ODD-DIMENSIONAL WIEDERSEHEN MANIFOLDS ARE SPHERES

C. T. YANG

Dedicated to the author's teacher Professor Buchin Su

Let *M* be a connected, simply connected, compact Riemannian *n*-manifold without boundary, $n \ge 2$, such that for any $m \in M$, the cut locus of m in M **is a single point. It is known that** *M* **is diffeomorphic to the ^-sphere** *Sⁿ .* **(This fact is not used in the present paper.) Moreover, every geodesic returns to its beginning point and is smoothly closed. Following Green [2], we call** *M* **a** *wiedersehen n-manifold.*

It is easily seen that in *M***, all closed geodesies are of the same length, say** $2\pi r$, $r > 0$. Whether *M* is isometric to a euclidean *n*-sphere *S*^{*n*} of radius *r* is **usually referred to as the** *Blaschke problem* **(for spheres).**

Recently, Berger [1] made use of an inequality given by Kazdan [3] to prove that

$$
\text{vol } M \geq \text{vol } S_r^n,
$$

and that the equality holds iff *M* **is isometric to** *S".* **On the other hand, Weinstein [4] has proved the following result. If** *M* **is a connected compact Riemannian n-manifold in which all geodesies are smoothly closed and have the same length, say** *2πr,* **if** *UM* **is the space of unit tangent vectors of A/,** *CM* is the space of (oriented) closed geodesics in M , α is the Euler class of the **natural circle fibration** π **:** $UM \rightarrow CM$, and CM is so oriented that the value $\langle \alpha^{n-1}, [CM] \rangle$ of α^{n-1} at the fundamental class $[CM]$ is positive, then

$$
2 \text{ vol } M = \langle \alpha^{n-1}, [CM] \rangle \text{ vol } S_r^n.
$$

Therefore the evaluation of vol *M* depends only on that of $\langle \alpha^{n-1}, [CM] \rangle$. It **is remarked in [4] that, when** *n* is even, $\langle \alpha^{n-1}, [CM] \rangle = 2$. Hence for any **even** $n \ge 2$, vol $M = \text{vol } S_r^n$, and thus M and S_r^n are isometric.

The purpose of this paper is to show that for any odd $n > 1, \langle \alpha^{n-1}, [CM] \rangle$ *= 2* **remains valid and hence** *M* **and** *S"* **are isometric. The Blaschke problem (for spheres) is thus completely solved.**

Received January 16, 1979.

The author wishes to express his gratitude to his colleagues Drs. Kazdan and Warner for invaluable help.

Throughout this paper, *M* **denotes a connected compact Riemannian** *n*-manifold (without boundary), $n > 1$, in which all geodesics are smoothly **closed and have the same length,** *UM* **denotes the space of unit tangent vectors of** *M,* **and** *CM* **denotes the space of (oriented) closed geodesies in** *M.* It is clear that *UM* is a smooth $(2n - 1)$ -manifold, *CM* is a smooth $(2n - 2)$ **manifold, and there are a natural smooth** $(n - 1)$ -sphere fibration $p: UM \rightarrow$ *M* and a natural smooth circle fibration π : *UM* \rightarrow *CM* such that for any $v \in UM$, *v* is the unit tangent vector of πv at pv .

Lemma 1. *Assume that M has the integral cohomology groups of the n-sphere. Then the integral cohomology groups of UM and CM are given as follows. If n is even* $(2, 2)$ *, then*

$$
H^{k}(UM) = \begin{cases} Z & \text{for } k = 0, 2n - 1, \\ Z_{2} & \text{for } k = n, \\ 0 & \text{otherwise}; \end{cases}
$$

$$
H^{k}(CM) = \begin{cases} Z & \text{for } k = 0, 2, 4, \cdots, 2n - 2, \\ 0 & \text{otherwise}. \end{cases}
$$

