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SUBCARTESIAN SPACES

N. ARONSZAJN & P. SZEPTYCKI

Introduction

The notion of subcartesian spaces is a far reaching generalization of that of
differentiable manifolds, and is designed explicitly to provide a framework
for a study of manifolds with singularities. It includes as special cases
piecewise manifolds, analytic and quasianalytic sets (in Rπ), and many others.
Our motivation for studying subcartesian spaces has originated in the theory
of differential problems on irregular domains and in the theory of Bessel
potentials.

The basic concepts and results were introduced by the first author in [1]
and independently, in a somewhat more restricted setting and with different
motivation, in [9], [10]. Subcartesian spaces were also studied in [5], [6] where
a theory of the de Rham cohomology was developed. Some elementary
aspects of the theory were also summarized in [2] with the stress on subcarte-
sian spaces of polyhedral type.

In the present paper we give a more detailed description of some basic
aspects of the theory. In §1 we introduce the definitions of types, structures
and subcartesian spaces as well as several examples. §2 deals to some extent
with the question of uniqueness of structures determined on a topological
space by an atlas and with metric aspects of subcartesian spaces. In §3 we
study the concept of local dimension and some related topics. In §4 tangent
spaces to a subcartesian space are introduced with a short discussion of
tangent bundles of spaces with differentiable structures. A more detailed
study of tangent bundles is left for another paper.

Due to the amount of time elapsed between the actual research and the
preparation of this paper in its final form, some parts of the paper might have
lost some of their novelty. Our attempts at establishing the priorities of some
of the results and techniques in this paper might have not been as extensive as
one would have desired.
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1. Notations and basic definitions
Throughout this paper (31, -<) will denote a net of topological spaces with

the order relation < satisfying K < M =* K c M with homeomoφhic inclu-
sion.

The case of our main interest is when 31 = {Rn}?° = R is the full sequence
of cartesian spaces with the order relation defined by the natural inclusion;
we will also consider the net {R* X R'} with partial ordering R * x R ' < Rm

X Rn if k < m, I < n. It may also be of interest to consider nets of Banach or
Hubert spaces. We stress that the members of 31 are considered with fixed
structures which are available on them, e.g., affine, metric, linear, etc., or as in
the case of {Rk X R7} the cartesian product structures.

Let X be a topological Hausdorff space. An tfί-atlas on X is a collection Φ
of pairs (Uφ9 φ) referred to as charts such that

(1.1) {£/φ}φ e φisanopencoverof * ,

φ is a homeomorphism of Uφ onto a subset φ(Uφ) of a

,- ~\ member M = Mφ E 31 determined by <p.

It should be stressed that φ(Uφ) need not be open in Mφ.

For simplicity we often write φ = { ί/φ, φ}.

In the above context we refer to 31 as the net of model spaces, and to Mφ as
the coordinate space of the chart φ.

A function in 31 is a continuous function / defined on an open set
tyj c Mj E 31 and the range in some Mf E 31. A homeomorphism in 31 is a
homeomorphism h between two open sets in an Mh E 31.

A type is a collection % of homeomorphisms in 31 satisfying the following
conditions:

,j 2) !M G 3C for every M E 31, IM denoting the identity map-
ping on M.

(1.4) If hl9 h2 E %, then wherever defined, hλ ° h2 E %;

(Local character of DC), if A E DC, and U c % is open, then
h\σ E; %, h\σ denoting the restriction of h to U. If A is a
homeomorphism in 31 and for every p E βί)h there is an
open U c% with/? E U and A|^ E DC, then A E DC.

(1.6) If A E DC then A"1 E DC.

The following definition is fundamental for our considerations.
An 31 atlas Φ on X defines on X a sub-tfl structure of type % (or

%-structure) if for any two charts φ, ψ E Φ and any p E Uψ Π Uφ there are a
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neighborhood U of p in Uφ Π Uφ and a homeomorphism A E 3C such that

Mh > Mψ9 Mψ, % D ψ(U) andh]^ = ψ o φ " 1 ^ ^ .

The above property will be referred to as local %-extendability {or local

extendability) of connecting homeomorphisms of the atlas.

The space X endowed with an atlas Φ defining onJ!ίa structure of type %

is called a sub-^ί space of type %.

It is immediate to verify that if Φ defines on X a sub-9l structure of type

%, then so does any refinement of Φ. Two atlasses defining on X structures

of type % are compatible {^-compatible) if their union defines on X a

structure of type %. Similarly as in the case of manifolds, for any atlas Φ

defining an % -structure on X, there is a maximal atlas on X containing Φ

and defining an % -structure on X.

If %v %2 are two types, then we say that % is stronger than %2 (or %2 is

weaker than %x) if 3Q c %2- Note that the intersection of any family of

types is again a type-this is the weakest type stronger than all types of the

family. If Φ defines o n l a structure of type %, then it also defines on X a

structure of any weaker type. The strongest type is the covering type, here

% = %J consists of all homeomorphisms of the form IM^σ where M E 91,

and U c M is open in M. The weakest type is the topological type, here %

consists of all homeomorphisms in 91, and the corresponding structures are

called topological or C°-structures.

If X is a subset of some M EL <3l, X c M, then X with its relative topology

can be considered as a sub-91 space of covering type with the atlas consisting

of a single chart {X, I\x) where I\x is the inclusion mapping. Note that

different choices of M give rise to compatible atlasses. As a consequence of

the preceding remarks X can be viewed as a sub-91 space of any type.

We consider next some more specific classes of types and examples.

A type % is rigid if for any hl9 h2 with domains ^Dj, ̂ - o p e n sets in the

same M E 91, and for any open U c 6D1 Π Φ2 ^ e condition hι\u = h2\u

implies Ai|^n<^ = Λ 2 U n ό D Corresponding structures are referred to as rigid

structures. An instance of rigid type occurs when 91 is a net of topological

vector spaces, and % consists of linear or affine isomorphisms.

A type % is totally rigid if for every h EL% with open domain D in M

there is a unique A E % with domain M such that A|φ = A. Thus the type in

the example above is actually not only rigid, but also totally rigid. Corre-

sponding structures are called totally rigid structures. Rigidity conveys the

concept of unique continuation of homeomorphisms in %, total rigidity-that

of unique continuation to the whole space containing the domain.

More examples will be given below.
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If for every M G 91 the topology on Λf is given by a uniformity, and the

inclusions are locally uniformly continuous, one can consider the type 3Cumf*

= {A G ^C09; A, A"1 are locally uniformly continuous}. A stronger

Lipschitzian type can be introduced when the members of 91 are metric

spaces and the inclusions are locally Lipschitzian mappings. In this case

% = {A G 5C°P; A, A"1 are locally Lipschitzian}. Lipschitzian structures are

also referred to as C0>1-structures.

We list next some examples of nets 91 which are or may be of interest in

various applications.

(1) 91 = {RΛ}~_0. Here, as already mentioned, we consider the spaces RΛ

as subspaces of R00 of all sequences of real numbers, with natural inclusion

x = (xj, . . . , xn) G Rπ -> (jcp . . . , xn, 0, 0 . . . ) G R00. Functions and ho-

meomorphisms in {Rn} are referred to as R-functions, R-homeomorphisms

and sub-{Rπ} structures are shortened to sub-R-structures or subcartesian

structures.

