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HARMONICALLY IMMERSED SURFACES

TILLA KLOTZ MILNOR

1. Suppose S is an oriented surface with Riemannian metric ds2. It is well

known that a conformal immersion of S in a Riemannian manifold Mn is

harmonic if and only if it is minimal [4]. In §3, we show that an arbitrary

immersion X: S —» Mn is harmonic if and only if it is "Λ-minimal" with

respect to the conformal structure R determined by ds2 on S. (See §2 for the

definition of Λ-minimal.) This characterization yields information about the

differential geometric properties of harmonically immersed surfaces, much of

which is developed in §4 and §5 without use of compatability conditions. It

would be nice to have a more nearly complete picture of harmonically

immersed surfaces, in order to compare their behavior with the much studied

behavior of minimal surfaces. Although less is needed, we assume C°°

smoothness everywhere.

The author wishes to thank D. Koutroufiotis and F. E. Wolter for helpful

conversations, J. Eells, H. Kaul and L. Lemaire for references on harmonic

mappings, and the geometers at the Technische Universitat in Berlin for their

hospitality during the period when much of this work was done.

2. In this section, we explain notation and review definitions. Throughout

the paper, S denotes an oriented surface with Riemannian metric ds2 =

OjjdXj dxj9 and Mn a Riemannian manifold of dimension n > 2. An immer-

sion X: S -» Mn yields an induced metric / = gέJ dxt dxj which is usually not

proportional to ds2. In terms of local coordinates on Mn, we write X = (Xa),

X" = dXot/dxi and X"j = d2Xa/dxidxJ. Summation occurs on each repeated

index within a single term.

Anywhere on S, there are ίfc2-isothermal coordinates xv x2 in terms of

which ds2 = σn(dx2 + dx%). (See [2, §4.]) Then z = xx + ix2 is a conformal

parameter on the Riemann surface R determined by ds2 on S. An immersion

X: S -» Mn is harmonic if and only if, for each α and for any ώ2-isothermal

coordinates xv x2onS,

(l) x% + t%x$x} = o,

where Γ£γ are the Christoffel symbols for the metric on MΛ. (See [4] or [7].)
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Given a normal vector field N (local or global) for an immersion X:
S -> MΛ, one obtains a second fundamental form II(Λf) = b^N) dxt dxj and
associated functions

H{N) = \{bn(N)g22 + M^OSn " 2bl2(N))/dtt(giJ),

H'{N) =^H2(N) - K(N) .

Denote the quantities H(N) + #'(iV) and # ( # ) - //'(JV) by *,(#) and
k2(N) in an order dictated by particular circumstances. Thus kλ(N) > k2(N)
is not automatic. But 2H(N) = kx(N) + k2(N), K(N) = kx(N)k2(N) and
i/'(jV) = |A:2(iV) - *i(iV)|. Usually one calls K = K(N) total curvature, i/ =
H(N) mean curvature, and fcj = kγ(N) and A:2 = k2(N) the principal curva-
tures associated with N.

An immersion of one surface in another is said to be minimal if and only if
it is conformal. For n > 3, an immersion X: S -» Mn is minimal if and only if
H(N) = 0 for every N. Equivalently, the immersion is minimal if and only if
the mean curvature vector field

% = H(Ny)Nτ

vanishes. Here Nl9 - , Nn_2 is any othonormal frame field for the normal
spaces associated with X: S —> M", and the index γ runs from 1 to n — 2.

The definitions of H and % suggest consideration of the quantities

H*(N) =\{bu(N)o22 + b22(N)σn - 2612(tf)σ12)/det(σ</)

and the vector field

%* = H*(Nγ)N .

We call %* the *&2-mean curvature vector field on S. Thus % is just the
/-mean curvature vector field on S. It is easy to show that %* is the normal
component of the tension vector field of the immersion X as defined in [4],

Denote by SI an arbitrary Riemann surface defined on S. To work on SI,
use those coordinates xl9 x2 on S which yield a conformal parameter z — xx

+ ix2 on SI. Let A = aiy- dxt dxj be a real quadratic form on S. Then on SI,
Λ = 2 Re Ω + Γ where Ω = Q(A, SI) is a quadratic differential given by

4Q(A, SI) = (au - a22 - 2iaι2) dz2,

and where Γ = T(A, SI) is a conformal metric given by

2T(A, SI) = au dz dz.

