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UPPER ESTIMATES OF THE LENGTH OF A CURVE
IN A RIEMANNIAN MANIFOLD WITH BOUNDARY

B. V. DEKSTER

1. Introduction

1.1. We establish here upper bounds of the length of a curve in a class of

Riemannian manifolds with boundaries. The upper bounds are expressed in

terms of the curvature of the curve and some characteristics of the manifold.

All manifolds, submanifolds and curves here are supposed to be of class C 0 0

unless otherwise stated. A curve parametrized by the arc length will be said to

be normal.

1.2. In Euclidean case, a similar result is represented by Resetnyak

theorem [6, p. 262]. Its simplified version is as follows.

Resetnyak Theorem. Let x: [0, L]-*Rn be a normal piecewise regular

curve and 8 = max(x(a), x(b)), where the dot denotes the derivative with

respect to the arc length of the curve, /\ means the angle between the two

vectors, and the maximum is taken over all regular points a, b E [0, L], If all

vectors x(s) (at regular points) are directed into the same half-space and

cosδ > -l/(n - I), then

(1.1) L<
Vl + (« - l)cosδ

where r is the distance between x(0) and x(L).

13. The length of a curve in a 2-dimensional surface was estimated by A.

D. Aleksandrov and V. V. StreΓcov [1] in 1953. Their estimates and ours

(when the dimension n = 2) do not follow from one another.

In 1969, Gromoll and Meyer [5, Lemma 6] proved that for any compact set

D in a complete open manifold of positive curvature, there exists a bound λ

such that the length of any geodesic in D is less than λ.
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Recently [3, Introduction], the number λ was calculated explicitly for a

class of the sets D. More precisely, the following Theorem 1.5 was proved

there.

1.4. Basic notation and assumptions. Let M be a compact convex Λ-dimen-

sional (n > 2) Riemannian manifold with boundary Γ. Denote by ks and *c

some lower bounds of the sectional curvature in M and the normal curvature

of the surface Γ (on the side of the interior normal) respectively. Let P2 and

Pn be the simply connected 2-and w-dimensional manifolds of constant

curvature ks (sphere, Euclidean or hyperbolic space). P2 is supposed to be

oriented.

For a normal curve c: [0, L]->P2 with the ordinary curvature |c|, we

consider the oriented curvature, i.e., \c\ with assigned sign + (resp., -) if c

rotates in the positive (resp., negative) direction. The total curvature of a

curve and the total oriented curvature of a curve in P2 are the integrals of the

appropriate curvatures along the curve. These definitions are naturally gener-

alized to a piecewise C2-curve.

We always assume that K > 0 and ks > -κ2. Then in P2 there exists a circle

Mo whose boundary Γo has curvature K. We denote the center and the radius

of Mo by 0 and Ro = R0(κ, ks) respectively.

The distance in M is denoted by p( . , . ), and that in P2

9 Pn by po( . , . ).

A minimal geodesic with end points a, b (in any space) is denoted

sometimes by ab, its length by ab, and its direction (the unit tangent vector at

a point of ab) by ab. We use ( r?. ) and <£ to denote angles.

1.5. Theorem {proved in [3]). Any curve in M with curvature at every point

not greater than χ < K is not longer than a circular arc in Mo of curvature x

whose end points are opposite points of Γo. (In particular, any geodesic in M is

not longer than the diameter 2R0 of Mo.)

We prove the following theorem in §2.5.

1.6. Theorem. Let a curve of length L lie in M and have the total curvature

θ satisfying

(,.2) o J l 0 ^ •" >"2

[0, π / 2 ] , otherwise,

where the precise value of θ* = θ*(κ, ks) is given in §1.7. Denote by lθ the

supremum of the lengths of piecewise C2-curves in Mo such that the straight line

of support of each curve rotates in the same direction as along the curve and

such that the total curvature of each curve does not exceed θ. Then lθ is finite

and

(1.3) L < /,.
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1.7. By [3, (1.1)],

(1.4) max p(X, Γ) < Ro
•X G: M.

cot- 1

coth-1 , .iik,

For ks > κ2, (1.4) implies 2R0 > (2/V*ϊ ) coΓ1 1 = m/QΛ[ks ). Let Y0Z0 be
a diameter of Mo, and Z0V0 be a chord of the length π/(2^/Ίcs). Put
δ = <J Y0Z0V09 and denote by σ the area of the part of Mo bounded by YQZQ,

Z0V0 and the (shortest) arc VQY0 c Γo; see Fig. 1. We set θ* = ττ/2 + 8 -
Jfc5σ. It will be shown in §2.4 that θ* G (0, ir/2).

FIG. 1

1.8. In the case -/c2 < ks < κ2, /̂  is the length of a polygonal line ΛCB
with Λ and B at diametrically opposite points of Γo, AC= CB9 and <$ACB =
π — θ. For Λy > κ2, the extremal line is more complicated. All of these will be
considered in §4.