In the case when 91 consists of finite dimensional manifolds, a topological

sub-91-structure on X gives rise to a sub-R structure on X via coordinate

charts of manifolds. Such structures are always uniform; in particular, the

notion of uniform structure is superfluous in this instance.

91 - {R* X R'}-in this case we choose not to identify R* X Rι with Rk+ι

and, as mentioned at the beginning, 91 is only partially ordered. The types of

interest are coupled types; for instance, 3C|R*XR/ may consist of homeomor-

phisms of the form (A, H) : (JC, ξ) G <φ X R'-> (A(X), H(x)ξ) where Φ is an

open set in Rk, A: D̂ ->R* is a homeomorphism, and H(x) G GL(Rί) for

every x G Θ. Additional conditions may be imposed on A and the mapping

x -» H(JC).

We list next some examples of interesting sub-R-structures.

Ck and CkΛ structures. These arise from types consisting of homeomor-

phisms which together with their inverses are in Ck or, respectively, C^-the

class of functions with (locally) Lipschitzian derivatives up to order k. A type

stronger than C0>1-type is thcpiecewise linear type.

C00 structures. % consists of all C°°-homeomorρhisms with C°° inverses.

Spaces with such structures were introduced in [3] under the name of

differentiate spaces.

Real analytic type consists of all homeomorphisms analytic together with

their inverses. This type is rigid.

A stronger (real entire) type is obtained if we consider homeomorphisms

extendable to analytic homeomorphisms of the whole space (in which the

original domain is open). This type is totally rigid.
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There is a variety of types stronger than those listed above, of which we

mention the a/fine, linear, isometric and translation types, each of them

consisting of all the homeomorphisms described by the corresponding adjec-

tive and their restrictions to open subsets of their domains.

It is appropriate to mention at this state that an n-dimensional manifold

can be regarded as a subcartesian space in more than one natural way. If Φ is

an atlas defining o n l a structure of an w-dimensional manifold, then we can

consider the smallest type containing all the connecting homeomorphisms of

Φ-this gives rise to the strongest structure defined by the atlas.

On the other hand, any embedding of X in Rm, m > n, defines o n l a

covering structure and a fortiori any weaker structure.

(2) 91 = { C 1 } ^ ! . This sequence gives rise to complex structures or sub-C

structures. Again, the spaces Cn are considered as naturally included in C00.

Complex structures are of interest (i.e., are not superceded by sub-R struc-

tures) only for sufficiently strong types, e.g., holomorphic type and various

stronger types, e.g., algebraic type, entire type, complex affine type, complex

linear type, etc. All these types are, of course, rigid; the last three are totally

rigid.

(3) Additional examples of types are obtained if for 91 we take the

sequence of spheres Sn, n = 1, 2,. . . or projective spaces P1, n = 1, 2, . . . .

In the first case the type of interest consists of all the isometries, in the second

the projectivities (with all restrictions to open sets). The corresponding

structures are spherical and projective structures. Of course, for sufficiently

weak types, the structures are superceded by sub-R structures.

(4) To end this preliminary list of examples we mention the notions of

subhilbertian and subbanachian structures arising when the net 91 of model

spaces consists of Banach or Hubert spaces.

We discuss next types arising from classes of functions. If β is a class of

functions in 91, then we define

(1.7) %e = (A; A is a homeomorphism in 91, A, A"1 G β } .

%e is a type provided β satisfies the following conditions:

(1.8) For every M G 91, IM G β.

(1.9) If fl9 f2 G 6, then/j <> f2 wherever defined, is also in 6.

(1.10) If/ G 6, then for every open U c %J\u G β.

Also if / is a function in 91, and for every/? G tyj there is an open U c D̂y

such that/|^ G β, then/ G β.

It is natural to refer to structures of type %e as β-structures; this is

compatible with the terminology used in some of the examples above. For
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M, N G 61, β a class of functions in 61, we will use the notation β(Λf, N)

for the functions in β with (open) domains in M and values in N.

If A" is a sub-6l space with a β-structure given by an atlas Φ and M G 61,

then β(JSΓ, Λf) is the class of all functions f:X^>M such that

(1.11) The domain ^ of / is open in X,

For every x ^ % there are a neighborhood U of Λ: in ̂ Dy,

(1.12) a chart <p G Φ and a function/ G β, such that U G Uφ

a n d / o φ " 1 | φ ( t / ) = / | φ ( ( / ) .

(1.12) is a /oca/ extendability condition.

We now turn to some general remarks concerning sub-61 spaces.

If a sub-6l atlas on X satisfies the local extendability condition, then it

defines on X a sub-61 structure of certain type. Since the connecting homeo-

morphisms may be extended in many different ways, the same atlas may

define on X structures which are not comparable. Note, however, that an

atlas together with a fixed set of local extensions of connecting homeomor-

phisms defines a structure of a strongest possible type (compatible with the

atlas and the set of extensions).

To illustrate the preceding remarks we consider the following example.

Let X = {(x,y) G R2; >> = \x\}; on X we consider the atlas consisting of

the chart φ: (*, |JC|) G l - > x G R1 and the inclusion mapping ψ: Λ ^ R 2 .

The connecting homeomorphism φ ° ψ"1: (x, y) G X -> x can be extended to

h(x,y) = (x,y - \x\) which is piecewise linear. Thus Φ together with this

extension defines a piecewise linear structure. On the other hand φ <> ψ"1 also

has an extension of the form hλ(x,y) = (x,g(x,y)) where g G C°°(R|R2\

(0, 0)) and dg/dy > 0 for (x,y) Φ (0, 0). With this extension the atlas Φ

defines on X a structure of type % where % consists of homeomorphisms

which together with their inverses are in C 0 0 except possibly at 0. These two

structures are not comparable; however, one can still consider the smallest

type containing both h and hx and the corresponding structure on X.

Another possibility is the existence of several atlasses on X defining on X

structures of the same type %, which, however, are not % compatible. This,

of course, may occur already in the case of manifolds.

Finally, an atlas on X may not define any sub-61 structure on X. Thus, the

following questions are of interest:

1. To describe intrinsically all possible structures defined on X by an atlas.

2. To describe all possible structures of a given type % on a space X.

3. To give conditions on an atlas in order that it define a structure of some

type.
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If the spaces M e <3l are metrizable, then any sub-9l space is locally
metrizable-the description asked for in question 1 should involve only
topological and metric properties of X.

The questions 1, 2, 3 will be discussed to some extent in §2.
In some cases the local extendability of homeomorphisms is a consequence

of local extendability of functions. The following proposition was proved in
[4] under somewhat different assumptions.

The proof given below is essentially the same with some obvious modifica-
tions.

Proposition 1.1. Let Gx, G2 be topological groups, and h be a homeomor-
phism A: Aι c Gx^> G2 such that h and h~ι can be extended to continuous
functions on open sets Wx D Ax and W2 D h(Ax). Identify Gλ and G2 with the
subsets Gx X {e2}, {eλ} X G2 of the product Gx X G2, e( denoting the unit in
Gf, i = 1, 2. Then h can be extended to a homeomorphism between open subsets
ofGx X G2.

