant smoothly closed geodesic has index *>* 1. Clearly, Theorem 6 holds in that case except that in (d), the index is only ≥ 1 . Using the preceding remark, just Lemma 1 is needed for the proof. Finally, both in odd and even dimensions, Theorem 6(b) provides an obvious direct argument for the fact that the injectivity radius of the exponential map is $\geq \pi$.

Bibliography

- **[1] M. Berger,St/r** *quelques υarietes riemanniennes suffisament pincees,* **Bull. Soc. Math. France 88(1960)57-71.**
- **[2] J. Cheeger & D. Ebin,** *Comparison theorems in Riemannian geometry,* **North Holland, Amsterdam, 1975.**
- **[3] J. Cheeger & D. Gromoll,** *On the injectiυity radius of l/4-pinched riemannian manifolds.* **Preprint, 1972, State University of New York at Stony Brook.**
- **[4] D. Gromoll, W. Klingenberg, & W. Meyer,** *Riemannsche Geometrie m Grossen,* **Lecture Notes in Math. Vol. 55, Springer, Berlin, 1975.**
- **[5] D. Gromoll & W. Meyer,** *On differentiable functions with isolated critical points.* **Topology 8 (1969) 361-369,**
- **[6] W. Klingenberg,** *Uber Riemannsche Mannigfaltigkeiten mit positiver Krummung,* **Comment. Math. Helv. 35 (1961) 47-54.**
- **[7] ,** *Uber Riemannsche Mannigfaltigkeiten mit nach oben beschrάnkter Krummung,* **Ann. Mat. Pura Appl. 60 (1962) 49-59.**

STATE UNIVERSITY OF NEW YORK, STONY BROOK