
J. DIFFERENTIAL GEOMETRY
15 (1980) 8 1 - 9 0

THE UNORIENTED COBORDISM CLASSES
OF COMPACT FLAT RIEMANNIAN MANIFOLDS

MARC W. GORDON

This paper provides partial information on the conjecture that all compact
flat riemannian manifolds are boundaries. The main result is

Theorem 3.1. If φ is a finite 2-group whose elements of order two lie in its
center, then any compact flat riemannian manifold with holonomy group φ is a
boundary.

Our approach is the study of certain canonical Z*-actions called transla-
tional involutions. These involutions arise as the projections of translations of
Rn. Theorem 3.1 is proved by first showing that the group of translational
involutions has no stationary point and then appealing to the following
well-known theorem of Conner and Floyd.

Theorem (Conner & Floyd [3, p. 76, Theorem 30.1]). // Z* acts differentia-
bly on the closed n- manifold Mn without stationary points, then Mn is an
unoriented boundary.

In §1 we prove Lemma 1.2 which relates the assumption that the group of
translational involutions does have a stationary point to the two-rank of the
holonomy group. Immediate corollaries provide, in §2 bounds for each finite
2-grouρ φ on both the dimension and the first betti number of a nonbounding
flat manifold with holonomy group φ.

The author wishes to thank Leonard Charlap, his advisor, for suggesting
this problem to him and to thank Chih-Han Sah for uncountably many
helpful conversations.

1. Translational involutions
Recall that an Az-dimensional compact flat riemannian manifold is the

quotient of Rn by the action of a torsion-free Bieberbach group (see Charlap
[1]), i.e., by the action of a subgroup π of the group of rigid motions of Rn

satisfying the following two defining conditions: (i) m contains no elements of
finite order, and (ii) there is an exact sequence

(1) 0 - * L Λ

Received May 16, 1978.



82 MARC W. GORDON

in which L is an Λ-dimensional lattice of pure translations of Rn and where φ
is a finite group which is isomorphic to the holonomy group of the quotient
Rn/π. We note that the action of φ on L induced by conjugation is faithful, a
fact which will be crucial to our arguments. Henceforth L will be viewed as a
φ-module via this action.

One knows (see Charlap and Vasques [2]) that for each torsion-free
Bieberbach group [1], the set (L/2L)Φ of φ-invariant elements of L/2L is
isomorphic to a subgroup of the group of affinities of Rn/tn. Geometrically,
this action is realized as the set of projections from Rn to Rn/π of the
translations

(2) x->jc + l/2t>

where v ranges over all lifts to L of elements of (L/2L)Φ. Since (L/2L)Φ is
elementary abelian, this action is a group of involutions.

Definition 1.1. The Z*-action determined by (L/2L)Φ is called the group
of translational involutions and is denoted by 7(ττ). For W G (L/2L)Φ, the
corresponding involution is denoted by /(W).

We adopt the convention that elements of π are represented by pairs (Γ, σ)
where T is a translation and σ G 0(n). For x E Rn,

(T, σ) - x = Γ + σx.

The next lemma investigates the assumption that a subgroup of 7(ττ) has a
stationary point.

Lemma 1.1. Let G be a nontriυial subgroup of (L/2L)Φ, and suppose that
the subgroup of 7(ττ) which G determines has a stationary point x. Then there is
an injectiυe function s: G —» TΓ, such that the composed map

(3) J = p ° s : G^>φ

is an injectiυe homomorphism. Further, the function s may be chosen to be of the
form,

(4)

where v is some lift of W to L.
Proof By change of coordinates in Rn we may assume that the origin

covers the stationary point x. Choose a list Wiy i = \9p, of the elements of G.
Let t), G L such that translation by 1/2^ projects to the involution I{W^). x
stationary implies that for each i there exists a unique element (Ti9 σf.) of π
such that

0+

Note that 1/2^ = Tt Vi. One defines the map s by ^(wf) = (7^, σ,) s is
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injective because 1/2^ φ \/2vj. We next show that / is an injective homo-
morphism. Note t h a t / ( ^ ) = p((Ti9 σ,)) = σ,.

/ is injective: σ, = σJ9 i φj, implies that 7). - Ty is an element of L because
by (1), any two translations associated to an element of φ differ by a lattice
point. Hence from the above, l/2υ, - l/2vj is in L. But then, I{W^ equals
I(Wj). This is impossible because Wt φ Wj. Thus / is injective.