(See [14]). Call Ω = Ώ(A, SI) holomorphic if and only if au — a22 — 2iaι2 is
complex analytic in z for every conformal parameter z on SI.
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Let Rι be the Riemann surface determined on S by I. When <3l = Rv

Ω(I, &) = 0 and Γ(II(iV*)> <3l) = gnH(N)I. Thus Ω(I, R) = 0 is holomoφhic
and Γ(II(ΛΓ), Λ) = 0 for a minimal immersion X: S -> Mn. We are thus led
to the following notion.

Definition. An immersion X: S -» Mn is R-minimal if and only if Ω(I, R)
is holomorphic and Γ(II(iV), R) = 0 for any choice (local or global) of a
normal vector field N.

An Λ-minimal immersion is minimal if and only if R = Λj. Clearly, the
definition can be restated as follows.

Definition'. An immersion X: S —» Mn is /^-minimal if and only if Ω(I, R)
is holomoφhic with vanishing d!s2-mean curvature vector field %* (that is,
with H*(N) = 0 for every N).

The condition 9C = 0 is by itself enough to characterize a minimal immer-
sion when n > 3, since Ω(I, Λ,) = 0 is automatically holomoφhic. But the
condition %* = 0 is not sufficient to insure an R-minimal immersion, as the
following example illustrates.

Example 1. Suppose S is a surface in Euclidean 3-sρace E3 with total
curvature K = - 1 . Take the form IF defined by λ/H2 + 1 IF = //Π + I as
the Riemannian metric ds2 on S. The usual asymptotic Tchebychev coordi-
nates ([13], p. 528) are IF-isothermal. Thus Γ(Π, R) = 0, so that %* = 0, but
Ω(I, /£) is not holomoφhic.

Of course, an immersion need not be Λ-minimal just because Ω(I, R) is
holomoφhic. This is obvious for n > 3 in case R = Rv The following
illustrates the point with R ^ Rv (See Remark 5 for examples of /^minimal
immersions with R ^ Rv)

Example 2. Suppose S is a surface in E3 with A" = 1. Take II as the
Riemannian metric ds2 on S. Then Ω(I, R) ^ 0 is holomoφhic, (see [8].) But
Γ(Π, Λ) = II is positive definite, so that %* 5* 0.

3. This section includes a characterization of harmonic immersions X:
S -> Afn. All notation is taken from §2. In particular, Latin indices run from
1 to 2, Greek indices from 1 to n, and γ from 1 to n — 2.

Theorem 1. An immersion X: S —> ΛfΛ w harmonic if and only if it is

R-minimal.

This result is known for maps X: S -+ M2. (See [5], and the references
listed there.) It is also known that Ω(I, R) must be holomoφhic for any
harmonic map X: S -> M". (See [3] and [12].) We work with immersions in
order to insure for n > 3 a well defined normal space at each point. For the
sake of completeness, a full proof of Theorem 1 appears below.

Proof. Let Nv , Nn_2 be an orthonormal frame field (local or global)
for the normal spaces associated with X: S -+ Mn. In terms of local coordi-
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nates on Mn, write Nγ = (Nf). In case n = 2, no Nγ are chosen and the sums
on γ below in (2) and (3) are omitted. The Gauss equations [6, p. 160] for the
immersion are

(2) x« + f%xξx] = τ*x% + bυ(NΎ)N°,

where Γy and Γ£γ are the Christoffel symbols for I and the metric on Mn

respectively. Add the equations obtained by setting i = j — 1 and i = j = 2
in (2). This yields

(3) Δ*« + τ^xζx} = τ*x% + bs(Ny)N;,

where Δ is the Laplacian.

Suppose that X: S -> Mn is /{-minimal. Near any point where R = Rι use
Rι isothermal coordinates. Then I = E(dx\ + dxj). Near any point where
R φ Rι use a special conformal parameter z on /{in terms of which Ω = dz2.
(See [2, p. 103].) Then I = Edx\ + (E - X) dx\. In either case, we have
coordinates at any point in terms of which the sum Γ* = 0. (See [16, p. 107].)
Since TQI(Nγ)9 R) = 0 for each N , the right side of (3) vanishes, yielding (1).
Thus the immersion is harmonic.