Proof, Let/f. Wx -» G2, f2: W2-* Gx be continuous extensions of A, A"1;
definehx: WXX G2^>WXX G2 and h2: Gx X W2-+GXX W2by

(1.10) hx(gx,g2) - (g1,g2/1(g1)),Λ2(g1,g2) = {g\xf2{g2\g^

By direct inspection we verify that hx,h2 are homeomorphisms of Wx X G2

and Gx X W2 onto themselves. It follows that h = h2 ° hx is a homeomor-
phism of hx\Wx X W2) onto A 2 ( ^ X W^. If gx E Av then hx(gl9 ej =
(gi^ΛUi)) and h(gl9 ej = (gx

ιf2(Ugx)), Mgx)) - (exjx(gx)) = (ev A(gl)),
and h is an extension of A. q.e.d.

The following corollaries take advantage of the special form of the exten-
sion A constructed in the preceding proof.

Corollary 1.2. If Gx and G2 are metric groups, and functions fx, f2 in
Proposition 1.1 are Lipschitzian {or locally Lipschitzian), then so are the
homeomorphism A and its inverse A"1.

Corollary 13. // Gx = R"1, G2 = R*2 (with additive group structures), and
fx,f2 are of class Ck, CkΛ or C°°, then so are A and A"1.

2. Uniqueness of topological and Lipschitzian structures.

Metric aspects of sub-6R spaces

We consider here certain types for which it is possible, at least to some
extent, to answer questions raised at the end of the last section. Suppose that
the directed family <3l consists of metric groups, which are absolute retracts
and have the property that for any M, N G 91 there is a K e 91 such that K
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is isometrically isomorphic to M X N. We then have

Theorem 2.1. If X is locally compact and Φ is an Ratios on X, then Φ

defines on X a C°-structure. In particular, any two tfl-atlasses on X define

compatible C()-structures.

Theorem 2.2. If $1 is a directed family of Hilbert spaces {e.g., ft = {RΛ})

and X is a metric space, then every Lipschitzian atlas defines on X a C°Λ

structure, and any two such at lasses are C°Λ compatible.

Proof. If p G X, ψ: Uφ -> M, ψ: Uφ^>N,p^Uφn l/ψ, then there is a

compact neighborhood of p, V c Uφ Π l/ψ. φ(K) c M, ψ(K) c iV are both

compact and by Tietze extension theorem both φ ° ψ"1: ψ(K)—»M and

ψ © φ"1: φ(V) -> TV can be extended to continuous functions defined on open

subsets of M and iV. Apply now Proposition 1.1 to obtain an extension of

φ o ψ " 1 ! ^ ^ to a homeomorphism i n M X iV which can be identified with an

element of ft.

The same proof remains valid in the case of Theorem 2.2 except for the

following changes. V is chosen so that φ, ψ| v are Lipschitzian homeomor-

phisms; instead of Tietze's we use Kirszbruan's theorem (see [3], [8]).

We next consider some intrinsic conditions on the space X for existence on

X of an R-atlas and of a subcartesian structure. We begin with a definition: A

metric field on a set X is a collection (Uφ, dφ)φfΞφ, where Φ is an indicial set,

Uψ is open in X, U φ € Ξ φ Uφ = X, dφ is a metric on Uφ, and

for any φ , ψ e Φ with Uφ Π t/ψ Φ 0 the identity I: Uφ Π t/ψ

(2.1) -^ £/ π ί/ψ w Λ homeomorphism from the metric space

(Uφ n t/ψ, t/φ) wto (t/φ n ι/ψ, ^ ) .

For simplicity, we will often write {dφ}φ^Φ or simply {dφ} instead of

The case of interest is when X is a Hausdorff space, and the rfφ-topology on

Uψ coincides with the X-topology. Then (2.1) is satisfied, X is locally metriz-

able and the metric field {dφ} is said to be compatible with the topology of X.

Unless otherwise stated, we assume that the topology on X is defined by {dφ}.

If 91 is a directed set of metric spaces and Φ is an 91-atlas on X, then for

(φ, Uφ) G Φ, φ: Uφ -• M G ft, we set dφ(p, q) = dM(φ(p), φ(q)), dM-thc

metric of M,p,q G Uφ. In this way we get the metric field {dφ} induced by

the atlas Φ.

We will show that certain structures given on X by an atlas Φ can be

characterized by the properties of the induced metric field.

Let Φ be an indicial set, and {dφ} SL metric field on X. We say that the field
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is uniform if

for φ , ψ G Φ and every p E Uφ Π ί/ψ there is a neighbor-

hood V of p in (t/φ n t/ψ, rfφ) (or equivalently, (Uφ n

(2 2) ^J" Ό)' suc^ ***** ^ c ^φ Π ί/ψ and the identity mapping

F c (ί/φ, dφ) -» K C (t/ψ, </ψ) is uniformly continuous. If

"uniform" in the last condition is replaced by "Lipschitzian",

we say that the metric field {dφ} is Lipschitzian.

Proposition 2.1. If 91 is a directed family of metric spaces, and Φ an atlas
on X defining on X a uniform topological structure, then the metric field {dφ}
induced by Φ on X is uniform. If 91 satisfies in addition the hypotheses in
Theorem 2.1, members of 91 are locally compact, and an Ratios Φ induces on
X a uniform metric field, then Φ defines on X a topological ^-structure.

Proof. If Uφ π UφB p, then by the local extendability condition there is
a both ways uniformly continuous homeomorphism h of a neighborhood V of
φ(p) in some M E 91 onto a neighborhood F' opf ψ(p) in M such that
h\<P(uψ)nv S 5 Ψ O ( P " 1 U ) n κ T ^ s t h e identity from (φ~\V), dφ) onto
(ψ'^F), ί^) can be written in the form ψ"1 ° h ° φ which is uniformly
continuous, <p, ψ being isometries.

On the other hand, if p e Uφ Π £/ψ, and Vp c ί/φ n t/ψ is a neighborhood
of /> such that i d ^ , dφ) -^ (Vφ, d+) and idί^, rfψ) -+(Vp, dφ) are uniformly
continuous, then the connecting homeomorphisms φ <> ψ"1: φ(Vp) -» φ(Vp) c
Mφ E 91, ψ° Φ" 1 : φ(Vp)^> Ψ(^>) C Mψ E 91 are uniformly continuous
and can be extended to the closures ψ( Vp), <p( ^,) which can be assumed
compact if Mφ, M^ are locally compact. Existence of an extension of φ ° ψ"1

to a homeomorphism of a neighborhood of ψ(/>) in some Λf E 91, Λf D
Mφ, Mψ follows now as in the proof of Theorem 2.1.

An analogous proposition can be stated concerning Lipschitzian metric
fields. Remark next that if d and {dφ} are respectively a metric and a metric
field on X, then it is meaningful to say that d and {dφ} are equivalent,
uniformly equivalent or Lipschitz equivalent.

