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ISOMETRIC HOMOTOPY AND
CODIMENSION-TWO

ISOMETRIC IMMERSIONS OF THE ^-SPHERE
INTO EUCLIDEAN SPACE

LEE WHITT

Introduction

It is a well-known result in differential geometry that any isometric immer-
sion of the constant curvature sphere 5 " ( c R n + 1 ) into flat Euclidean space
RΛ + 1 is the restriction of a rigid motion of RΛ+1. Easy examples in higher
codimensions show that the obvious generalization is false. For example, the
"cylindrical rolling" g: Sn -+ RΛ + 1 defined by

(Pv ' * * >Pn+ι)-*(<*>*P\> sin/>!,/>2, ,pH+l),

where p\ + +/>2

+1 = C, is not the restriction of a rigid motion of RΛ+2.
However, g can be deformed into a restriction by "unrolling" it, i.e., by a
homotopy through isometric immersions. In this paper, we prove that every
isometric immersion of Sn into R π + 2 {n > 3) is isometrically homotopic to the
restriction of a rigid motion of R π + 2 (Theorem 3.1). Clearly these restrictions
are the inclusions of Sn into hyperplanes Rπ + 1 c Rπ + 2. A similar result is
obtained for isometric immersions of Rm into RΛ with zero normal curvature
(Theorem 3.3). Both results are corollaries of a more general theorem (Theo-
rem 2.1). Namely, a 1-ρarameter family of Riemannian manifolds produces a
homotopy through isometric immersions. This is essentially a 1-parameter
version of the existence theorem for isometric immersions (cf. [1, Theorem 5,
p. 202] or [13]).

The cylindrical rolling above obviously extends to an isometric immersion
of Rπ + 1 into Rπ + 2. However, there do exist isometric immersions/: Sn ->
R n + 2 which do not isometrically extend, not even to a neighborhood of
Sn c RΛ+1, [7], [15]. In contrast [15], if/^/i: Sn -+Rn+2, n > 3, are isometric
immersions, then an isometric homotopy {/,} can be chosen so that/, extends
isometrically to a neighborhood of Sn

9 for t φ 0, 1 (the neighborhood
depends on / and may be chosen to contain the disc Dn+ι c R n + 1 ) . Finally,
every isometric immersion/: S"1 -» RΛ+2, n > 1, extends to an immersion (not
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necessarily isometric) of a neighborhood of Z) n + 1 (Corollary 3.2).

This paper is part of the author's Ph.D. thesis at Yale University. The

author would like to thank Professor R. H. Szczarba for his continual

encouragement and valuable advice.

1. Preliminaries

Throughout this paper, all mappings, manifolds, bundles, etc., will be

differentiable of class C0 0, unless otherwise indicated. We assume that Sn has

constant curvature 1, although none of our results are affected if 1 is replaced

by any positive constant C.

Let M be a Riemannian n-manifold and let φ: M-±Rq be an isometric

immersion with normal bundle v(φ). This bundle has an induced bundle

metric obtained by regarding the fibres as subspaces of Rq. Let V (resp. V) be

the Riemannian connection of Rg (resp. M). If X and Y (resp. N) are tangent

(resp. normal) vector fields on M, then

χ x AXN + DXN,

where the right side is the decomposition into tangent and normal compo-

nents. The second fundamental tensor B depends only on X and Y at each

point, and hence is a linear mapping B: TM ® TM^>v(φ). The second

fundamental form A depends only on X and N at each point, and hence is a

linear mapping A: TM ® p(φ) -+ TM, These are related by <B(X, Y), N) =

(AXN, Y), where < , ) denotes the metric in both TM and v(φ). It is easy to

see that A is symmetric, or equivalently, B(X, Y) = B(Yy X). D is the normal

connection and satisfies the compatibility condition

X' (JNX9 N2) = (DXNV N2) + <#„ DXN2).

The curvature form of D is given by the usual formula

R(X, Y)N = DXDYN - DYDXN - D[XY]N.

The following equations are necessary conditions for the existence of φ:

(Gauss) R(X' Y ) Z = A χ B { Yf Z ) " Λ γ B { X ' Z ) '

R(X, Y)N = B(AXN9 Y) - B(X, AYN);

(Codazzi-Mainardi)

VXAYN - VYAXN - A[XfY]N = AYDXN - AXDYN9

where R is the Riemannian curvature tensor on M, and Z is a tangent field.

