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AN EXTRINSIC RIGIDITY THEOREM FOR
MINIMAL IMMERSIONS FROM S 2 INTO S"

JOAO LUCAS MARQUES BARBOSA

1. Introduction

Let x: X2 -^ Sn(l)be a generalized minimal immersion, where Sn(\) is the

unit sphere of the Euclidean space Rn+\ and S2 is the 2-sρhere, which will

always be considered as having the induced metric. Let Tk{x) be the real

osculating space of order k of x. Define the ^-normal space Nk(x) associated

to x, by taking at each point the orthogonal complement of ^ ( J C ) in the

corresponding tangent space of Sn(l). It was shown by Calabi [2] that if W is

the subspace of Rn + λ spanned by x(S2), then

dim(W) = 2m + 1, dim Tk + ι - dim Tk = 2 for 1 < k < m.

This can also be found in Chern [3] and Barbosa [1]. Thus, for 1 < k < m, Nk

is a map from S2 into An~2k(Rn+ι). We denote by ( , ) the standard inner

product in Rn + ι. This naturally extends to As(Rn+ι). We keep the same

notation. The following is the main theorem of this paper.

Theorem. Let x: S2 -» Sn be a generalized minimal immersion. Let m be

the integer such that 2m + 1 w the dimension of the subspace of Rn + λ spanned

by x(S2). If, for an integer k, 1 < k < «/2, there exists a constant decompos-

able vector A G An~2k(Rn + ι) such that (A, Nk) > 0, then k > m. In particu-

lar, if (A, Ni) > 0 for A E An~2(Rn + ι), then x is the totally geodesic immer-

sion of S2 into Sn. This theorem answers, for the particular case of S2, a

question posed by S. S. Chern in his Kansas notes [4]. Related to this is the

following De Giorgi-Simons-Reill/s result [5], [8], [7]:

Let x: Mn —• Sn+P(l) be an isometric minimal immersion of an «-dimen-

sional compact oriented Riemannian manifold into the unit sphere of

Rn+p + \ and let N: M -> G(p, n + p + 1) be the normal map. If there exists

a constant decomposable unit /^-vector A, such that

(N,A)>Λ/(2p-2)/(3p-2),

then x is totally geodesic.

Recently, K. Kenmotsu [6] improved this result for the case n = 2 and
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p > 2 by assuming only that

(N,A) >VY/2 .
We should point out that our method differs from those of O'Reilly and

Kenmotsu.

Blaine Lawson pointed out that the result established in this paper has the

following nice corollary.

Corollary. Let U be an open set of R3 and f: U —» Rn~3 be a Lipschitz

function whose graph is a weak solution to the minimal surface system. Then f is

real analytic and so defines a classical minimal surface.

We would like to thank Blaine Lawson for having suggested the question

we solved in this paper. Recently, Yau [10] proved a particular version of our

main theorem, for the case k = 1 and n = 4.

2. Preliminaries

Let M be an oriented compact differentiable surface, and x: M —> Sn(l) a

differentiable map into the unit w-sphere of the Euclidean (n + l)-space. The

induced metric on M, together with its orientation, defines a covering of M

by isothermal coordinates. Relative to a local isothermal parameter z, the

metric on M takes the particular form

(2.1) as2 = 2F\dz\\

and the area form can then be represented by

(2.2) ω = iFdz Λ dz.

When x is an immersion, F is an everywhere positive valued (real analytic)

function. Throughout this paper, we will be working with maps that are

(minimal) immersions at all but finite many points of M. These will be called

generalized (minimal) immersions. In local terms, this means only that we

consider F as having at most finitely many zeros.

All higher order derivatives of x with respect to z and z will be considered

as functions with values in Cn + ι. The complex osculating space of order m at

a point/? of M is the pull back of the subspace of C Λ + 1 spanned by all the

mixed derivatives dJ+kx/dJzdkz with 0 < j + k < m.

In Cn+\ the symmetrical product of two vectors a = (ΛQ, , an) and

b = (Z>0, , bn) is defined by

(a, b) = aobo + + anbn,

and the Hermitian product of a and b is then defined by
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If we set θ= d/dz and 3 = 3/3z, we have that

(a) z is an isothermal parameter for the metric on M if and only if

(2.3) (3JC, 3JC) = 0;

(b) the function F (obtained in the expression of the induced metric in M)
is given by

(2.4) F=(3JC,3JC);

(c) the Laplacian operator for the induced metric on M is given by

(2.5) Δ = 4 9 ^
Γ

(d) the Gauss curvature of M is

(2.6) K= - ^ Δ F = --^33 log F.