Our next objective is to show the following theorem.
Theorem 23. Assume X is a paracompact (Hausdorff) space, and {dφ} a

metric field on X. Then there is a metric d on X equivalent to {dφ}. Moreover, if
{dφ} is uniform or Lipschitzian, then d is uniformly or Lipschitz equivalent to

w
Proof. By paracompactness we can replace {dφ} by a refinement, denoted

again by {dφ}, with the following properties, (a) The cover {U^} is locally
finite, (b) for every φ E Φ there is an open set Vφ such that Vφ c Uφ and
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U e φ Vφ = X. Clearly this new field is equivalent (uniformly equivalent,

Lipschitz equivalent) to the original one.

For/? 6 l w e introduce the following sets of indices ψ:

(2.3) Φp

Clearly Φp is finite and Φp c Φ .̂ Let further

(2.4) up-(nuψ)n(nvλ\\J vψ.
\φ(=Φp I VφeΦ; / φ&Φp

Up is an open neighborhood of p. On Up define two metrics

(2.5)

4(a, b) = ( 2 dψ(a9 bf) , a9 b G Up.
\φeΦ; /

We have dp'(a, b) < ^,(α, 6), also the metric fields {Up9 dp}pfΞX,

{Up, dp}p€ίX are both equivalent (uniformly equivalent, Lipschitz equivalent)

to the original field. For α, b G X let

ί n

d(a, b) = infj 2
(2.6) U=o

^ = «o? ̂ Λ+i = b, ai9 α / + 1 G UPi, i = 1, . . . , n\,

with the usual convention that d(a, b) = oo if there are no finite sequences
{aj}> {Pi} with indicated properties.

We will show that d is a metric on X with the desired properties. The
symmetry and the triangle inequality are obvious. Also if (α, b) G Up for
some/? G X then

(2.60 </(*, 6) < dp(a, b),

showing that d-topology on X is not stronger than {dφ}-topology.

We next show that for every a EL X there is an ea > 0 such that

(2.7) d(a, b)<εa^b£ Ua, d^(a9 b) < d(a, b)9

(2.8) d(a, b) < ea9 d(b, c ) < « < £ ^ J , c G ί / β , d£b9 c) < δ.

To this effect we note the following properties of the neighborhoods Up:

(2.9) ? G ί / ^ Φ ; c Φ ; , Φ ? c Φ f

In fact, q <Ξ Up =>q <Ξ Vφ for all φ ^ Φp9 i.e., Φp c Φ;. Also if q G ££ then
ί ί F ? for all ψ ^ Φ ,̂ i.e., Φp c Φp. As a consequence we note

(2.10) s^upn uq=>ΦscΦpn Φq.
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We choose now εa > 0 so that

(2.Π) Π [q e Uψ; dφ(a, q) < 2εa) c Um.
φ<ΞΦ'a

To prove (2.7) let 0 < δ < εa and </(α, 6) < δ. By (2.5) we can find a0 =

*,*!,•••, an+i = £>/>o> * * >Pn

 s u c h t h at ΣJ dPk(ak, ak+ι) < δ.

Since a G C^ we get by (2.9) Φa c Φ^ and dψ(a, ax) < da(a9 ax) <

dpo(
a> aι) < δ for all φ 6 Φ f l (and consequently for all φ E Φ )̂; consequently

ax G Ua (by (2.11)) and d'a{a,ax) < da(a, ax) < δ. Suppose that we have

already shown that al9 , ak G I/β, rfα(α, α,.) < δ, 1 < i < k < n. Using

(2.9), (2.10), at G t/A n Ua impUes Φ c Φ c Φ,, C Φα Π Φ A , I -

0, , k, in particular Φ^ c ΦPo Π nΦ f t . Hence for φ G Φ^ we have

ψ G ΦA, έ^(α^, ΛΛ+1) < 4ik(Λ*» %+i) < * a n c ^' ^y t n e induction hypothesis

and the triangle inequality,

dψ(<*> <*k+i) < 4φ("> ak) + ^ ( ^ Λ*+I) < %(a, ak) + δ < 2δ < 2εα

showing that ak+x G t/α. Also

1/2

l/2 k

< ΣΣ(
since Φ^ c ΦΛ, / = 0, , k. This proves (2.7).

To verify (2.8) choose po, ',pn,b = α0, al9 . . . , an = c, so that </(6, c)

< Σ7-i dPi(a^ ai+x) < δ. d(a, b) < εa implies by (2.7) that b G Ua and rfα'(α, 6)

< εa; in particular (by (2.9)), Φ^ c ΦJ,. Since 6, ax G C ô, we have Φb C Φpo;

in particular, Φ'a c Φ/,o which implies d'a{b, ax) < ^o(fe, βj) < δ. Thus for all

ψ G Φ;, ^,(α, αθ < έ̂ °(α, 6) + φ̂(Z>, ax) < εa + δ < 2εα implying that fll G

Ua. Suppose we have shown that ax, , ak G Ua and d'a(b9 ak) < δ. Then

Φ c Φ n " n Φ ; and since at G £^, Φ^ c ΦPi and Φ; C ΦPo

Π n Φ A . Now, since ak+x G ί^ and Φ^ c ΦA, we can write for every

Φ e Φ;,

ak+x)

2εα
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implying ak+ι G Ua and

/
Σ

\φGΦ

which proves (2.8).

(2.7) shows that d is a metric. (2.7), (2.6') imply that J and {dψ} define

equivalent topologies, i.e., d and {ί/φ} are equivalent. (2.6') and (2.8) imply

that for any a G X the identity on Wa = {p; d(a,p) < εa} is Lipschitz

continuous from (Wa9 d) to (Wa, </α') and from (Wa9 da) to (JΓα, rf). Since, as

already remarked, da, d
f

a are uniformly or Lipschitz equivalent, if the original

field {dφ} is uniform or Lipschitzian, d is uniform of Lipschitz equivalent to

{dφ}. q.e.d.

An obvious corollary to Theorem 2.3 is that a paracompact locally metriz-

able space is metrizable. This is, of course, well known and the emphasis of

the theorem lies in its second part.

If Φ is an atlas defining o n l a structure of a differentiable manifold, then

the metric d of Theorem 2.1 constructed from the corresponding metric field

is Lipschitz equivalent to the Riemannian metric on X induced by Φ.

We next consider the problem of completing spaces with sub-9l structures.

Suppose that 91 is a directed family of complete metric spaces, and A' is a

paracompact space with a uniform topological sub-91 structure defined by a

locally finite atlas Φ, and denote by {dφ} the metric field induced on X by Φ.

Let d be a metric on X uniformly equivalent to {dφ}, as given by Theorem

2.3. For every a G X there is a neighborhood Ga of a in X such that

(2.12 i) Ga c Uφ for all φ G Φa - {φ; a G Uψ),

φ , ψ e Φ α = » φ ° Ψ~Ίψ<σβ)
 c a n ^ e extended to a uniformly

(2.12 11) continuous homeomorphism h of an open neighborhood

of ψ(Gβ) in some M G 91.

(2.12 in) F o r e v e r y φ E *« t h e i d e n t i t y (G*> rf) "* (Gα> rf

φ) i s u n i "
formly bicontinuous.