Suppose now that X: S -> Mn is harmonic. Use only Λ2-isothermal coordi-
nates on S. Then (1) holds, and the right side of II must vanish. Since the n
vectors Xk and Ny are linearly independent at each point, it follows that the
sums Γ£ and bu(N~) vanish for each k and γ respectively. Thus Γ(II(ΛT), R) =
0 for any normal vector field N9 since IΙ(iV) is linear in ΛT. To see that Ω(I, R)
is holomorphic, choose for each point p on S ίfcMsothermal coordinates
xl9 x2 near/? which are I-orthogonal at/?. Then at/?, the conditions Γ£ = 0 for
k = 1, 2 are just the Cauchy Riemann equations for the coefficient of dz1 in
Ω(I, R). It follows that Ω is holomorphic, so that the immersion is /{-minimal.

Because Ω = 0 is the only holomorphic quadratic differential on a Rie-
mann surface homeomorphic to the 2-sρhere, we have the following result
due to Chern and Goldberg. (For examples of nonminimal harmonic immer-
sions, see Remark 5 below.)

Corollary to Theorem 1 (See [3]). If S is homeomorphic to a 2-sphere, then

any harmonic immersion X: S —> Mn is minimal,

4. In this section, we derive some local properties of harmonic immer-
sions. Our lemmas are stated in rather general terms, so as to distinguish the
separate effects of the two conditions Ω(I, R) holomorphic and %* = 0
which characterize harmonic immersions. The notation of §2 is used
throughout. By K{A) we denote the intrinsic curvature of a nonsingular
quadratic form A.

Lemma 1. If Ω = Ω(A, <3l) ^ 0 is holomorphic for a positive definite
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quadratic form A on a Riemann surface 91, then except at isolated points where
Ω = 0, there is a canonically determined function F > 0 which is superharmonic
where K(A) > 0, subharmonic where K(A) < 0, and constant only if K(A) = 0.

Proof The zeros of a holomorphic quadratic differential Ω 2* 0 are auto-
matically isolated. Near any point where Ω φ 0, there is a special conformal
parameter z = xx + ix2 on 91 in terms of which Ω = dz2, so that A = Edx\
+ (E - 1) dx\ for some function E > 1 (See [2, p. 103].) Since z is de-
termined up to an additive constant or multiplication by - 1 , the function E is
well defined on 91 wherever Ω 5£ 0. The formula for K(A) can be written in
the form

(4) K(A) = — Δcosh"1(2^ - 1),
Λ/E{E 1)

where Δ is the Laplacian. Thus, if F = cosh"" 1 ^ - 1), E > 1 implies that
F > 0. Moreover, ΔF > 0 where #(Λ) < 0, ΔF < 0 where ^(Λ) > 0, and F
is constant only if K(A) = 0. The Lemma follows. (See [1, p. 135].)

Remark 1. Because (4) states that

Δ2< = {{IE - 1)(£* + E$\(2E){E - 1)} - 2E(E - l)K(A)9

the function E > 1 on S is itself subharmonic if #(Λ) < 0 in Lemma 1.
Moreover E > 1 is constant only if Λ{;4) = 0.

Lemma 2. Suppose N is a normal vector field for an immersion X: S -* Mn.
If Γ(Π(iV), 91) = 0 for some one choice of a conformal structure 91 on S, then
K(N) < 0; H(N) = 0 wherever K(N) = 0; and H(N) = K(N) = 0 wherever
H'(N) = 0.

Proof Since 2Γ(Π(iV), 91) = ba(N) dz dz = 0, &U(ΛΓ) = -b22(N) on 91.
But then

(5) K(N)

on 91, so that K(N) < 0. Wherever K(N) = 0, (5) yields bu(N) = bl2(N)
-b22(N) = 0, giving H(N) = 0 also. Since H\N) =^H2(N)- K(N) ,
< 0 forces H(N) = ϋ:(iV) = 0 wherever H'(N) = 0.