/ is a homomoφhism: Since l/2υ, = Tt for all /, we compute that

(Ti9 σ, ) (7}, oj) = (1/21;,. + l/2t>, + /, σ,σ,)

for some / E L (since Vj is φ-invariant mod 2L). Clearly, translation by
l/2(ϋ, + Vj) projects to I(Wt + Wj). Since any two lifts of an element of
(L/2L)Φ to L differ by an element of 2L, if \/2υk was the above previously
chosen translation representing Wi + Wp then 1/2^ — 1/2(1?,. + Vj) is in L.
Hence 1/2^ is a translation associated to σ,^. Further, atθj is the only
element of φ with translation \/2vk, because m acts freely on R". Thus

J(W,+

2. Two general theorems

In this section the following two theorems are proved.
Theorem 2.1. Let Rn/π be a ^-manifold where φ is a finite 2-group.

Suppose that the first betti number of Rn/π exceeds the 2-rank ofφ. Then Rn is
a boundary.

Theorem 2.2. Let Rn/π be a φ-manifold where φ is a finite 2-group of order
2P and of2-rank k. Then if n is greater than k 2P

9 R
n/m is a boundary.

Lemma 2.1. If the Z2~dimension of {L/2Lf exceeds the 2-rank of φ, then
Rn/π is a boundary.

Proof DimZ2((L/2L)φ) greater than the 2-rank of φ implies that the
homomoφhism / of Lemma 1.1 cannot be injective. Thus 7(τr) has no
stationary point, so the Lemma follows from Theorem 30.1 of Conner and
Floyd [3].

Proof of Theorem 2.1. If the first betti number βx of Rn/π equals k, then
L contains a Λ>dimensional trivial φ-submodule (see Wolf [7, p. 81]). Hence
the Z2-dimension of (L/2L)Φ is no less than βv and so is strictly greater than
the 2-rank of φ. Now use Lemma 2.1.

Proof of Theorem 2.2. The theorem will follow from Lemma 2.1, once it
has been shown that the Z2-dimension of (L/2Lf is greater than or equal to
n/2p. Let σ be a nontrivial element of order two in the center of φ. As a
σ-module, L/2L is the direct sum of trivial factors and Z2-grouρ rings. Since
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the action of Z 2 on its Z2-group ring has a unique fixed point, dimZ2(L/2L)σ

> n/2. Now (L/2L)σ is a φ-module because σ is in the center of φ. Thus we

may repeat this argument for φ/<σ> and so on.

3. The main theorem

A finite 2-group all of whose elements of order two lie in its center will be

called central. The main result is

Theorem 3.1. If Rn/iτ is a φ-manifold where φ is a central 2-group, then

Rn/π is a boundary.

Corollary 3.1. If Rn/π is a φ-manifold where φ is a finite group whose

Sylow 2-subgroups are central, then Rn/π is a boundary.

Proof. Let ψ be a Sylow 2-subgrouρ of φ, and let π' be its inverse image in

m. The holonomy group of Rn/*n' is ψ, so R"/π' bounds by Theorem 3.1.

Since the index of m' in π is odd, Rn/π' is an odd-fold covering space of

Rn/π. But odd-fold covers preserve Stiefel-Whitney numbers, so Rn/π

bounds as well (see Milnor & Stasheff [6]). q.e.d.

The proof of Theorem 3.1 consists in using purely algebraic facts (Proposi-

tions 3.1 and 3.2 below) concerning the cohomology of central 2-grouρs with

coefficients in a lattice to deduce that a certain subgroup of the group of

translational involutions has no stationary point. Specifically it will be shown

that the assumption that there exists a stationary point implies that m contains

an element of order two. The theorem then follows by contradiction and

Theorem 30.1 of Conner and Floyd [3].

We turn next to the statements of Propositions 3.1 and 3.2, but postpone

their proofs until these propositions have first been applied to proving

Theorem 3.1.

A pure submodule A of a φ-module M will be said to be maximal if there

exists no φ-module B such that A Θ B is isomorphic to a pure submodule of

M.

Lemma 3.1. Every nonzero finitely generated φ-module contains a nonzero

maximal semisimple submodule.

Proof. Obvious.