Let X be the abstract completion of X with metric d. It is then clear that

for every φ G Φα, φ: ί/φ-> Mφ G 91, the homeomorphism φ|Gα can be

extended to a homeomorphism φ of Gα (closure in X) onto 9(Ga). Also, for

Φ , ψ £ Φα, Λ in (2.12 ii) is an extension to a neighborhood of ψ(Gα) of



SUBCARTESIAN SPACES 405

φ ° ψ Ίψ((ζ) Let Xφ = U
aζ=χ

t Then Xφ is open and dense in X, and the

homeomorphisms φ, φ £ Φ, form an SI-atlas on Xφ defining a uniform
topological structure. We refer to Xφ as the local completion of X determined
by the atlas Φ.

Since, in the case when the members of SI are locally compact, it can be
assumed that, in addtion to (2.12), ψ(Ga) is compact for all φ E Φa9 it follows
that Xφ is locally compact. We refer to Xφ as local compactification of X
induced by the atlas Φ.

Uniformly equivalent atlasses (or in locally compact case, equivalent
atlasses) do not lead to the same local completion or local compactification.
However, it is easy to see that they lead to equivalent local completions or
local compactifications in the following sense.

Two local completions (Xφ, d), (Xφ,, d') of X are equivalent if there are
open dense subsets Y c Xφ, Yf C Xφ> such that X c Y, X C Y\ and the
identity on X can be extended to a locally uniform homeomorphism of ( Y, d)
onto (Y\ df). This together with Theorem 2.1 leads to the following proposi-
tion:

Proposition 2.2. If SI satisfies the hypotheses of Theorem 2.1 and consists of
locally compact spaces, then two tfl-atlasses on X define the same topological
structure on X if and only if they induce equivalent local compactifications ofX,

In the case when SI = {Rrt} (or SI is a family of separable Hubert spaces)
it is possible to characterize at least some structures on a space X by means of
metric fields.

A metric ί/ona set E is said to be Euclidean if for some n there is an
isometry of (E, d) onto a subset of Rπ. We recall the following result of K.
Menger [7].

Let d be a metric on a set £, and define, for p0, ,pk E E9 the
(k + 2) X (k + 2) determinant:

0 1 1
1

(2.13) >Pk)

1

2 3 . d is a Euclidean metric on E if and only if
,pk) = (-1)* or 0. // n = max{fc; D(p0, ...,pk)* Ofor some

E)>then (£» d^ is i s o m e t r i c t0 a subset ofRn.
,pn e Rm the determinant D(p0, ,pk) is equal to (-\)kk\2k

2

Proposition
sign D(p0, -

P& " # >Pk G

For/?0,
X (volume of the simplex (/>0, ,pk))2.
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If Φ is a sub-R atlas on X, then {dφ}-the metric field induced by Φ-is
Euclidean, and the metric on X defined by (2.6) is equivalent to a Euclidean
metric field. On the other hand, if X is a metric space with a metric d
equivalent to a Euclidean metric field, then there is on X an R-atlas. This
leads to the following proposition.

Proposition 2.4. In order that a metric space X admit an R-atlas, it is
necessary and sufficient that the metric be equivalent to a Euclidean metric field.

Given a Euclidean metric field on X, {dφ} say, it is possible to construct an
R-atlas on X either by use of Proposition 2.3 or by explicit formulas as
follows.

We may assume, choosing a refinement of {dφ} if necessary, that {dφ} has
the following property: for every <p, Uφ is either infinite or consists of a single
point. If Uφ = {/?}, we set φ(p) = 0 = R°. If Uφ is infinite, then by hy-
pothesis about dφ being Euclidean there is an isometry iφ: Uφ ->R\ Also, we
can find n, p0, , pn E Uφ, such that D(p0, , pn) ψ 0 and
D(%> - ,qk) = 0 for k > n and q0, , qk E Uφ. We can assume that
n = nφ. We now define ψ(p0) = 0 E Rπ, and for every/? E Uφ

( 2 . 1 4 ) ( ψ ( p ) ) k = \ ( d ψ ( p , p o f + d φ ( p k , p 0 ) 2 - d v { p , P k Ϋ ) , k = \ , - - , n .

If we let iφ(pk) — iφ(p0) = vk, then the vectors vk E RΛ are linearly indepen-
dent and (φ(p))\k = (iφ(p) - iφ(p0), vk}n, showing that φ: £/φ-»RΛ is a
homeomorphism differing from iφ by an affine isomorphism φ(p) = Aiφ(p) —
Aiφ(p0), where A is determined by the condition Atek = vk, {ek} being the
standard basis in RΛ.

A sub-R atlas on X may or may not define o n l a sub-R structure. We
have the following.

Proposition 2.5. In order that a sub-R atlas Φ define on X a sub-R structure
it is necessary and sufficient that the metric field induced by the atlas be
uniform.

Proof. The necessity of the condition was already noted. The sufficiency
follows from the observation that the uniformity of the metric field implies
that for any φ , ψ 6 Φ and/? E Uφ n Uφ there is a neighborhood U of p such
that φ ° ψ"1 can be extended to a homeomorphism of ψ(ί/) ( c R^) onto
φ( U)( c R^), and without loss of generality we can assume that ψ( ί/), φ( U)
are compact, and then we can apply Proposition 1.1.

Remark 1. The statement of Proposition 2.5 remains valid for Lipschitzian
structures if the condition of uniformity of the metric field is replaced by its
Lipschitz character.
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Remark 2. A metric space admits a subcartesian structure if and only if
the metric is uniformly equivalent to a Euclidean metric field. The structure is
Lipschitzian if and only if the metric is Lipschitz equivalent to a Euclidean
metric field.

Remark 3. (2.14) may define on X a structure stronger than the topologi-
cal one. Since connecting homeomorphisms can be considered as mapping
between closed subsets of Rn (for some ri), the results of the kind of Whitney's
theorem together with Proposition 1.1 can be used to check if the structure is
e.g. differentiable.

3. Tangential charts, local dimension, homogeneous

and regular parts of a subcartesian space

Let X be a subcartesian space with structure of type % given by a maximal
atlas Φ. The local dimension of X at/? G X is defined by

(3.1) dim, X = min{nψ; φ G Φ,p G Uψ).

Note that dim, X depends on the type %. If X = {(JC1? Λ:^; X2 = IJCJI} C R2

with the covering structure^ defined by inclusion, then dim, X = 2 for every
p G X. In any differentiable structure with % containing linear mappings
dim, X = 1 for p G X, p φ 0, diπiQ X = 2, but in Lipschitzian structure
dim, X = 1 for every p G X.

Any chart φ for which the minimum in (3.1) is attained is called a
tangential chart at p. It is obvious that such chart always exists, the atlas Φ
being maximal.

Remark. The notion of a tangential chart can be defined in a more
general setting: a chart φ: Uψ -> M, p G £/φ, in a maximal 61-atlas Φ is
tangential at/? if for any other chart ψ G Φ at/7, ψ: £/ψ -» N9 we have M < N.
In such settings, however, there is no reason for tangential charts to exist in
general.

Proposition 3.1. The function p -» dim, X is upper semicontinuous.
Proof. If φ is a tangential chart at φ: t/φ->RΛ, then <XxmqX < n =

dim, X for every q G £/φ. q.e.d.
A point p G l i s a point of homogeneity of A" if there is a neighborhood U

oi p in X such that dim^ X = dim, A" for all q G I/. The set of all points of
homogeneity of X is the homogeneous part of Λ^ its complement is the
nonhomogeneous part of X.