Remark 2. If Λ = 3 in Lemma 2, K(N) = A' is total curvature, and the
Gauss curvature equation gives AΓ(I) = K+ 5C, where 5C is the sectional
curvature of M3 in the direction of A^S) at any point. Thus K(J) < 5C for a
harmonic immersion X: S -+ M3, and all umbilics must be flat points. Of
course, K = K{\) < 0 if M3 = E3.

Hereafter, Λ = / 1 + gΙI(Λ^) denotes a positive definite linear combination
of I and H(N), where N is some normal vector field (local or global) for an
immersion X: S -» M. The coefficients / and g are functions. Consideration
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of Λ is prompted by a growing interest in the geometry associated with the
fundamental form other than I. (See [14], and references cited there.) Theo-
rem 2 indicates that Λ = ds2 for a harmonic immersion only if Λ oc I or
Λ oc ΐl'(N), where H'(N)ll'(N) = H(N)ll(N) - K(N)l. By RA, we denote
the Riemann surface determined on S (or part of S) by Λ.

Lemma 3. // Ω = Ω(I, RA) 5* 0 is holomorphic for A = / 1 + gll(N)9 then
except at the isolated zeros of Ω, kx(N) φ k2(N)9 g φ 0, and there are Λ-
isothermal coordinates xv x2 in terms of which (k2(N) — kt(N))gl =
( / + Λ W ) dx\ + (/ + gkγ(N)) dxl with bl2(N) = 0.

Proof. If Ω φ 0, use a special ΛΛ-conformal parameter z = xx + ix2 in
terms of which Ω = dz2. Then I = Edx2 + (£ - 1) tfxf for some function
E > 1 with Λ = μ(dx2 + Acf) for some function μ > 0. Where Ω =5̂  0, RA φ
Rτ and therefore g ^ 0 . Thus Λ = / 1 + g\l(N) yields 612(N) = 0, so that
ll(N) = kx(N)Edx2 + k2(N)(E - 1) dxf. Now

0 < i - £ ( / + gk^N)) = (E- 1)(/ + gA:2(iV))

yields the values claimed for E and E — 1.
Remark 3. An isolated zero of Ω in Lemma 3 has order m = 1, 2,

and must be a singularity with index -m/2 in the net of curves along which
Re Ω = 0 or Im Ω = 0. (See [2] or [8].) If X: S -» M3, these net curves are
lines of curvature on S, and the zeros of Ω are irremoveable umbilics. (If the
immersion is harmonic, these umbilics must be flat, by Remark 2.)

Theorem 2. If X: S -> Mn is harmonic with ds2 = Λ = / 1 + g ll(N),
either RA = Rι or else (except at isolated points where RA = Rx) RA = ΛΠ'(ΛO

where H'(N)II(N) = H(N)ll(N) - K(N)l.

Proof Where RA φ Rλ, 0(1, RA) φ 0, and the special Λ-isothermal coor-
dinates JCJ, Λ:2 of Lemma 3 can be used. Since Γ(Π(7V), RjJ = 0, bu(N) =
-b22(N). Moreover bu(N) φ 0 because bl2(N) = 0 and RAΦRV Finally,
gu Φ g22. By Lemma 4 of [9], xl9 x2 are IΓ(iV)-isotheπnal.

Lemma 4. Suppose that X: S —» M Λ w harmonic for ds2 = Λ = / I +

g II(Λ^), am/ /Λa/ II = IlίΛ^) is a Codazzi tensor with respect to I. Then (except

at isolated points where RA = Rx) there are A-isothermal coordinates xv x2 in

terms of which

(6) (eu - ev)l = eudx\ + eΌdx\, II = e^u+v)/2(dxj - dxj),

where u = u(x2) and v = vix^.
Proof Where RA φ Rl9 use the coordinates xl9 x2 of Lemma 3, writing

I = Edx2 + (E - 1) dx\ and II = L(dx\ - dx2-). The classical Codazzi
Mainardi equations [16, p. 11] must be satisfied since Π(N) is a Codazzi
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tensor with respect to I. Thus

(7) -LJL - EXJ2E{E - 1), LXJL = EXχ/2E{E - 1).