Definition 3.1. Let A be a λ -dimensional semi-simple φ-module where φ is

an elementary abelian 2-grouρ of rank k. An extension

(5) 0^>A^>G-*φ^>0

will be said to be proper if it can be obtained from the following construction.

Let / be an isomorphism from A/2A onto φ. Let s: A/2A -+A be a. section
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of A/2A in A, i.e., s is an injective function such that r ° s = ΊdA/2A where r:

A -» A/2A is the projection homomorphism. Define g in

HOTΆ^B^Φ); 1/2A), the group of one-dimensional φ-cochains with coeffi-

cients in 1/2A, by

(6) g(a) = \/2s(J-\a)).

Since the image of δg, the coboundary of g, is actually contained in A, δg is

an element of Z2(φ; A), the group of inhomogeneous φ-cocycles with coeffi-

cients in A. Thus δg determines an extension of A by φ. (5) is proper if it may

be obtained from some such g in this way.

Proposition 3.1. Let L be a faithful φ- module where φ is an elementary

abelian 2-group of rank k. Let O^A - > C - ^ φ - > 0 i e α proper extension, and

let i: A -^ L be an injective homomorphism of φ-modules such that: (i) i(A) is

maximal, and (ii) L/i(A) is semisimple. Let 0—»L^G'—»φ—»0 be the

extension determined by this change of coefficients. Then G' contains an element

of order two.

Proposition 3.2. Let φ be a finite central 2-group, and let M be a finitely

generated faithful φ-module. Let C be a nonzero maximal semisimple φ-sub-

module, and let C « Θ Si9 i = 1, k9 be a decomposition of C into φ- irreducible

direct factors. Then for each elementary abelian subgroup G of φ of rank at least

k there exist a faithful G-submodule L of M and a semisimple G-submodule A

of L such that:

(a) A is generated {over Z) by precisely those elements of C — 2C which are

φ'invariant mod 2M

(b) C splits as a G-direct sum, A θ B;

(c) If Lf and Af are the projections of L and A into M/B, then A' is maximal

in Lf and L/Af is semisimple',

(d) (L n B) c 2B.

Proof of Theorem 3.1. Let 0 - > M - > τ r - » φ - » 0 b e a torsion free Bieber-

bach group with φ central. Choose a nonzero φ-module C in Λf as in

Proposition 3.2. By condition (a) of Proposition 3.2 the corresponding module

A/2A represents a subgroup of 7(ττ). Assuming that this subgroup has a

stationary point x we conclude from Lemma 1.1 that there is an elementary

abelian subgroup φ' of φ which is isomorphic to A/2A via the homomor-

phism /. Assuming that the origin of Rn covers the fixed point, / may be

written a s p ° ί where s is defined by (4). Setting g: φ'-> \/2A by (6), we

obtain a proper extension,
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Clearly the induced extension

0->A'->G'^>φ'^>0

is proper. Hence by (c) of Proposition 3.2 and Proposition 3.1, the extension

0->Z/-» G"->φ'->0

contains an element of order two. Writing G" as the cartesian product

L X φ' with multiplication given by

(7) (w, σ) (H/, T) = (w + σ w' + δg(σ, r), σr),

we see that the element of order two is of the form

(H>, σ) where σ φ id.

We have from (7)

(0, id) = (w, σ)2 = (w + σ w + δg(σ, σ), id).

Hence σ H> + w = -δg(σ, σ). By condition 4) of Proposition 3.2, in L we

have

σ H> + w = -δg(σ, σ) + 2ft where ft is in 5.

Since σ acts trivially on both σ w + w and 8g(σ, σ), it acts trivially on b as

well. This gives

σ (w - b) + (w - b) = -δg(σ, σ).

Thus (H> — ft, σ) is of order two. From this contradiction we see that I(π) has

no stationary point and hence that Rn/π is a boundary. This completes the

proof.

Proof of Proposition 3.1. The aim here is to locate an element γ in φ and

an element x in L such that γ x + x = δg(γ, γ). For then, viewing G' as the

cartesian product L X φ with multiplication given by

(v, σ) (w, T) = (i; + σ w + δg(σ, T), στ)?

one sees that (~x, γ) is of order two.

Since L/i(A) is semisimple for all x in L, γ in φ, the projection r(γ Λ: + x)

of γ x + x to L/2L may be viewed as an element of i(A)/2i(A). Hence

there is a homomorphism

P : L^> Hom(φ, φ)

defined by

(8) P(x)(y) = J(r(y x + x)).