Proposition 3.2. ΓΛe homogeneous part of X is an open dense subset of X.
Proof. It is obvious that the homogeneous part is open. The second

assertion follows easily from Proposition 3.1. q.e.d.
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The homogeneous part of X is the union of disjoint open subsets of X on
which the local dimension is constant; these are referred to as homogeneous
components of X.

The above concepts depend, of course, on the choice of the particular
structure on X. For the sake of illustration we consider some examples.

Example 1. Let I c R 3 consist of the boundary of the cube with vertices
(εi> ε2> ε3)> εi = 0, 1, and of its four diagonals. The inclusion I c R 3 defines
o n J a covering structure and a fortiori any subcartesian structure.

With the covering structure dim^ X = 2 for every p in the interior of the
face lying in the plane x3 = 0. The homogeneous part of X is the union of the
above set and the set of all points with the third coordinate x3 > 0. The
nonhomogeneous part is the boundary of the face lying in x3 = 0.

With the topological structure dim^ X = 1 if p is in the interior of any of
the segments joining (\, \, \) to a vertex, dim^ X = 3 if p is a vertex and
diπip X = 2 otherwise. The nonhomogeneous part consists of the point
(^, \, \) and the vertices.

The same is true in C^-structure.

With a C ̂ structure the nonhomogeneous part consists of (~9 \, ^), the
vertices and edges all of local dimension 3, the local dimension at points of
homogeneity is as in the topological structure.

Example 2. We consider an example of a simple arc in R°° = U RΛ with
unbounded local dimension. Let/(7) be a periodic piecewise linear function of
the real variable of period 1 with/(0) = /(I) = 0,/(l/3) = /(2/3) = 1/3. For
n > 1 and k = sn + r, r = 1, . . . , n, s = 0, 1,. . . , we define Ak c RΛ + 1 as
Λk = {/, *(/); / Ξ [2-k~\ 2"*]; x = (xf(/), , **(/))} where *,*(/) -
2~<k+l)f(2k+ιt) if / = r, xk(t) = 0, / Φ r. Let A = j((J Ak) u {0}. Then A is a
Lipschitzian simple arc in Rn + 1. With the covering structure din^ A = n + 1,
we claim that the same is true for any differentiable structure. To see this we
use the following lemma, which will be proved later (Proposition 4.3).

Lemma. Let A c RΛ have Ck-structure induced by inclusion and p E A,
Then dirn^ A = n if and only if for every Ck-function defined in a neighborhood
Uofp we havef\UnA = 0 =Φ Df(p) = 0.

The condition of the lemma is immediately verified in the present case.

Patching in U Rπ the arcs A as constructed above for n —» oo one easily
gets a simple Lipschitzian graph of unbounded local dimension. The C0>1-di-
mension of the arc is 1 at every point.

Example 3. This example is meant to illustrate the point that in general
we cannot expect the connecting homeomorphism between two charts φ, ψ of
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an atlas giving a subcartesian structure on X to be extendable to a homeo-
morphism with open domain in RΛ with n = max(πφ, n^).

Let A c R3 be the set consisting of (0, 0, 0) and circles An with centers at
points (2~Λ, 0, 0) and radii 2~n~x\ for n even An is taken in the plane x3 = 0
and for n odd in x2 = 0. Thus An

9s are pairwise linked. On A we consider the
atlas consisting of the inclusion A c R3 and the chart φ which is defined by
Ψ\AΛ

 = identity for even n and, for odd n, maps isometrically An onto the
circle about (-2~Λ, 0, 0) radius 2~n~ι in the plane x3 = 0 (e.g., reflection in the
Λ:3-axis and rotation by τr/2 about xraxis). Note that φ is Lipschitzian with a
constant < 9, and φ"1 is Lipschitzian with constant < 1. By Proposition 1.1,
φ can be extended to a Lipschitzian homeomorphism of an open neighbor-
hood of A in R5; i.e., the atlas defines a COfl-structure on A. However, φ
cannot be extended to a homeomorphism of any neighborhood of 0 in R3

(this would unlink the circles in R3). This shows, by the way, that the above
atlas does not define on A any differentiable structure (see Proposition 4.6).

Example 4. The same as Example 3 except that instead of circles we
consider sufficiently thin tori. Then the charts defined in Example 3 are
actually tangential. The remainder of the discussion can be repeated verba-
tim.

Let X be subcartesian space with a differentiable structure given by an
atlas Φ. A point/? E X is said to be regular if there is a neighborhood U C X
of/? such that Φ]^ = {ψ\ul φ E Φ} defines o n ί / a structure of a differentia-
ble manifold. The set of regular points of X is the regular part of X. Points of
X which are not regular are called singular points.

In Example 1, with differentiable structure, the regular part of X coincides
with the homogeneous part.

If X = {(xv x2) E R2; \x2\ < |*il), then for any structure the regular part
of X is the set {(JC15 x2) E R2; \x2\ < x^ but the homogeneous part of X is X.
It is clear from the definition that the regular part of X is open and contained
in the homogeneous part of X. It is also easily seen that the regular part may
be empty.

The concept of regular part is of special interest in the case of subcartesian
spaces of polyhedral type introduced and discussed in [2]. If X is a space of
polyhedral type, then its regular part Xx is dense in X. At least locally, X can
be written as X = Xι u X2 U XN where Xi is the regular part of Xt u
Xi+ι U XNioτi = 1, , N.

In the case of coupled structures introduced in §1, it is meaningful to
introduce the notion of coupled dimension, dim^ X; this is a pair of nonnega-
tive integers (m, ή) such that there is a chart φ at/? with φ(Uφ) c R w x R f l
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and for any chart ψ at/?, ψ(£/ψ) c R* X R7 we have k > m, I > n. This notion

does not seem to be very useful.

4. Differentiable structures and tangent spaces

In this section we consider structures defined by a class β of functions in R

(satisfying (1.8), (1.9), (1.10)) contained in C 1. To simplify the presentation we

will actually restrict the statements of the main result to the cases when

β = Ck, and indicate more general cases in remarks.

If / E C1(Rm, Rk); then by Df(x; ξ) we denote the differential of / at x

with increment ξ. Similar notation will be used later with reference to higher

order differentials and partial differentials. Thus we write D2f(x; ξ; η), etc.

For a class Q of functions and a set A c Rm we will denote by (%A the set

of all/ G β such that/is defined in an open neighborhood of A and/l^ = 0.

There should be no confusion caused by suppressing the symbol β in the

notation %A.

We will use the following version of Proposition 1.1.

Proposition 4.1. If h: A c R* -> B c R7 is a homeomorphism of A onto B

such that both h and h~ι can be extended to Ck-functions defined on neighbor-

hoods respectively of A and B, then h can be extended to a Ck-homeomorphism

h of a neighborhood of A in Rk X Rι onto a neighborhood of B in Rk X R'.

Remark. Proposition 4.1 remains valid for more general classes β; for

instance, the following conditions are sufficient:

(4.1) β> contains all affine mappings.