The existence theorem states that the above conditions are sufficient (see

especially [13]).
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Existence theorem 1.1. Let M be a simply connected Riemannian n-mani-

fold with a Riemannian m-plane bundle v over M equipped with a second

fundamental form A, an associated second fundamental tensor B, and a compati-

ble normal connection D (compatible with the Riemannian metric on v). If the

Gauss and Codazzi-Mainardi equations are satisfied\ then M can be isometri-

cally immersed in R Λ + m with normal bundle v, normal connection D, and second

fundamental form A.

The rigidity theorem states that an isometric immersion is essentially
determined by its Riemannian data.

Rigidity theorem 1.2. Let φ, φ': M->Rn+m be isometric immersions of a

connected Riemannian n-manifold (not necessarily simply connected) with nor-

mal bundles v, vf equipped as above with bundle metrics, connections', and second

fundamental forms. Suppose that there is an isometry s: M —> M which can be

covered by a bundle map s: v —» v' preserving the bundle metrics, the connec-

tions, and the second fundamental forms. Then there is a rigid motion SofRn*m

such that S ° φ = φ' ° s.

2. Isometric homotopy

Let M and M' be Riemannian manifolds. A mapping H: M X / —> M'
(I = [0, 1]) is an isometric homotopy if H(-, t): M-* M' is an isometric
immersion for all /. In this paper, we will consider only the case where M' is a
Euclidean space. Recall that C°° differentiability is assumed everywhere; as
usual, a mapping defined on a manifold with boundary is C 0 0 if it C 0 0

extends to an open neighborhood.

Let i> be a Riemannian w-vector bundle over M with projection π: v —» M.
We use < , > to denote the metric on both TM and v since no confusion
seems likely.

Definition. The 3-tuple (A, B, D) is a \-parameter family of Riemannian
data on v, or on M, if the following conditions are satisfied:

(1) A is a 1-parameter family of second fundamental forms, i.e., there is a
mapping A: (v ® TM) X / —» TM, and for each t, A' is a second fundamen-
tal form. Define the second fundamental tensor B: (TM ® TM) X /-> v by
the usual formula, for each t.

(2) D is a 1-parameter family of bundle connections on v, each compatible
with < , ), i.e., by choosing a local orthonoπnal framing of v, there is an
associated 1-parameter family of connection 1-forms ω̂  : TM X /—»R satis-
fying ωv = -ωβ, for each 1 < i,j < m.

(3) For each t, the data (A\B\D*) satisfy the Gauss and Codazzi-
Mainardi equations.
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We will frequently use the notation {A*}, {B*}, and {/)'} for A, B, and D.

Let M be a simply connected Riemannian /ι-manifold and let v be a

Riemannian m-plane bundle. If (Λ, B, D) is a 1-ρarameter family of Rieman-

nian data on p, then for each t G /, we can apply the existence theorem to

obtain an isometric immersion/,: Af-»R r t + m realizing v, A\ B\ and D*.

Furthermore, if we choose/? G M and fix orthonormal frames {Xv , Xn)

C TpM and {Nv , iVm} C ^ , then by the rigidity theorem, ft is uniquely

determined by the conditions

/,(/>) = origin of Rn+/M,

(2.1) <//Λ = <?,., / = 1, , n,
Ni = en + i> I = 1, , W,

where {el9 , e Λ + m } is the standard basis of R n + m. We will prove

Theorem 2.1. Let M be a connected, simply connected Riemannian n-mani-

fold, and let v be a Riemannian m-plane bundle over M. Let (A, B, D) be a

l-parameter family of Riemannian data on v, and let ft\ Λf-»R Λ + m be the

unique isometric immersion realizing v, A\ B\ and D\ and satisfying (2.1).

Then the map {/,}: M X / - » R Π + W , defined by {/,}(*, s) = fs(x), is an

isometric homotopy.