Lemma 3.2. In order to prove Proposition 3.1 it is sufficient to show that

there exist x in L and γ in φ such that

(9) P(x)(y) = J(r(Sg(y, γ))).
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Proof. It follows from (9) that

γ x + x = δg(γ, γ) -I- 2w for some w in L,

so that

γ (x - w) + (x - w) = δg(γ, γ),

since γ acts trivially on δg(y9 γ).

Lemma 33. Let M be a faithful semisimple φ-module where φ is an

elementary abelian 2-group of rank k. Then there exist vectors xi9 i = 1, it, in M

and a minimal set of generators σi9 i = I, k, of φ such that

(10) V * - * i+h

Proof We omit the details. One proceeds by induction on k. q.e.d.
Since φ is elementary abelian, there are direct sum decompositions L/i{A)

« 0 1,., i(A) « 0 tp where the 1/s and tfs are one-dimensional. Since L is
faithful, L/i(A) θ i(A) is faithful as well. Hence by reindexing if necessary,
we may assume that 0 l v y l , θ i(A) is a faithful φ-module where s equals the
rank of the subgroup ψ of φ of elements which act trivially on i(A). Apply
Lemma 3.3 to ψ to get vectors xl9 , xs in 0 1 , and a minimal set of
generators σv , σ, of ψ such that σ, is "dual" to x, in the sense of (10).
Split φ as ψ X ̂  where K is the kernel of the action of φ on 0 1 , . Next apply
Lemma 3.3 to A' to get vectors epj = 1, k — s, in i(A) and a minimal set of
generators τJ9j=l9k — s,ofK such that T, is "dual" to e, in the sense of (10).
Note that σf tj = tj and Tj xt = x, , Vι,y. We intend to choose lifts M, of the
A:/S to L such that the homomorphisms P(M,) have a particularly nice form.

Lemma 3.4. There exists lifts w, of the x/s to L such that Oj w, = w, for

i =£j9 -ut + w, /or i = y for some wi G ι(>4) — 2i(A) and such that τy ut = wf.,

mod i(A)for all ij.

Proof. Let 7̂  denote the φ-module generated by A together with an
arbitrary lift of xt to L. L/i(A) semisimple implies

Γ, O β » L, θ (i(Λ) ® β) ,

where lz is one-dimensional. Let ϋf. be a Z-generator of 7) Π ί̂ . Clearly,

σ,. Vj = -t;,. Since ι(>4) is maximal, (L, n Γf) θ i(A) is not pure. Thus there

exist a, E 7}, α, E ι(̂ 4), and m E Z - (0, ± 1} such that m ut = ϋ, + α, and

W/ ί (L, n 7;.) 0 i(^4). Now

σ, M, = -X/mVi + 1/AH α, = -w, + 2/m ar

Note that 2/m at EL A. In fact, 2/m at G A - 2A for otherwise, 1/m α, E Λ
which implies that 1/m ϋ, is in Tt, but this contradicts the fact that vt is a
Z-generator of (L, n 7)). Setting w, = 2/w α, takes care of the case where
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/ = / . For iφj, there is a similar computation: Tj-u^u^ mod i(A)9 by

construction, q.e.d.

Letting φ* denote the dual space of φ (considered as a Z2-vector space) and

identifying φ* ® φ with Hom(φ, φ) in the usual way, define A,., gj in

Hom(φ, φ) by

(11) A, = σf ® P(q,)(*,), g, = r/ ® J(z,),

where Zj is the projection to i(A)/2i(A) of e, .

Let F be the additive subgroup of Hom(φ, φ) generated by the A/s and the

g/s. Note that F is generated by homomorphisms which are dual to the

generators σ, and τ, of φ. The importance of Lemma 3.4 is that none of the

A/s are the zero homomorphism.

Lemma 3.5. There exist fin F and γ in φ - 0 such thatf(y) = γ.

Proof. The lemma is a special case of the more general fact that if

xv - ' , xk is a basis of a Z2-vector space F, and if fv ,/fc are elements

of Hom(F, F) such that jj(jcf) ^ 0 for all / and/(jcy) = 0 for all i φj, then for

some linear combination of the fs fixes a nonzero element a in V. We omit

the details, q.e.d.