^i C Mt -» Nj are in β, i = 1,2, then also the function
(A Ί\

(*!, xj <Ξ Ux X U2 -» (ZOO,/(*2)) e ^ x ^ is in β.

The following version of the inverse function theorem will be useful in the

discussion of tangent bundle.

Proposition 4.2. Let Y c Rm,/ e Ck(Rm, Rn) n 9 l y , k > 1, and, for x e

Y, set N~ = {x + £; Df(x, ξ) = 0}-an affine subspace of Rm. Then there is a

Ck-homeomorphism h of a neighborhood U ofx into Rm such that h(Y Π U) C

Proof, We can set x = 0. If No = Rm, we can take h = 7RΛ. Otherwise,

note that Z)/(0): ^ -> Df(0)(Rm) c RΛ is one to one and onto; denote by T

the linear mapping Ty = Z>/(O)"V if y <Ξ Df(0)Rm, Ty = 0 if >>

and by P the orthogonal projection of Rm onto JV0. Define

(4.3) h(x) = Px + Tf(x).
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Then h(x) G No if x G Y and, by the definition of Γ, Dh(0; ξ) = Pξ +
TDf(0)ξ = Pξ + TDf(0)Pξ + (/ - P)ξ = />£ + (/ - P)ξ = {. It follows that
£>A(0) is invertible and the result follows.

Remark. Proposition 4.2 is valid if Ck is replaced by any class β c C 1

satisfying (4.1), (4.2)-under these conditions it can be asserted that A G β,
but not necessarily that A"1 G S. The latter is true if β satisfies, in addition,
the condition:

(4.4) jfh is a homeomorphism in G and A"1 e C\ then A"1 G β.

The content of Proposition 4.2 and of its corollaries remains also valid in
the context of Banach spaces: in this case we have to assume that N^ is
complemented, and the range of Df{x) is closed and complemented.

We list now some consequences of Proposition 4.2.
Corollary 1. The restriction P\γ of the projection P is 1-1 and can be

extended to a Ck-homeomorphism of some neighborhood of x.

This is an obvious consequence of (4.3).
Proposition 43. Let Y c Rm, and consider Y as a subcartesian space with

the Ck-structure induced by the inclusion mapping. Then dinip Y = m if and
only ifDf(p) = Ofor every f G 9ly.

Proof. The necessity is immediate from Corollary 1—if Df(p) ψ 0 for
some / G 9l y , then dim{ξ; Df(p, ξ) = 0} < m, and the corollary provides a
chart at p of dimension lower than m. To prove sufficiency assume that the
condition of the proposition is satisfied, but dim^ Y = n <m. Then there are
a chart φ: Y -> Rπ (we replace Y by Y n U where U is a neighborhood ofp)
and a C*-homeomorρhism A in R^, N > m such that A| γ = φ. If h(x) =
(A^Λ:), , hN(x)% then AΛ + 1 | y = = hN\γ = 0 implying that
Dhn+ι(P> € ) = • " • = ^M/* ; 0 = 0 f o r e v e ry £ E R m a n d dωi Dh(p)Rm <
m. On the other hand, since A is a C*-homeomorphism, rank Dh(p) = N-SL
contradiction, q.e.d.

We pass now to the notion of the tangent spaces to a subcartesian space of
class Ck. Several equivalent definitions are possible; we choose to begin with
one which seems to be the most expedient at the moment. The considerations
remain valid for more general structures as indicated in the remark to
Proposition 4.2.

Let X be a subcartesian space with a C*-structure given by a maximal atlas
Φ and/? G X. We first define the representatives of the tangent space to X at
p in charts at/?. If ψ is a tangential chart at/?, φ(Uφ) G Rm, then

T*X = Rm.

Suppose that ψ is any chart at /?, ψ(ί/ψ) C R7, <p is as above, and A is any
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C*-homeomorρhism extending ψ ° φ"1 to a neighborhood of φ(p) in Rπ,
n > /, then we set

(4.5) T*X - Dh(φ(p))Rm.

We observe that Dh(φ(p))Rm c R7, and Dh(φ(p))£, ξ G Rw, is independent of
the choice of the extension h of ψ ° φ"1 at φ(/?). Both observations are
immediate consequences of Proposition 4.2.

Also, directly from the definition, T*X = Dh(φ(p))T*X for any charts
φ, ψ G Φ at/?, φ not necessary tangential and any h as above.

This allows us to define the equivalence relation: If ξ G Tp

φX, η G T*X
where <p, ψ G Φ are any charts at/?, then ξ ~ η if and only if η = Dh(φ(p); ξ)
for some (and therefore every) extension A of ψ ° φ"1 to a C*-homeomor-
phism of a neighborhood of φ(/?) in some Rn. We define now the tangent
space to X at/? as the space of equivalence classes:

(4.6) TpX = U { T;X; φ G Φ,p G £/φ}/^ .

7 ^ is clearly a vector space, and

(4.7) dim TpX = dim, X.

We list now some properties of the tangent spaces.
For a set Y c Rm, y G Y and a class β of differentiate functions

satisfying e.g. (1.8) (1.9) (1.10) define (see [9])

TyY = {{ G R"; Df(y; ξ) = Ofor all/ G 9 l r n ί / / ,

( 4 8 ) Uf-dL neighborhood of y }.

If A is a β-homeomorphism in Rm, then it is immediate to check that
Th(y)h(Y) = Dh(y)TyY. Also if S satisfies (4.1), then the definition of TyYis
independent of the choice of m such that Y c Rm.

If, for every k, β|R* is a group with pointwise addition, then for every
/, g G β|R« such t h a t / | y n C ^ = g\YnU for some neighborhood of y, Df(y, ξ)
= 2>g(/; ξ) for every £ G TyY.

As an immediate consequence of Proposition 4.3, we get with Q = Cfc:

Proposition 4.4. If X is a subcartesian space {with Ck-structure), ψ: £/->
Rm w α cAαr/,/? G I/, /Aew T*X = T^p)ψ{U).

Proposition 4.4 shows that the space Tp

ψ depends only on the image ψ(Uφ)
and the class Ck defining the structure. Thus we can and will from now on
assume that X is a subset of Rπ with the CΛ-structure determined by the
inclusion.

Proposition 4.5. Let X c RΛ be as above, 0 G X, diπ^ X = m; denote by
Q: R/I-»RΠ a rotation such that QToX = Rm, and by P the orthogonal
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projection P: Rn -+ TQX. Then QP: U Π X -• Rm is a tangential chart at Ofor

some neighborhood UofOinR".

Proof. (4.7) and Proposition 4.4 imply that if P is a chart at/? (compatible
with the inclusion chart), thenP is tangential at/?. Thus it is sufficient to show
that P\XnU can be extended to a C*-homeomorρhism of a neighborhood U
of p.

We can assume that p = 0 and TQX = Rm C RΛ. Let φ be any tangential
chart at 0, and h be a C*-homeomorphism extending φ"1 to a neighborhood
_Kofφ(0)inRΛr,JV > n.