It is known that x is a minimal immersion into Sn if and only if x satisfies

the equation

ΔΛ: = λx.

(See for example [4, p. 31]). According with our notation, this means

(2.7) ddx = -Fx.

(See [2], for details). This equation enables us to write any mixed derivative of

x, with respect to z and z, of order < k in terms of the complex vectors (of

Cn+ι)

x, 3.x, , dkx, dx, d2x, , dkx.

Consequently, the complex osculating space of order A: at a point p of M is

spanned only by these 2k + 1 vectors evaluated at/?.

Let us now consider the case where M = S2. Using (2.7), the previous

observation, and the topology of S2, one can prove that

(2.8) (Vx, dkx) = 0 for; + k > 0,

where our notation was extended by identifying x with d°x. (See Calabi [2] or

Barbosa [1]). Geometrically, (2.8) means that the subspace V(p) of C π + 1

spanned by the vectors 3x, 32x, 33x, at a point p of S 2 is totally

isotropic (i.e., perpendicular to its own conjugate) and perpendicular to x(/>).

Furthermore, if m = dim V(p\ then V(p) is spanned by the vectors dx,

d2x, , dmx. The following theorem due to Calabi can then be easily

obtained:

(2.9) Theorem. Let x: S2 —> Sn be a generalized minimal immersion and W

be the subspace ofRn + ι spanned by x(S2). Then dim W = 2m + 1.

This theorem can be extended (see [1]) to generalized minimal immersions

of compact surfaces Λf, provided (2.8) is included as an additional hypothesis.
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3. An expression for the normal map in terms of the derictrix curve

Let x: S2 —> S2m be a minimal immersion. Consider S2 covered by isother-

mal coordinates as before, and assume that x(S2) is not contained in any

lower dimensional subspace of R2m + ι. Construct, in a coordinate neighbor-

hood, the following local vector valued functions:

Go = x,

Gλ = dx,

(3.1) G2 = d2x-aι

2Gl9

Gk = fa - kγl

where aJ

k are chosen in such a way that

(3.2) (Gk9 Gj) = 0.

Thus we conclude that Gm+k = 0 for any k, {Gv , Gm) is an orthonor-

mal basis for V9 and (Gk, Gj) = 0 if j + k > 0. Furthermore, the direction of

each Gk (where Gk Φ 0) is invariant under change of coordinates. We can

then use the G '̂s to define functions into the complex projective space CP2m.

Those are well defined wherever Gk φ 0. The following lemma, which gives a

new proof for [1, 3.12], shows that one can extend them to S2.

(3.3) Lemma. For 0 < k < m, each local function Gk is C °° and has only

isolated zeroes. Furthermore, if z0 is one such zero, then there exists a positive

integer r such that Hk = (z — zo)~rGk is C °° and nonzero in a neighborhood of

Proof. The proof will be done by induction on k. The lemma is true for

k = 0. Assume it is true for j < k. Then from the definition of Gk it follows

that Gk is C 0 0 , (HiLHj) = 0 for alΠ, j < k and (Hi9 Hj) = 0 for / <j < k.

Therefore Ho, Hl9 Hv - , Hk_v Hk_ι are independent in a neighborhood

of z0. Let e2k+2, ' * * , e2m be sections of x*T(S2m) which are independent

and orthogonal to Ho, Hv Hv , Hk_l9 Hk_x. Then Gk = Σ aiei

(mod i/'s) where the α/s are C°°. Now

where the b's are C°° and

dGk = 0 (mod H's),

since dGk = -\Gk\
2Gk_J\Gk_x\

2. Thus

3*/ = Σ Vy
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which is an elliptic linear system of equations. We claim that either a solution

of such system is identically zero, or at an isolated zero z 0 there exists an r

such that (z — Z Q ) " ^ are C °° and not all zero. This proves the induction

hypothesis for k, modulo the claim. It is obviously equivalent to proving the

claim for a system of the following type:

(3.4) dW=A(z)'W,

where A(z) is a C°° n X n matrix function and W is a column vector in Cn.

In [3, p. 32] Chern shows that there is an r such that if W is a solution of (3.4)

then either W is identically zero or (z — zo)~rW is continuous and nonzero.