Moreover, the homomorphism $H^{k-2}(CM) \to H^k(CM)$, appearing in the Gysin *sequence of* π : $UM \rightarrow CM$, *is an isomorphism for* $k = 0, 2, \dots, n - 2$, $n + 2, \dots, 2n - 2$, and is a monomorphism of cokernel Z_2 for $k = n$. If n is *odd(>* 1), *then*

$$
H^{k}(UM) = \begin{cases} Z & \text{for } k = 0, n - 1, n, 2n - 1, \\ 0 & \text{otherwise}; \end{cases}
$$

$$
H^{k}(CM) = \begin{cases} Z & \text{for } k = 0, 2, 4, \cdots, n - 3, n + 1, \cdots, 2n - 2, \\ Z \oplus Z & \text{for } k = n - 1, \\ 0 & \text{otherwise}. \end{cases}
$$

Moreover, there are exact sequences

$$
0 \to H^{n-3}(CM) \to H^{n-1}(CM) \to H^{n-1}(UM) \to 0,
$$

$$
0 \to H^n(UM) \to H^{n-1}(CM) \to H^{n+1}(CM) \to 0,
$$

0-» *Hⁿ (UM)* -» *Hⁿ ~\CM) -+ Hn+ι(CM) -+* 0, $completeness and reference.$

Since *M* has the integral cohomology groups of the *n*-sphere it is orientable. Therefore the Gysin sequence of $p: UM \rightarrow M$, i.e.,

$$
\cdots \to H^{k-n}(M) \stackrel{\cup \alpha(p)}{\to} H^k(M) \stackrel{p^*}{\to} H^k(UM) \to H^{k-n+1}(M) \to \cdots
$$

is exact, where $\alpha(p)$ is the Euler class for $p: UM \rightarrow M$. We know that $\alpha(p)$ is **equal to 0 or the double of the fundamental class of** *M* **according as** *n* **is odd or even. Hence it is easy to compute** *H^k {UM)* **as asserted.**

From the homotopy sequence of π : $UM \rightarrow CM$, it is seen that π_* : $\pi_1(UM)$ $\rightarrow \pi_1(CM)$ is surjective. Therefore, by Hurewicz's theorem, π_* : $H_1(UM) \rightarrow$ $H_1(CM)$ is surjective. Hence $H_1(CM) = 0$ and consequently CM is orienta ble. Because of this fact, the Gysin sequence of π : $UM \rightarrow CM$, i.e.,

$$
\cdots \to H^{k-2}(CM) \stackrel{\cup \alpha}{\to} H^k(CM) \stackrel{\pi^*}{\to} H^k(UM) \to H^{k-1}(CM) \to \cdots
$$

is exact, where α is the Euler class for π : $UM \rightarrow CM$. Now it is easy to compute $H^k(CM)$ and to verify asserted properties of $H^k(CM)$.

As an immediate consequences of Lemma 1, we have

Lemma 2. For any even $n \geq 2$, if M has the integral cohomology groups of *the n-sphere, then* $\langle \alpha^{n-1}, [CM] \rangle = 2$.

Now we are in a position to examine whether Lemma 2 remains valid for any odd $n > 2$. Hereafter, we let $n = 2m + 1$, where *m* is an integer ≥ 1 . **Also we assume that** *M* **has the following properties. First,** *M* **has the integral** cohomology groups of the $(2m + 1)$ -sphere. Secondly, there is a point y of M such that any closed geodesic in M does not have y as a point of self-intersec**tion. Notice that the second property is clearly satisfied by any wiedersehen manifold.**

It is easily seen from Lemma 1 that for any $k = 1, \dots, m - 1, \alpha^k$ is a generator of $H^{2k}(CM)$, and that if *b* is an element of $H^{2m}(CM)$ such that π^*b is a generator of $H^{2m}(UM)$, then $\{b, \alpha^m\}$ is a basis of $H^{2m}(CM)$. In the **following, we shall find a specified** *b* **which enables us to compute** $\langle \alpha^{2m}, [CM] \rangle$.

Lemma 3. Let a be a generator of the image of $H^{2m+1}(UM) \rightarrow H^{2m}(CM)$ *(see Lemma* 1). *Then*

$$
a\cup a=2g
$$

for some generator g of H4m(CM).