Using Lemma 3.5, let/ G F, γ G φ - 0 such that/(γ) = γ. Factor/as

(12) / = Σ λ , + ΣS/>
and remove any of the A's and g's which send γ to zero. Assuming that this

has already been done we see that γ contains the factor

which we write simply as στ From Lemma 3.4 and equations (8) and (11) it

follows that

where the indices i and/ correspond to the indices in (12). This last equation

is written more simply as

(13) /(γ) = P(x)(a) + J(r(e)).

By Lemma 3.2, the proof is completed with

Lemma 3.6. P(x)(y) = J(r(δg)(y, γ)).

Proof From (6), (8), and (13), the equation /(γ) = γ, and the equation

s r = id^, mod 2A, it follows that

(14) 2g(γ) = σ x + x + e + 2w, where w G i(A).

Since γ e = -e we get

(15) δg(γ, γ) = l/2(τ (σ x + c) + σ x + x + 2(γ w + >v)).
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Since A is a direct sum of one-dimensional γ-modules, A splits as a direct
sum A + θ A~, where γ acts trivially on A + and by negation on A~. Hence
from (15) it follows that

(16) δg(y, γ) - (σ x + x) + , mod 2i(A).

The lemma now follows from (16) and the easily checked fact that γ x + x
= (σ jc + ;c)+. q.e.d.

Proof of Proposition 3.2. The following fact will be needed.
Lemma 3.7. Let φ be a central group acting on the Q-vector space V.

Suppose that V is φ-irreducible. IfσGφis of order 2, then σ either acts trivially
onv or σ v = -v for all v E V.

Proof Every vector space of over Q which is a Z2-module is isomorphic
to a direct sum V+ θ V~, of submodules such that v E V+ <=>σ - v = v, and
ϋ E F~<=» σ t> = -t>. Since σ is in the center of φ, F + and F " are φ-modules.
But Kis irreducible so V = V+oτV= V~. q.e.d.

We next construct the module A. (C/2C)Φ « 0 (SJlSjf where by as-
sumption C = 0 S,- S, is irreducible, so by the previous lemma each ele-
ment of G either acts trivially or by negation on it. Thus, if we choose a
complete set of representatives of (C/2C)Φ in C as generated by the union of
complete sets of representatives of each (S'I/2Sί

l)
φ, the resulting G-module A

which they generate is a direct sum of one-dimensional G-submodules and
projects surjectively onto (C/2C)Φ.

Split M ®z Q as D θ (C ® Q). Lemma 3.7 permits us to reason exactly as
in Lemma 3.3 to find a Z2-basis σ, , / = 1, m, of the subgroup H of G of
elements which act trivially on A and φ-irreducible direct summands Di9

i = 1, AW, of D such that σ, acts trivially on each Dj π M excepting Di π M
upon which it acts by negation. By our assumptions each (Z), π M) θ C is
not pure, so by the same arguments as in Lemma 3.3 there exists Uj E (Di θ
(C ® Q)) Π M such that

O: ' U.

where MΛ E C - 2C. Further, the vectors σ1? , om may be extended to a
Z2-basis aυ , σm, τ l 5 , τp where

T. M,. = w,, mod C.

Now Wj E C - 2C implies that the projection υy of MJ to C/2C is not zero.
Since φ is a 2-grouρ, the φ-module generated by Vj has nontrivial intersection
with (C/2C)Φ — 0. Since this module is just all φ-linear combinations of Vj
there exists^. E Z[φ] such ihatf/ΌJ) is in (C/2C)+ - 0. Set^ = fjμ) and let
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L = SpanZ[(7j(/4 u {)>/$})- Since φ is central, σ, commutes with/. Hence

(17) oj -yj = fjiσj Uj) = -fj(uj) + # * , ) = ->>, + fj(wj).

Since ̂ (w,) is a lift of fj(υj) to C, it is a nonzero element of A, mod 2C. The

same type arguments give the following equations:

(18) σ, yj = yp i φj\ τ, - ^ = ̂  + zl7,

where zv is also an element of A mod 2C. Since each element of G acts either

trivially or by pure negation on each Sp Si splits as (A n Sg) θ Bt where 5,. is

any Z-complement of A n Sr Clearly L n B c 2B. That A' is maximal in L'

follows from (17). The semisimplicity of L'/A' follows from (17) and (18)

together.
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