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THE CONE TOPOLOGY ON A MANIFOLD
WITHOUT FOCAL POINTS

M. S. GOTO

Introduction

Let M be a complete, simply connected Riemannian manifold without
focal points. Let a(¢) and B(¢), t > 0, be geodesic rays parametrized by their
arc lengths, respectively. Then a and B are asymptotic if the distance
between a(f) and B(¢) is bounded for all + > 0. Let M(c0) be the set of all
classes of asymptotic geodesic rays and let M = M U M(c0). In [4] it was
proved that for any point p in M and a geodesic ray a, there exists a unique
geodesic ray 8 asymptotic to a with 8(0) = p.

Let E be R"*! with the natural euclidean metric. Then E is an example of
M. In this case two geodesic rays a(f) = a + to(||v]j = 1) and B(r) = b +
tw(||w|| = 1) are asymptotic if and only if they are parallel, i.e., v = w. We
denote the asymptotic class containing a by cov, and suppose that the ray is
extended to the interval [0, co] by putting a(oc0) = cov. Then E(o0) has the
natural topology as the unit sphere S”, and E can be identified with the
closed unit (n + 1) — disk.

The purpose of this note is to prove the following:

Theorem. Let M be a complete, simply connected Riemannian manifold
without focal points. Then M has a canonical topology with the following
property: For any p € M, the expoit_ential map: T,M — M extends uniquely to
a homeomorphism from T,M onto M.

The topology is called the cone topology since for each point x in M(o0),
cones containing x form a local basis at x.

The theorem is known in the case of nonpositive curvature (see [2]). In the
case of no focal points, it was proved if either the dimension of M is 2, or the
geodesic flow of M is of Anosov type (see [4]). The proof here refers to [3]
and [4].

Proof of the theorem. Let K(f) be a symmetric n X n matrix valued
continuous function defined for all € R, and consider the n X n matrix
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differential equation

(J) X"(1) + K()X(1) = 0,

where the derivatives are taken componentwise. Let 4 be the solution of (J)
with the initial conditions 4(0) = 0 and 4’(0) = I (the identity matrix). Also
for s > 0 let D, be the solution with the boundary conditions D(0) = I and
D,(s) = 0. Then it is known that lim D, = D exists and is given by

D) = AW [~ (A*4) w) s,

where 4* denotes the transposed matrix of 4.

Hereafter, M denotes a complete, simply connected Riemannian manifold
of dimension n + 1 and class C* without focal points. For p € M, let T,M
denote the tangent space at p, and let S, M = {v € T,M; ||v| = 1}. Let SM
be the unit tangent bundle. For v € §,M we denote by v, the geodesic ray
with v,(0) = p and v,(0) = v, parametrized by its arc length. Let
{e)(9), ..., e,(t), e, () = v)(?)} be a parallel orthonormal frame field along
the geodesic v,. If Y(¢) = E7_, y(He,(?) is a normal vector along vy, then we
can identify Y with the curve ¢ = (y,(¢), . . ., y,(?)) in R". For each € R we
denote K(#) = (CR(e(?), Y'())Y'(2), €/(¢))), where R is the curvature tensor,
and consider (J) for this K(¢). The solution given above will be denoted by
D,

0

Next, we define a map b,.;: M — R for v € SM by

b.(q) = s — d(v,(5), 9),
where d denotes the distance. Then lim,_, b, = b, exists. The function b, is

$—00 Tus

called the Busemann function with respect to v, and is known to be of class
Cc2

Let v be in SM, and ¢ € M. Then there exists a unique geodesic ray
starting at ¢ asymptotic to v,, and the tangent vector of the geodesic ray at g
is given by (Vb,)(g). To prove our theorem, it is enough to see the continuous
dependence of Vb, on the parameter v according to the discussion in [2, §2].

Let p be a point of M, and v a unit vector at p. Then D;(0) is a linear
transformation of the vector space v* = {x € T,M; x Lv}. We shall con-
sider the vector bundle over SM given by

{(v, ); v € SM, ¢ € End(v')},
and the cross section: v = D/(0). In [3] Eschenburg obtained that
V. (Vb,) = D.(0)(w) forw € vt,

and that D;(0) depends continuously on v.
We shall now extend D,(0), v € SM, to an endomorphism D(v) of 7, M by
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putting

D(v)(w) = DJ(0)(w) forw € vt,

{ D(v)(v) =0.
Then ) (v) is a cross section of the vector bundle
{(v,¥); v € S,M, ¢y € End(T,M) forp € M}
over SM and is obviously continuous. On the other hand,
V,(Vb,) =0

and hence
() V(Vb,) = D(v)
is continuous with respect to v € SM.

Let p and ¢ be distinct ponts in M. We pick a smooth curve o(s) such that
6(0) = p and o(1) = ¢q, and shall consider a differential equation

v
(**) =2 X(5) = D(X(s))(o(s)),
where X(s) is a unit vector field along o(s) of class C!. For a unit vector v at
P
Y,(s) = (Vb,)(a(s))
is a solution of (+#) with Y, (0) = v. We shall prove that Y,(s) is the unique
solution with the initial condition v.

Suppose that X(s) is a solution of (x*) with X(0) = v. We consider the
variation f(Z, s) = exp,,tX(s), s € [0, 1], ¢ > 0, of the geodesic ray y,. Then
J(t) = (3/3s)f(t, s) is a Jacobi field for every s. Since X(s) is of class C!,
J,(¢) is continuous with respect to s. Fix s, € [0, 1] and put w = X(s,). Then

Y, (s) == Vb,(a(s))

is a solution of (x*) with Y, (so) = w. We put f(1, ) = €XP,5)!Y,(s) and
J(1) = 3/3)f(1, 5)|,- -5, ThenJ (1) is the Jacobi field along y,, with

J(0) = '(s0), /(0) = D(w)(0'(s0))-
Moreover, since the variational curves ¢+ f(t, 5) are all asymptotic to v,, it
follows that

17| < 1F(0)|| for any ¢ > O.

On the other hand, Js°(0~) = 0'(sy) and JS'O(O) = ) (w)(0’(sp))- Hence the Jacobi
field J, coincides with J. Thus

(DIl < IV(0)] = llo’(s)|| fors &[0, 1],2 > 0.
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Therefore
d(v, ().t 59) < [ (0] ds < f “lo'(s)| ds,

and hence the geodesic ray ¢ > f(7, 5) = exp,,!X(s) is asymptotic to v, for
any s € [0, 1]. By the uniqueness of asymptotic geodesic rays, we have

X(s) = (Vb,)(a(s)).
Thus the equation (**) has a unique solution. Because of the continuity of ),
the solution of (**) depends continuously on the initial value by a theorem of

differential equations (cf. [1, Chapter 2, Theorem 4.1]). Namely, Vb, is
continuous with respect to v. Hence the proof is complete.
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