Instead of proving Lemma 3, we prove its dual which is given in terms of integral homology groups as follows.

Lemma 3'. Let a^* be a generator of the image of π_* : $H_{2m}(UM) \rightarrow$ $H_{2m}(CM)$ *. Then CM can be so oriented that* $a^* \cap a^* = 2$ *.*

Proof. **By hypothesis, there is a point** *y* **of** *M* **such that any closed geodesic in** *M* **does not have** *y* **as a point of self-intersection. Such a point** *y* has a neighborhood *V* such that for any $v \in p^{-1}y$, $p\pi^{-1}\pi v \cap V$ is a single **open arc containing** *y*. Then it is easily seen that $\pi^{-1}\pi p^{-1}y \cap p^{-1}(V - \{y\})$ **contains exactly two components, each of which is mapped homeomorphi** cally onto $V - \{y\}$ by p. Notice that if C is one of the components, then the other component if $\{-v|v \in C\}$.

Let *z* be a point of *V* different from *y*, and let γ be an oriented closed **geodesic in** *M* **passing through both** *y* **and z. Then**

$$
\pi p^{-1} y \cap \pi p^{-1} z = \{ \gamma, -\gamma \}.
$$

Let $p^{-1}y$ and $p^{-1}z$ be oriented so that they represent the same generator of $H_{2m}(UM)$. Then we may let $\pi p^{-1}y$ and $\pi p^{-1}z$ be 2*m*-cycles representing a^* . **Therefore we have only to show that** *CM* **can be so oriented that the intersection number of** $\pi p^{-1}y$ and $\pi p^{-1}z$ is equal to 1 at both γ and $-\gamma$.

Consider the 2*m*-sphere bundle

$$
p: p^{-1}(V - \{y\}) \to V - \{y\}.
$$

Since $p^{-1}z$ is a fibre of the 2*m*-sphere bundle and since each of the two components of $\pi^{-1}\pi p^{-1}y \cap p^{-1}(V - \{y\})$ is a cross-section, it follows that $\pi^{-1}\pi p^{-1}y$ and $p^{-1}z$ intersect at exactly two points, and the intersection number **at either point is equal to 1 or -1. Hence the intersection number of** $\pi p^{-1}y$ **and** $\pi p^{-1}z$ at each of γ and $-\gamma$ is equal to 1 or -1.

Let

$$
\lambda: UM \to UM, \quad \lambda': CM \to CM
$$

be the involutions defined by

$$
\lambda(v)=-v, \quad \lambda'(\xi)=-\xi.
$$

Then

$$
\begin{array}{ccc}\nM & \stackrel{P}{\longleftarrow} & UM & \stackrel{\pi}{\longrightarrow} & CM \\
\uparrow id & \uparrow \lambda & \uparrow \lambda' \\
M & \stackrel{P}{\longleftarrow} & UM & \stackrel{\pi}{\longrightarrow} & CM\n\end{array}
$$

is commutative. Since M is odd-dimensional, λ is orientation-reversng so that λ' is orientation-preserving. Therefore the intersection number of $\pi p^{-1}y$ and $\pi p^{-1}z$ at $-\gamma = \lambda' \gamma$ is equal to that of $\lambda' \pi p^{-1}y$ and $\lambda' \pi p^{-1}z$ at γ and thus is equal **to that of** $\pi p^{-1}y$ and $\pi p^{-1}z$ at γ. Hence the proof is complete.

Lemma 4. There is a basis $\{b, \alpha^m\}$ of $H^{2m}(CM)$ such that if a and g are as *in Lemma* 3, *then*

(i)
$$
a \cup b = g
$$
,

(ii) $a = 2b - \alpha^m$.

Proof. **Since the exact sequences**

$$
0 \to H^{2m-2}(CM) \to H^{2m}(CM) \to H^{2m}(UM) \to 0,
$$

$$
0 \leftarrow H^{2m+2}(CM) \leftarrow H^{2m}(CM) \leftarrow H^{2m+1}(UM) \leftarrow 0
$$

$$
a\cup b=g,
$$

and $\{b, \alpha^m\}$ is a basis of $H^{2m}(CM)$.