1.9. Corollary. Let a curve of length L lie in M and have the total curvature
θ > 0. Let numbers 0,, i = 1, 2, , mysatisjy (1.2) andΣT^i #, = θ. Then

(1.5) L <
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(We can prove (1.5) by dividing the curve into m parts with total curvatures θr)

1.10. A nondecreasing piecewise C ^function 2 : [0, oo) —> R with 2(0) =

0 will be called a turn-function if it is continuous from the left and any of its

jumps is less than m.

Our main technical result is the following.

Theorem. Let d E [0, RQ], a E [0, m] and 2 be a turn-function. Denote by

MQ the closed semicircle separated from Mo by a diameter Y0Z0 and such that

the rotation of the radius OY0 to the radius OZ0 within Λf0

+ is positive; see Fig.

2. Suppose there is a mapping γ 0 such that

(i) γ 0 is a normal piecewise C2-curve [0, oo) —> P2;

(in) γo(0) is directed into M o

+ , and (γo(O), OY0) = α;

(iv) the total oriented curvature of γO|[o^] & equal to Ξ(s), s > 0;

F I G . 2

(v) there is a maximum number Lo > 0 such that γo([0, Lo]) c Λ/o

+

(vi) γo(Lo)jE^Γo n Λ/o

+ \ Z o and the curve γO|[o,i,o]> the segment γo(0)Zo and

the arc γ o (L o )Z o of the semicircle Γo n M o

+ bound a nondegenerate region.

(This implies that the region is convex and a < TΓ.) Then any normal curve γ:

[0, L]^>M is not longer than ymL^ (i.e., L < Lo) //

(II) γ(0) forms an angle φ < a with a shortest path y(0)Y, Y E Γ, of the

length p(γ(0), Γ) (or with the exterior normal, ij d = 0);

(HI) |γ(/)| < Z\t) ( = | γ o (OI)/^ those t E [0, L] where Z' exists.

1.11. Corollary. If Έ(s) = χs with x — const > 0, then YOI^LJ & ^ ^P"

propriate arc of curvature χ αra/ Theorem 1.10 w α generalisation of [3, Theorem

1(1)] (/or /Λe cαy^ vvAe/z α > ττ/2, x > K). For χ = 0, // means that any
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geodesic in M which starts at a distance dfrom the boundary and forms an angle

a with a shortest path realizing that distance d is not longer than the longest

segment in Mo with the same properties. Then obviously the length of any

geodesic in Λf starting at a distance dfrom Γ does not exceed γo(0)Zo = 2R0 -

d.

1.12. We prove also in §2.6 that

(1.6) V(M) < V{Mζ\

where V{ . ) means the volume and Mζ is a ball of radius Ro in Pn.

1.13. The equalities hold in the estimates of §§1.6, 1.10, 1.11, and 1.12,

when Λf = λfζ and the curve γ lies in a 2-dimensional plane P2 passing

through the center of Λf so that P2 n M = Λf0. In addition, in the cases of

§§1.10 and 1.11, γ should coincide with 7o|[o,z.0]
 a n ( i the appropriate circular

arc (segment) respectively.

In the case of §1.6, γ should approach the appropriate extremal line in Do;

see §1.8. (The results of §§1.6, 1.10, and 1.11 can be easily generalized to a

piecewise regular γ; then γ should coincide with the above mentioned

extremal line.)

1.14. Let, for example, Λf be a ball of radius RQ in Rn and θ = π/2. We

can take ks = 0, K = 1/ΛO Then Λf0 is a circle of radius Ro in R2 and we

may imbed Λf0 into Λf. According to §1.8, lθ = lv/2 = 2λ/2 Ro. So by

Theorem 1.6 any curve with total curvature < π/2 in the ball M has the

length < 2 V2 RQ. This estimate is realized by a polygonal line ABC C Λf0 c

M with A, B,C e bd Mo c b d M , AS = 2*C, <$ABC = τr/2.

The estimate (1.1) of Resetnyak theorem (which is also exact) applied to

the line ABC yields

Λ B + - B C < - ^
V l + (n - l)cosτr/2

This is rougher than 2V2 Ro. (Of course, there are examples where (1.1)

works better than Theorem 1.6.)

1.15. The restriction ks > -κ2 in Theorem 1.5 and in the further results

can hardly be omitted. Indeed, if ks < -κ2, then one can construct a compact

region of an arbitrary large volume where infinitely long (or closed) geodesies

exist. The example is a tube of curvature - 1 , the curvature of whose edges

grows within the interval (0, 1) when the tube becomes longer.

1.16. Applying the estimate of §1.11 to all geodesies emanating, from a

fixed point in D and using Rauch comparison theorem, we establish in §2.6

the inequality (1.6): F(Λf) < V(Mζ). The idea of such an application was

given to the author by M. L. Gromov whom the author thanks very much.
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2. Proof of Theorem 1.6 and inequality (1.6)

2.1. Let d G [0, /y, a G [0, π], and let 2 be a turn-function. The set

(d, a, 2) will be said to be admissible if there is a curve γ 0 satisfying the

conditions (i)-(vi) of §1.10. (This implies α < 7Γ.)