We can assume that φ(0) = 0. Write h(x) = (hx(x), , hN(x)) and for
x G R", x - (*', x", * ' " ) , x' G Rm, x" G RΛ W, * ' " G R"" . By (4.5) we have
Dh(0)Rm = Rw, and it follows that x' -> A'(JC', 0, 0) = A'( c') is a C*-homeo-
morphism of a neighborhood K' of 0 in Rw onto another such neighborhood
Uf. Define now for y G U = p- ! (£O n A(F) c RΛ: g W - / + y" -
h"(hf-\y')\ Clearly g is a C*-homeomorphism of (/. Also if ^ G X n t/,
then ^ = h(x') = h'(x') + h"(x') for some x' G V n Rm, .y' = A'ix^ ̂ " =
A"(x') = A'X/rV)) and g(^) - / - / > . q.e.d.

A similar argument gives rise to the following proposition.

Proposition 4.6. If X is a sub-R space with Ck-structure, φ, ψ are two charts

of the atlas, p G U = Uφ n t/ψ, φ(ί/) c Rn, ψ(l/) c R7, /Aen ίAere w α

Ck-homeomorphism g extending ψ o φ " 1 to 0 neighborhood of φ(p) in RN,

N = max(/, ή).

Proof. Assume that I > n, and also following φ and ψ by suitable affine
isomoφhisms that φ(p) = 0, ψ(/?) = 0, and T*X = Rm = T*X. Let A be a
C^-homeomorphism extending ψ ° φ"1 to a neighborhood of 0 in R^, N >
max(/, n). Then, as in the preceding proof, h'(x') = Ph(x'), x' = Px is a
C*-homeomorρhism of a neighborhood of 0 in Rm, and P denotes the
projection P: RN -* Rm. By Proposition 4.5 the restrictions P: φ(U) c R B C
R / ^ R / W

5 p: ψ(ί/) c R / - > R w can be extended to C*-homeomorphisms of
neighborhoods of 0 in R', which we denote by gv g2. The homeomorphism W
can be extended in Rι by the formula g3(x\ x") = h'(x') + x\ x" G R""7. It
is obvious now that g = gϊx ° g3 ° g\ has the desired properties, q.e.d.

We remark that the result of Proposition 4.6 is not valid for classes β
which either do not satisfy conditions (4.1), (4.2) or are not differentiable. The
example illustrating the failure of the proposition because of the second
reason is Example 3 of §3.

An example of a differentiable structure in which the proposition is not
true can be obtained as follows.

Let X = R1, and suppose that the atlas Φ consists of two charts φ, ψ such



414 N. ARONSZAJN & P. SZEPTYCKI

that Uψ = (-0, oo), J7ψ = (-00, a), a > 0 and φ: Uφ -+ {(xv x^) E R2; xx -

x 2 > -a/2) ψ: t/ψ -* {(jcp JC^ E R2, JCJ = -x2 < a/2] are natural isometries.

Consider the least type % containing the rotations in R3 about the lines

{xx = JC2, x3 = 0} and {JCJ = -x2, x3 = 0} by π/2. Then Φ defines on X a

structure of type 3C; both charts φ and ψ are tangential, but there is no

extension of ψ ° φ"1 to an SC-homeomoφhism in R2.

We end this section with the definition and some remarks about the

tangent bundle to a subcartesian space with a C*-structure. Again, the

definition and the remarks remain valid for more general differentiable

structures, in particular, for those satisfying (4.1), (4.2), (4.4).

Let X be a subcartesian space with a C*-structure given by a maximal atlas

Φ. For every p E X, u E TpX (see (4.6)), and every chart φ E Φ at p, we

define Dφ(ρ; ύ) = ξ, where ξ is the element of T* in the equivalence class u.

Clearly Dφ(p): TpX -> Tp

φ is a linear isomorphism.

The tangent bundle TX of X is the set

TX = U {(/>, !#);/>€=*, ii e T^Jf} - U {/̂ } X Tp
ptΞX

with the topology defined by the atlas Φ# = { φ # ; φ E Φ} where φ* is the
chart with the domain U {{p} X TpX;p E Uφ} = Γί/φ; and if φ: Uφ -^Rm,
then φ,,: Γί/φ -^Rm X Rm with ψ^q, v) = (φ(^r), Dφ(q)v) for ςr E t/φ, v E

The atlas Φ^ defines on TX a coupled structure of a rather special kind.

The net of model spaces is the sequence {RΛ X Rπ}, each space being

considered with its cartesian product structure. For / > 0 consider the class

of all the homeomorphisms h of the form:

h(x, ξ) = (*(*), H(x)ξ)

where for some n = n(h\ A is a C'-homeomoφhism of an open set 8 c R "
into Rn, and H E C^Ω, GL(Rn)). It is clear that this class of homeomor-
phisms is a type. We refer to it as C'L-type (or type CιL).

A C*-atlas Φ, as above, defines on TX (via Φ*) a structure of type Ck~ιL.

If φ, ψ E Φ,. Uφ n Uφ = U =£ 0 , and A is a C^-homeomoφhism extending

ψ ° φ"1 to a neighborhood Ω in RΛ of a point in φ(U), then (A, Dh):

Ω X RΛ -^ Rπ X Rπ is a C^L-homeomoφhism extending locally ψ^ <> φ; 1.

The name tangent bundle collides somewhat with the standard usage-the

fibers TpX of TX are not, in general, of constant dimension. In cases of

possible confusion the word pseudbundle is more suitable, [5].

As already noted in §1, it is useful to consider the type CιL in a more

general setting. The net of model spaces is Rm X RΛ, and homeomoφhisms A
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are of the form h = (h, H) where h: Ω c Rm -»Rm is a C'-homeomorphism,
Ω open, and H e C'(Ω, GL(RΛ)), m = m(h)9 n = w(λ).

Associated with the type CιL is the class CιL consisting of functions /
defined on sets of the form Ω X Rn, Ω open in Rm with values in R*,
m = m(f), n = n(f)9 k = k(f), which are linear in the second variable and of
class Cι in the first.

If F c Rm X Rn is the set of the form F = Ux&γ{x) X Fx where Y is a
subset of Rm and Fx is a subspace of Rn for every x G Y, then by 9 l F (« 9LF

Π C;L) we denote the class of all functions / in CιL defined on sets of the
form Ω x R " where Ω = Ω(/) is a neighborhood of Y and such that/ | F = 0.

The sets of the above form occur in particular as images of charts of Φ,,,:

Ψ*TUφ = 7>(£/φ) = U {{<*>(/>)} X T^ p e Uψ).

With the above notations we state now the upper semicontinuity property

of the bundle TX:

(4.9) If f(φ(p), ξ) = 0 for all/ G 9 1 ^ ^ , then { G Γ/.

This is an immediate consequence of Proposition 4.4. (4.8) implies that for
every sequencepr G X,pr —» p and every chart φ G Φ at/? we have

r—»oo

(4.10) ξΓ G 77, Urn ξΓ = ξ imply ξ G Γ/.

(4.10) implies in turn that

the function/? -^ dim TpX is upper semicontinuous which

(4-11) also is an immediate consequence of (4.7) and Proposi-

tion 3.1.

A more detailed discussion of the bundle TX will be given in another paper
devoted to the calculus on subcartesian spaces with differentiable structures.
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