Let

$$
a = \beta b + \gamma \alpha^m,
$$

where β and γ are integers. We know from Lemma 3 that

 $a \cup a = 2g$, $a \cup \alpha = 0$.

Therefore

$$
2g = a \cup (\beta b + \gamma \alpha^m) = \beta g
$$

so that $\beta = 2$. Hence

$$
a=2b+\gamma\alpha^m.
$$

Since

$$
g = a \cup b = (2b + \gamma \alpha^m) \cup b = 2(b \cup b) + \gamma(\alpha^m \cup b),
$$

it follows that γ is odd, say $\gamma = 2k - 1$. Let

$$
b'=b+k\alpha^m.
$$

Then $\{b', \alpha^m\}$ is a basis of $H^{2m}(CM)$ such that $a \cup b' = g$ and $a = 2b'$ m . Hence our assertion follows by using *b'* in place of 6.

Lemma 5. $\langle \alpha^{2m}, [CM] \rangle = 2$.

Proof. Let $\{b, \alpha^m\}$ be the basis of $H^{2m}(CM)$ given in Lemma 4. Then

$$
b \cup b = rg
$$

for some integer r . Since

$$
b \cup \alpha^{m} = b \cup (2b - a) = (2r - 1)g,
$$

$$
\alpha^{m} \cup \alpha^{m} = (2b - a) \cup (2b - a) = (4r - 2)g,
$$

it follows from Poincaré duality that

$$
\pm 1 = \begin{vmatrix} \langle b \cup b, [CM] \rangle & \langle b \cup \alpha^m, [CM] \rangle \\ \langle \alpha^m \cup b, [CM] \rangle & \langle \alpha^m \cup \alpha^m, [CM] \rangle \end{vmatrix}
$$

$$
= \begin{vmatrix} r & 2r - 1 \\ 2r - 1 & 4r - 2 \end{vmatrix} = 2r - 1.
$$

Therefore $r = 0$ or 1 so that $\langle e^{2m}, [CM] \rangle = \pm 2$. Since *CM* is so oriented that $\langle \alpha^{2m}, [CM] \rangle$ is positive, our assertion follows.

Combining Lemmas 2 and 5 and Weinstein's theorem [4], we have

Theorem 1. *Let M be a connected compact Riemannian n-manifold without boundary, n > 2, which has the integral cohomology groups of the n-sphere and in which all geodesies are smoothly closed and have the same length, say 2πr. If n is odd, it is also assumed that there is a point of M which is not a point of* *self-intersection of any closed geodesic in M. Then the volume of M is equal to that of a euclidean n-sphere of radius r.*

Since wiedersehen n-manifolds satisfy the hypothesis of Theorem 1, Theo rem 1 and results of Berger [1] and Kazdan [3] yield

Theorem 2. *Any wiedersehen n-manifold is isometric to a euclidean sphere.*

References

- **[1] M. Berger,** *Blaschke's conjecture for spheres,* **Appendix D in A. L. Besse,** *Manifolds all of whose geodesies are closed,* **Ergebnisse Math, und ihrer Grenzgebiete, Vol. 93, Springer, Berlin, 1978, 236-242.**
- **[2] L. S. Green,** *Auf Wiedersehensfl'άchen,* **Ann. of Math. 78 (1963) 289-299.**
- **[3] J. Kazdan,** *An inequality arising in geometry,* **Appendix E in A. L. Besse,** *Manifolds all of whose geodesies are closed,* **Ergebnisse Math, und ihrer Grenzgebiete, Vol. 93, Springer, Berlin, 1978, 243-246.**
- **[4] A. Weinstein,** *On the volume of manifolds all of whose geodesies are closed,* **J. Differential Geometry 9 (1974) 513-517.**

UNIVERSITY OF PENNSYLVANIA