Proof. It is sufficient to show that {/,} is C 0 0 differentiable. Since the

existence theorem plays an essential role, we begin with an outline of its proof

for each/ r More details can be found in [13], [14]. Let Tv « H' θ V be the

decomposition into horizontal and vertical subbundles defined by the connec-

tion D*. We define a (possibly singular) metric gt on Tv to be the orthogonal

direct sum of the metric on V* induced by the identification V* « π*v from

the given metric on v, and the (possibly singular) metric < , ) r on H* given by

(X, ?>, = (X 4- A£N, Y + A^N},

where Xy Ϋ G TNv are horizontal, X = π+X, Ϋ = π+Y, and < , > is the

metric on TM. Actually, there is a tubular neighborhood Wt of the zero

section in v on which gt is positive definite.

For a fixed /, the following two lemmas complete the proof of the existence

theorem.

Lemma 2.2. If the Gauss and Codazzi-Mainardi equations are satisfied by

A\B\ and D\ then the metric gt defined on W* is flat.

Lemma 23. Suppose Mγ and M2 are flat Riemannian n-manifolds with Mx

simply connected and M2 complete. Then there is an isometric immersion of Mλ

into M2.

To determine the effect of varying t, first note that the differentiability of A

and D implies, by construction, that the 1-parameter family of (possibly
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singular) metrics {#,}: (7V ® Tv) X /-»R is C0 0. Since / is compact, it

follows that there is a tubular neighborhood W of the zero section in v on

which g, is positive definite for all t G /. Hence W possesses a 1-parameter

family of flat metrics.

Let Fg: W-* Rn+m be an isometric immersion given by Lemma 2.3 which

realizes the metric gr According to the rigidity theorem, Ft is uniquely

determined by the following data at/? E Λf, analogous to the data (2.1).

Ft(p) = origin e Rπ + m,

(2.2) ΛtfX;) = *„ i = 1, , n,

dFt{N^) = en+i, i = 1, , m.

In this case Fg^ = /,. Hence the theorem follows once we establish the C°°

differentiability of {Ft}.

Each Ft is essentially a solution to the geodesic system of differential

equations. To see this, let Ut = exp~\FgW), where exp: Γ0RΛ + m ->R Λ + m is

the usual exponential map. By identifying Tp W with Γ0RΛ + m according to the

data (2.2), we may consider a modified exponential map exp,: Ug~-± W

(modified in that we allow broken geodesies). Since W is simply connected

and flat, it follows that exp, is a well-defined isometric diffeomorphism. Let

U = {(*, t)\x G £/„ t G /} and define E: U^ W X / by £(;c, /) =

(exρ,(x), 0 The C 0 0 differentiability of ^ follows from the theory of differen-

tial equations, namely, the C°° dependence of solutions (geodesies), on all

parameters (see, for example, [2, Theorem 1, p. 335]). In particular, E is a

diffeomorphism. Now consider the composition

E~ι i _,. exp
W x / -+ t/-» ΓoR*4-"1 -> Rπ + m,

where / is the inclusion Ut ^ ΓoRn + m for each t. This composition is C0 0, and

must be {Ft} according to the rigidity theorem.

Remark. Szczarba [12, p. 39] indicates how his proof of the existence and

rigidity theorems can be adapted to the study of isometric immersions into

spheres and hyperbolic space. In a similar way, the proof of Theorem 2.1 can

be adapted to the study of isometric homotopies in spheres and hyperbolic

spaces. Of course, we would have to suitably modify the Gauss and Codazzi-

Mainardi equations. The details have not been carried out.

3. Spheres and cylinders

We will apply the results of the previous section to obtain the following

rigidity-type results for isometric immersions.

Theorem 3.1. Let f: Sn -^ RΛ + 2 (n > 3) be an isometric immersion of the
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constant curvature sphere into Euclidean space. Let i: Sn ^ Rn+ι ^R"" 1 " 2 be

the standard inclusion of Sn into a hyperplane of R n + 2 . Then there is an

isometric homotopy {/,} withfλ = fandf0 = i.

Corollary 3.2. The Smale invariant Ω(/, /) is zero, for all n. In particular, f

extends to an immersion of the (n + \)-disc Dn+ι.

Proof of Corollary. For n > 3, from [12, Theorem A] and the remark

immediately following it, it follows that Ω(/, i) = 0. Now [12, Theorem E]

states that/extends to an immersion of Dn+ι if and only if Ω(/, /) = 0.