Let W = (z — zo)~rW. Then W satisfies (3.4) as well except at z0, and it is

easily checked that W is a distribution solution of (3.4) in a neighborhood of

z0, and thus by elliptic regularity W is C 0 0 .

It follows now from Lemma (3.3) and [1, Lemma (3.7)] that the function Gm

can be extended to a function

which is holomorphic. Such a function is called the directrix curve of the

minimal immersion x. For 0 < k < m, its kth derivative is given by

k-\ Λ

ίk = Σ ^m fim , + ("I)"
-̂J --m-j -m-j v / \ n

7=0 \Gm_m-k\

where the coefficients AJ are functions of z and z. From this expression it

follows that £ is totaly isotropic, i.e.,

(3.5) Proposition. For 0 < x < m, let Tk{x) be the real osculating space of

order k of x. Then Nk(x) = Tk(x)^ can be locally represented in homogeneous

coordinates by α*Ψk/|ψfc|, when ak = γ ( - l ) m ~ * , and

ΨΛ-fΛ^Λ Λim-k~ιΛΪΛlιΛ Λί1""*"1-

Proof. First let us observe that {£, ξ 1 , * , ξ*" 1 } and

{Gm, Gm_v , G m _ J + 1 ) span the same subspace of C 2 m + 1 . Hence ψΛ

represents a complex 2(m — /c)-ρlane whose orthogonal complement is

spanned by {Gk, Gk_λ, , Gv Go, Gl9 , GΛ_!, G .̂}. But the latter is the

same as the complex A>osculating space of x, which is nothing more than the

complexification of Tk(x). Since ak is adjusted so that akψk is a real vector,
α*Ψ*/lΨ*l ^s a ^nitary real vector field which represents Nk(x) in homoge-

neous coordinates.

In the next proposition we will prove that Nk defines a global map from S2
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into Sn(k\ and that in S2 with the induced metric, the parameters we are

using will still be isotermic.

(3.6) Proposition. The function Nk = akψk/\ψk\ is independent of the partic-

ular local coordinates used, and so it defines a global map from S2 into SΛ(/c),

n(k) = (i™lx

2k) - 1. Furthermore, (dNk, dNk) = Ofor any local parameter z.

Proof. If z and w are two local isothermal coordinates in S2, then

ξ*(w) = V{z)i^ V + terms in f ( z ) withy < s.

Thus

z (1+2+ +(m-z-l))

Because ψk(w) and ψk(z) differ only by a real factor, we have

We also have that ψk/\ψk\ Is invariant under change of local representation of

ξ. In fact, if ξ = λ£ is another local representation, then ψ̂  = \λ\2(^m~k\l/ζ.

Consequently ψ^/lψ^l = Ψ|/ |Ψ| | One should notice that ψk may have some

isolated zeros. But, even at these points, ψk/\ψk\ is well defined. Indeed, if

Ψ*(zo) = 0 > t n e n £Λϋι Λ ' ' ' Λ£m~k~ι has a zero of a certain order r at z0.

We may then factorize \pk as

ψΛ(z) = \z - zo\
2r

Ψk(z), with φ^(z0) Φ 0.

consequently, the functions akφk(z)/\\f/k(z)\ are local expressions for a global

function Λ^ from S2 into 5 n ( ; : ) where AZ(A:) = (^Z-ik) ~ *•

All that remains to be done to complete the proof of the proposition is to

show that (ΘΛ ,̂ ΘΛ )̂ = 0. In fact, we can prove the following more general

fact.

(3.7) Lemma. For each r > 0 we have

Proof Observe that

and, if we set T = { Λ € ' Λ Aξm~k~\ then

(d'χpk, θ%) = (-1)'"~*(3T, T)(dJT, f)
(3-8)
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Hence

Therefore

(3W,,3W,) = 0.

(3.9) Corollary. The complex subspace of Cn(k)+ι spanned by dNk,

d2Nk, , dJNk, - - - at any fixed point of S2 is totally isotropic and per-

pendicular to N.