Integrating, there are functions u = u(x2) and v = υ(xx) such that

E β ' ̂  V E-\
Multiplication of these equations gives L2 = eu+v, and division yields (E —

1)/E = ev~u, from which the Lemma follows.

Remark 4. Suppose M3 has constant sectional curvature %. Then II is a

Codazzi tensor with respect to I for any immersion X: S —» M3. Thus the

conclusion of Lemma 4 applies to any harmonic immersion X: S —» M3 with

<is2 = / 1 + g II and g II ̂  0. Note that the forms (6) automatically satisfy

the Codazzi Mainardi equations (7), for any choice of u(x^) and v(xx). Thus

these forms need only satisfy the Gauss curvature equation K(l) = % + K

over a portion S of the xv x 2 "pl a n e t o insure that S can be (locally)

harmonically imbedded in a 3-manifold of constant sectional curvature %

with the given I and II as fundamental forms. To harmonically immerse the

xv jc2-plane as a torus in the unit 3-sphere S3 with ds2 = IΓ for example, one

needs periodic functions u(x2) and v(xγ) in (6) so that K(ϊ) = 1 + K.

Remark 5. Nonminimal harmonic immersions do exist. The plane can be

Λir-minimally immersed in E3 so that I is complete, with H never zero. (See

[11].) The graph of z = xy provides an Λ-minimal imbedding of the xyy-

plane with I complete, ds2 = dx2 + dy2 and R of the form RA only at the

point x = y = 0. To obtain an jRir-minimal immersion of the x9 y plane as a

flat torus in S3, take the forms I = 2dx2 + ay2 and II =VΪ(dx2 - ay2)

which satisfy the Codazzi-Mainardi equations (7) and the Gauss curvature

equation K(l) = 1 + K, since Λ{I) = 0 and K = - 1 . Because the plane is

simply connected, the fundamental theorem of surface theory guarantees that

the Λ:,J>-plane can be immersed in S3 with the given I and II as fundamental

forms. (See [11].) Since the coefficients of I and II are constant, any image

point can be carried to any other by an isometry of S3 which leaves the image

invariant. Thus the plane is harmonically immersed in S3 with ds2 = IΓ as

the 2-dimensional orbit of a group of isometries of S3. It follows that the

plane is immersed as a torus. (Since H φ 0, the immersion is not minimal.)

5. In this section, we derive some global properties of harmonic immer-

sions. The notation of §2 is used throughout. Theorem 3 and its Corollary can

also be derived from the Corollary on p. 124 of [4]. (The remarks in the

example lower on that page may appear to apply, but pertain only to

isometric immersions with I = ds2,)
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Theorem 3. A torus cannot be harmonically immersed in a 3-manifold with
% < 0 unless K(ί) = % = K = 0. (.See [17] /or α .spec/α/ owe.)

/Vro/. The Gauss curvature equation gives K(l) = % + K < 0 because
% < 0, while K < 0 by Lemma 2. The Gauss Bonnet Theorem therefore
implies that K(l) = 0. But then K = % = 0 as well.

Corollary to Theorem 3. The torus cannot be harmonically immersed in a

complete simply connected 3-manifold with % < 0.

Proof. Use Theorem 3 and the fact that K > 0 must hold at some point
for the immersion of any compact surface into E3.

Theorem 4. // X: S —» Mn is harmonic for a metric which determines a

parabolic R on S which nowhere coincides with Rv then K(l) > 0 implies

K(l) = 0.
Proof. Since Rφ Rλ everywhere, Ω(I, R) never vanishes. Lemma 1 there-

fore provides a function F > 0 which is superharmonic if K(ϊ) > 0. But a
positive superharmonic function on a parabolic R must be constant. (See [1,
p. 209].) Thus #(I) > 0 makes F constant, and #(I) = 0.

Theorem 5. // I is complete, K(l) < 0 and Ω = Ω(I, RA) holomorphic but
never zero for Λ = / 1 + g II(W), ί n e n

E = ( / + gk2(N))/g(k2(N) - kt(N))

cannot be bounded unless K(J) = 0. In particular, K(l) = 0 if E is bounded for
a harmonic immersion X: S —» Mn with K(ϊ) < 0 and ds2 = Λ.