For n = 2, it is shown in [9, Theorem 8.2] that the regular homotopy class

of an immersion h: S2 —> R4 depends only on the Euler class χ of the normal

bundle v(h). If, in addition, h is an isometry, then it is not difficult to show

that the mean curvature field of h is a nowhere zero section of v. Hence

χ(V) = 0 and h is regularly homotopic to an inclusion i: S2 °* R3 °* R4. Thus

[12, Theorem E] implies that h extends to an immersion of D3.

Finally, the case n = 1 follows from [12, Theorem B].

Theorem 3 3 . Let f: Rm -» R" be an isometric immersion such that the

normal curvature is zero, and let i: Rm °* R" be the standard inclusion. Then

there is an isometric homotopy {/,} withfx = fandf0 = i.

Corollary 3.4. Iff: Rm —» R m + 1 is an isometric immersion, then f is isometri-

cally homotopic to i: Rm °-> R m + 1 .

Proof of Corollary. Since the normal bundle v{f) is one-dimensional, it is

immediate that the normal curvature is zero, q.e.d.

A result of Hartman and Nirenberg [5] states that any isometric immerson

of Rm into Rm + 1 is a cylinder erected over a plane curve. In Corollary 3.4, the

homotopy unrolls the cylinder into a hyperplane. Similarly, a result of O'Neill

[11] states that if/: R m ->R n has constant relative nullity (in the sense of

Chern and Kuiper), and the normal curvature is zero, then / is a generalized

cylinder, i.e., as a Riemannian product,/ = / X 1: Rm~k X R ^ R " " * X Rk.

In Theorem 3.3, the homotopy unrolls/, or more particularly,/.

Proof of Theorem 3.3. Let A1, Bι, D1 be the Riemannian data on the

normal bundle v(f) = v. We construct a 1-parameter family of Riemannian

data on v by setting A' = tAι, B* = tBι, and D* = Dι (not tDι). Using the

hypothesis R(X, Y)Z = 0 = R(X, Y)N, these data are easily seen to satisfy

the Gauss and Codazzi-Mainardi equations. Hence, by Theorem 2.1, / is

isometrically homotopic to an isometric immersion/0: Rm -» Rπ with Rieman-

nian data A0 = B° = 0 and D° = Dι. Since B° = 0, the image of/0 is totally

geodesic and thus is an m-plane in Rπ. If this w-plane needs to be relocated in

Rπ, then we use a 1-parameter family of rigid motions of RΛ.

Proof of Theorem 3.1. The construction of the 1-parameter family of

Riemannian data is slightly more complicated here than in the flat case. For
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n > 3, there exist two global orthonormal sections Nl9 N2 of the normal
bundle v(f) which satisfy

ANι = Identity, τaήkAN2 < 1.

(Henke [6] and Erbacher [4] independently obtained continuous normals for
n > 4, and Moore [10] extended to n > 3 and proved C 0 0 differentiability.)

For each /, we define Riemannian data on v (viewed as an abstract 2-ρlane
bundle with a framing JV,, N^) as follows

AtNι=AιNι, AtN2=tAxN2, D* = tD\

where the superscript 1 refers to the data of/. B* is defined by Ax as in §1.
Since these data satisfy the Gauss and Codazzi-Mainardi equations for t = 1,
it easily follows that these equations are satisfied for all t. By Theorem 2.1,
there is an isometric homotopy {/} with/j = /. At t — 0, we see that N2 is
parallel, i.e., A°N2 = D°N2 = 0, and hence /0 is an inclusion of Sn into a
hyperplane. If necessary, this hyperplane can then be relocated in Rπ + 2 by a
1-parameter family of rigid motions of RΛ+2. q.e.d.

We conclude with some remarks about isometric immersion/: S" -» RΛ+2,
n > 3. The proofs are essentially given in [15].

Although / need not extend isometrically to a neighborhood of 5"1, it is
close in several respects. As mentioned in the introduction, there is an
isometric homotopy {ft} so that/ does extend to a neighborhood for / < 1.
Furthermore, / extends to a unique continuous map F: Dn+ι -»R n + 2 such
that F is a C°° isometric immersion on the interior of D π + 1 . Also, if G is the
nonumbillic set of /, and Uo is the interior of the umbillic set, then / extend
isometrically to a neighborhood of G \j t / 0 C ί " c R " + I . So it is on the
boundary of the umbillic set where / misbehaves. The proofs of these
extension results consist of extending the Riemannian data of /, and then
applying the existence and rigidity theorems.
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