Proof. To prove this corollary, we have to show that, for each r + s > 0,

But this can be easily proven using induction on r + s. (It helps to make a
matrix of products (drNk, dsNk), and indicate the ones we are assuming to be
zero in each step.) The geometrical consequence of this lemma is that if V is
the space generated by the derivatives dNk, 3

 2Nk, then V is perpendicu-
lar to its own conjugate and also perpendicular to Λ .̂

We have in mind to compute the mean curvature of Nk: S
2 -• Sn(^k\ To do

this, we first set up some machinery. Since

Ψ*-*Λ Λ Γ ' ^ Λ f Λ AΓ~k-\

(3.10) dψk = |Λ Λ€w-*-2Λί"-*ΛίΛ ΛΪ"-*-1,

by setting T — ξ /\ Λl"1"*"1* we have the following equalities:

{T, T) = 0,

(3.11)

(ddψk, 3%) = (-l)m"*33|Γ|2a3|7Ί2, k > 0.

The next proposition gives a criterion for the regularity of the map Nk:

S2-»Sn(k>.
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(3.12) Proposition. Let ζm_k_x be the holomorphic (m - k - X)-associated

curve to ξ. Then

|> A £/ |2

( Ά Λ7" Λ M \ \^m — k—ί / \ £/n — k— \\
k > k) | . ,4

Proof. Since Nk = akψk\ψk\~ι when ak = y ( - l ) m * , we have that

(3-13) dNk = «,{ψ,θ|ψ,|-' + iΨtl-'θψ*}.

It follows that

By applying this identity to the formulas obtained in (3.11) we see that

(3.14) (dNk, dNk) = | rr{ |Γ | 2 |3Γ | 2 - |(3Γ, f )|2}.

Using the definition of T, we obtain the desired result.

The consequence of this proposition is that Nk and ξm_k_ι

are isometric, and therefore Nk will be regular in all points

^ ' ' where ξm_k_ι is. Hence Nk will be regular in all but finitely

many points.

(3.16) Lemma. (ddNk, 3%) = \χpk\-ιdJ\\pk\(ddNk, φk)9 J > 0.

Proof. Computing 9 of (3.13), we obtain

(3.17)

Consequently

The substitution of (3.11) in this expression yields

(33JVfc, θ%) = αlΓ-X-lΓplθΓl2 + |(3Γ, f )\2

Using (3.14) and the fact that (Nk, Nk) = 1, we obtain

(3.18) (33X, 9 % ) = a3

k(ddNk, Nk)V\φk\.

But this is the desired result if we replace Nk by it's local expression

MklΨfcΓ1-
(3.19) Proposition. The Laplacian of Nk is peφendicular to the subspace

of cn(k)+1 spanned by dNk, d2Nk, , and forms a fixed angle of π/4 with

Nkίoτk > 1.
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Proof. Since

(3.20) d*Nk = ak 2 ( 7 j95~7|Ψ*l Vψk,

we have

(33^, d'Nk) = akΣ {j]ds J\ψk\ \ddNk, 3%).

Using the previous lemma we obtain, for j > 0,

(ddNk, BsNk) = (ddNk, Nk)\ 2 I )d*~J\Ψk\ &\Ψk\

ly = 0 V y / J
The expression inside the braces is just 35(1) and therefore zero. Since
Δ = (2/i^)33, where Fk = (dNk, dNk), we conclude that (ΔJV*, d*Nk) = 0 for
each s > 0.

The second part of the proposition follows from the next lemma.
(3.21) Lemma. (33Λ^, ddNk) = 2(33^, Nk)

2, k > 0.
Proof. From (3.17) we have that

(33X, MNk) = ak{dd\ψk\-\ddNk, ψk) + 3|ψ,|-'(33^, 9ψk)

which can be simplified, in consequence of (3.6), to

(3.22) (MNkt MNk) = -iψJ-'aθlψ^KθθΛ^, Nk) + ak\^k

In order to compute the value of (33Λ^, 33ψt), we use (3.17) to obtain

(33X, 33ψ,) = ak{dd\χpk\-ι(ψk, 3 % ) + d\*k\-ι(dφk,

Using (3.16) we may simplify this to

Now substitution of (3.23) and (3.14) in (3.22) yields, after simplification,

(ddNk, tiNk) = 2|ψ,r(|ψ,|33|ψ,| - 3|ψ,|3|ψ,|)2 = 2(33 log|ψ,|)2.

Since \ψk\ = \T\2, using (3.14) we obtain

(ddNk, ddNk) = 2(dNk, dNk)
2 = 2(ddNk, Nkf. q.e.d.
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The following proposition due to Kenmotsu [6] is now obtained as a

consequence of the previous proposition.