Proof. Since Ω is never zero, the local Λ-isothermal coordinates of Lemma
3 are available anywhere, with I = Edx2 + (E - 1) dx\ < E(dx2 + dxj). If E
is bounded, the metric A = dx\ + dx\ (a multiple of Λ) must be complete,
since I is. The universal covering surface S of S is Z£Λ-conformally equivalent
to the plane, because A lifts to a complete flat i*Λ-conformal metric on S.
Thus RA is parabolic. (See [15, p. 394].) If JΓ(I) < 0, then E is subharmonic by
Remark 1. Thus E is constant and #(1) = 0 if E is bounded and #(I) < 0.

Corollary to Theorem 5. Suppose X: S —» Mn is harmonic with I complete,
ds2 = Π'(Λ0, andH'(N)/H(N) bounded. Then K(l) = 0 if K(ϊ) < 0.

Remark 6. When stated for Mn = E3, this Corollary represents a correc-
tion of the Corollary to Theorem 2 in [10].

Proof Use Theorem 5 with Λ = ll'(N) so that / = -K{N)/H'{N) and
g = H(N)/H'(N). It follows easly that 1 < E = k2(N)/(kλ(N) + k2(N)) is
bounded if and only if H\N)/H(N) is bounded, since |A:2(JV)| = H\N) +
\H(N)\.

Theorem 6. If X: S -> Mn is harmonic with ds2 = IΓ(iV) complete,
\K(N)/H(N)\ bounded and K(IY(N)) < 0, then K{Y\\N)) = 0.

Proof. Since 1I'(N) is positive definite, K(N) < 0 and H'{N) Φ 0. If
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\K(N)/H(N)\ is bounded, it must in particular be finite. Thus H(N) φ 0.
But then Rλ never coincides with Ru, and Ω(I, Rιr) never vanishes. Use the
coordinates xl9 x2 of Lemma 3 with / = -K(N)/H'(N) and g =
H(N)/H'(N). Then

2\H(N)\II'(N) = \K(N)\(dx2 + dx2),

so that

(8) K(II'(N)) - -|ΛΓ(ΛΓ)/ΛΓ(ΛΓ)|Δ log|tf(JV)///(Λθ|.

If ^(IΓ(iV)) < 0, then \og\ K(N)/H(N)\ is subharmonic. But if II'(N) is
complete and \K(N)/H(N)\ bounded, then dx2 + dx\ lifts to a complete flat
ΛIΓ-conformal metric on the universal covering surface S of S. Thus S is
ΛIΓ-conformally equivalent to the xv jc2"plane> a n < i ^ir *s parabolic. (See [15,
p. 394].) The bounded subharmonic function \og\K(N)/H(N)\ must therefore
be constant. By (8), K(l\\N)) = 0.

In the next result, we do not assume that ds2 = A=fI + g ll(N). Thus
the coordinates of Lemma 3 are not available. Nevertheless, the Corollary to
Theorem 5 is a special case of Theorem 7.

Theorem 7. Suppose X: S —» Mn is harmonic, I is complete, Ω(I, R) never
vanishes and \K(N)\/H(N)2 is bounded for some N. Then K(l) = 0 if K(ϊ) <
0.

Proof. Anywhere on S there are tfe2-isothermal coordinates xv x2 in terms
of which I = Edx2 4- (E - 1) dx\, while IΙ(iV) = L{dx\ - dx\) +
1M dxx dx2. The definitions of H(N) and * ( # ) yield L = -2E{E - l)H(N)
and L2 + M2 = \K(N)\E(E - 1), so that

M2 = E{E - \){\K(N)\ - 4H(N)2E(E - 1)}

and 4E(E - 1) < |/:(iV)|/if(7V)2. Since | AΓ(iV)|/ΛΓ(iVr)2 is bounded, so is E.
But then the metric A = dx\ + ί/x̂  must be complete because I is, while
I < E(dx2 + dxl). Since A lifts to a complete, flat R conformal metric on 5,
R is parabolic. (See [15, p. 394].) By Remark 1, the bounded function E is
subharmonic if #(I) < 0. Thus E is constant, and #(I) = 0.
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