(3.24) Proposition. Let x: S2 —» S2m be a minimal immersion. If there exist

a fixed vector A e Sn(k\l) such that (Nk, A) > \ λ/2 , then x is totally geo-

desic.

Proof. If (Nk, A) >\ λίl , then the angle between A and N is less than

77/4, and so is the angle between ΔNk and A from Proposition (3.19). Hence

(ΔNk, A) > 0, and so (Nk, A) is a subharmonic function globally defined on

S2 and is therefore constant. To show that Nk itself is constant just notice

that the same reasoning can be carried out for all points A' in a neighborhood

of A on Sn(k\ Nk is constant, x is a totally geodesic immersion.

(3.25) Proposition. For each k > 0, Nk: S2-> Sn(k) has mean curvature

with constant length.

Proof. Propositions (3.6) and (3.12) show that the metric induced on S2

by Nk is given by

ds2 = 2 Fk\dz\\

where Fk = (dNk, dNk) = 33 log|ξm_A:_1 |
2, so that its mean curvature in

/* n ( * ) + ι isgivenby

H j d d

Therefore by (3.21), \Hkγ = 8, and the mean curvature of Nk in Sn(k) is

whose length is 2.

4. The main theorem

Let x: S2—» Sn(l) be a generalized minimal immersion, and W be the

subspace of Rn + ι spanned by x(S2). From (2.9) we know that W has

dimension 2m + 1, and so x can be considered as a minimal immersion of S2

into S2m = W n S"1.

Let iVfc(x) and A^(x) be the λ -normal maps associated with x when it's

image is considered in Sn and S2m c W respectively.

(4.1) Lemma. //" ίΛere exw/5 α decomposable vector A belonging to

An~2k(Rn+ι) such that (A9 Nk) > 0, then there also exists a decomposable

vector A' e A2m~2k(W) such that (Λ\ N£) > 0.

Proof. Choose an orthonormal basis al9 , an_2k for A. Let d be such

that al9 - , ad E W and α^+ 1, ,an_2kE. W^, where W1- stands for
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the orthogonal complement of Win Rn+ι. We then have

(4.2) A = ax Λ /\an_lto 2m - 2k < d < 2m + 1.

Let x,el9e2,- * * , en be an orthonormal frame field for S2 around the point x
chosen in such a way that

eV ' ' ' > *n-2k G Nk(X)>

and e2m_2k+ι, , en_2k are constant vectors belonging to W±. We then

have Nk = eλ /\- - - /\en_k and, by hypothesis,

(4.3) d e t ( ( ^ . , dj)) = ( N k , A ) > 0 ( \ < i , j < n - 2 k ) .

Under these choices, the maximal possible value for the rank of the above

matrix is (n - 2k) - (d - 2m + 2k). From (4.3) this rank must be n - 2k.

Therefore d = 2m - 2k and

(^iΛ Λe2m-2*> *1 Λ * Λβ2m-2*) ^ °'

By changing the sign of some aJ9 if necessary, we may assume this product to

be positive, and if

A' = ax Λ * * Λ*2m-2*>

we have

(4.4) (N^A')>Q.

(4.5) Theorem. Let x: S2 —» Sn be a generalized minimal immersion, and m

the integer such that 2m + 1 is the dimension of the subspace W of Rn+ι

spanned by x(S2). If for an integer k, 1 < k < «/2, there exists a constant

decomposable vector A G /\n~2k(Rn+ι) such that (A, Nk) > 0, then k > m. In

particular, if (A, Nx) > 0 for A E An~2(Rn+ι), then x is the totally geodesic

immersion of S2 into Sn.

Proof. We will show that for each k9 1 < k < m, and any A G

/\n~2k(Rn+ι), the function (Nk, A) has zeros. By the previous lemma it is

enough to prove this for the case W = Rn+ι, that is, when n = 2m and X(S2)

is not contained in any lower dimensional subspace of R2m~*~K Under such

hypothesis we are in a position to apply the results obtained in the previous

chapter. The proof will depend on the following lemma.

(4.6) Lemma. The function \og(Nk, A) is superharmonic whenever (Nk, A) is

nonzero.

Let us postpone the proof of the lemma and proceed with the proof of the

theorem. If (Nk, A) is positive over all of S2, then the function log(Λ^., A) is

globally defined, superharmonic in S 2 , and therefore constant. Hence (Nk, A)

is also constant. We wish to conclude that Nk itself is constant. To this end

we start by observing that either Nk = A or (Nk, A) = c with 0 < c < 1. In
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the last case there is a neighborhood v of A such that, for any B belonging to

v we have (B, Nk) > 0. Since A E G(2m - 2k, 2m + 1), u = v n G(2m -

2k, 2m + 1) is a neighborhood of A in G(2m - 2k, 2m + 1). We may always

choose n(k) + 1 linearly independent vectors A1, . . . , An{k) of Rn(k)+ι be-

longing to u. Such choices are possible because G(2m — 2k, 2m + 1) is real

analytic and does not lie in any lower dimensional subspace of /tπ<*>+1. For

each one of the AJ, we can repeat the previous argument and conclude that

(Nk, AJ) is constant. Therefore Nk is constant.

Now if Nk is constant, it follows that Fk = 0, and, by (3.7), ξm~k must be a

linear combination of £, ,ξm~k~ι. Thus the subspace generated by

£, , ξm~ι in c2m+ι has at most dimension m — k. Hence the subspace

spanned by Gλ, , Gm has also dimension less than or equal to m — k. But

this is a contradiction, since the dimension of this subspace is m and k > 1.

Proof (of Lemma 4.6). Let ax, a2, , alm_ln be a basis for A. We may

form the complex vectors b}_λ = 1/V2 (α, + iaj+m_k), I < j < m - k. Now

*o> ' ' * > ^m-k-v *o> " " ' > ^m-k-ι ^s a basis for the complex subspace 5 of

C 2 m + 1 generated by Λ. Then Λ can be represented by

B = h/\ /\bm_k_x/\bQ/\ Λ*m-*-i =

and, locally, (iV ,̂ Λ) = I ψ ^ l " ^ , 5). Hence

(4.7) 3Θ l o g ( ^ , ^ ) = -38 log |^ | + 33 log(ψΛ, B).

Since 33 log|ψΛ| = &,_*_! Λ C-Λ-ilVlin-ik-il4» w e c a n reduce the proof
of the lemma to showing that 33 log(ψA:, B) < 0. We have that

(4.8) 93 log(ψ,, B) = — l — {(ψk, B)(ddψk, B) - (3ψ,, B)(dφk, B)},

where

(4.9) (ψΛ, 5) = ( i Λ Ϊ Λ ξ 1 Λ ί 1 Λ A*1"-*"

Let ϋ0, ϋ 1 ? . . . , v2m_2k+ι be vectors in C2m~2k defined by
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Then we have

(ψΛ, B)(ddψk9 B) - (3ψfc, B)(dφk9 B)

= (t?0Λ Λ ^ - ^ - i ^ o Λ Λv2m_2k_3Λv2m_2kAv2m_2k+ι)

(4.11) - (t? 0Λ * Λv2m_2k_3 Λv2m_2k Λv2m_2k_l9

VoΛ ' ' Λv2m_2k_3Λv2m_2k_2Λv2m-2k+ι)'

Using Sylvester's theorem for determinants (see [9, p. 78]) we obtain

33 log(ψΛ, B)

^ Λ T ) = 7 ^ ( ϋ o Λ * * * Λt) 2 w - 2 f c -3 Λ v2m_2k_ι A v2m_2k+l9

B

V0 Λ Λϋ2m-2*-3 Λ ϋ 2 m _ 2 Λ Λ ^ 2 w-2Λ-2)

To simplify this expression, we consider the linear map / : C2m~2k —> C2m~2k

defined by

J(zφ w0, zv Wp , zm_^_!, wm_k_ι)

= (Wo, Z0, Wp Zl9 , W,,,.^!, Z m _ ^ _ ! ) .

We have /ϋ2y = v2j+\ and 7i}2;.+ 1 = v2J. Thus

(4 13) = ( - 1 ) m " " " 1 ' / ( t ; o ) Λ Λ/(υ 2 m _ 2 ,_ 3 )

Λ A^2ι».-2Λ-2) Λ ^(«2m-2ik)

= (-l)m~ / C"1(det/)ϋ0Λ * ΛV2m-2k-3ΛV2m-2k-2ΛV2m-2k

Since det / = ( - 1 Γ " Λ , ( 4 !2) and (4.14) give

33 log(ψΛ, B) = —^ - | i ? 0 Λ Λ^2m-2it-2 Λ v2m_2k\
2.

(^ Bf
Therefore 33 logίψ^, B) < 0, and the proof of the lemma is complete.
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