Let (d, a, 2) be an admissible set, d > 0, and γ0, Lo be as in §1.10.

Rotating γ 0 about the point γo(0), it is easy to notice that (d, a', 2) is an

admissible set for any α' G [0, a], and Lo = L0(a') increases in [0, a].

2.2. We use the notation of §§ 1.10, 1.7 (assuming that Z o Vo c Mo

+).

Lemma. Let d G [0, Ro], a G [0, π), and 2 be a turn-function with 2(oo) =

l im^^ 2(0 < θ satisfying

(2.1) 0<θί <*-<* + δ~ksσ, ifks>κ\
[ < π — α, otherwise.

Consider the curve γ 0 determined identically by the conditions (i)-(iv) of

§1.10. Suppose γo([0, ε]) c Mo

+ for sme ε > 0. (This is always true when

d φ 0.) Then the set (rf, α, 2) is admissible.

23. Proof. Suppose the contrary. Then obviously there is the minimal

λ > 0 such that a chord Z0V of the circle Mo passes through γo(λ) G Λf0

+ and

is situated in a supporting straight line of γ 0 at the point γo(λ); see Fig. 1.

Denote by s the area of the region bounded by the segments Zoγo(0),

Zoγo(λ) and the arc YO|[OΛ] ^ e t $ ^ e ^ e a r e a °f t ' i e figure bounded by ZQYQ,

Z0V and the arc Ϋ^V c Γ o n Mo

+. Put β = <J Y0Z0V; see Fig. 1. (In the

case where Z o = γo(λ) = F, we assign -γo(λ'— 0) as the direction Z0F.)

Obviously, β G (0, π/2]. Notice that total curvature 2 λ of the curve consist-

ing of γO|[o,λ] a n ( ^ ^ e sβg111611* Yo(λ)^o satisfies 2(λ) < 2 λ < 2(λ + 0) <

2(oo). By Gauss-Bonnet theorem, a + 2 λ + (TΓ — 8̂) = 2m — ks s, so that

(2.2) 2(oo) >Ξλ = v - a + β-kg s.

For ks < 0, (2.2) and (2.1) imply 2(oo) > m — a > θ which contradicts to

the assumption-2(oo) < θ.

For ks G (0, κ2\ (1.4) implies 2R0 < m/2'\fks . Note that β/ks is the area

of a circular sector of radius *π/2yks with central angle β in P2. Then

obviously β - kss > β - ksS > 0 for β G (0, ir/2]. Again, (2.2) and (2.1)

imply 2(oo) > m — a > θ which contradicts 2(oo) < θ.

For ks > /c2, the above mentioned inteφretation of β/ks shows that β —

ksS as a function of β G (0, π/2] is minimal (and negative) at β = δ; see Fig.

1. By (2.2) and (2.1), we have

(2.3) 2(oo) > IT - a + δ - ksσ > θ,

which contradicts 2(oo) < θ.
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2.4. The expression Ea = π - a + δ - ksa in (2.1) can be negative.

(Then (2.1) makes no sense.) But Ea > 0 if a < ττ/2. In fact, Ea > Ew/2 =

π/2 + δ - ksσ = θ*; see §1.7. By Gauss-Bonnet theorem, θ* is the total

curvature of the curve consisting of the arc Y0V0 c Γo and the chord F 0Z 0, so

that θ* > 0. As it was mentioned at the end of §2.3, δ - ksσ < 0, so that

θ G (0, π/2).

2.5. Proof of Theorem 1.6. Let a normal curve γ: [0, L] —» M be that one

mentioned in §1.6. Applying [4, Lemma 2] to the one-dimensional manifold

[0, L] with the immersion γ, we find that the point γ(λ) most distant from Γ

has the following property. There exist (possibly coincident) shortest paths

y(λ)Yι and γ(λ)y2, Yx 6 Γ , Y2 G Γ, of the same length d = p(γ(λ), Γ) > 0
def •*-—"*>*- > Hef " " ^ " ^ >

such that ψ, = (-γ(λ), γ(λ)y,) < π/2 (if λ Φ 0), φ2 = (γ(λ), γ ί λ ) ^ < π/2

(i fλ^L).

Consider the curves γ,: [0, λ] -+ M and γ2: [0, L — λ] -» Λf given by the

formulas^/) = γ(λ - /), γ2(/) = γ(λ + ί) Then (γ,(0), 7,(0)7,') = φ, <

π/2, (γ2(0), γ2(0)7^) = φ2 < ττ/2. Put

, /e[0,λ],

Then θ = θx + θ2 where θt = 2 f (oo) > 0, i = 1, 2. So θ, satisfies (1.2) and

consequently (2.1) with α = π/2. By Lemma 2.2, the set (d9 π/2, St) is

admissible. Let γ0/ and LOi satisfy the conditions (i)-(vi) of §1.10 for the set

(d, a, S) = (d, π/2, Ξt).

By Theorem 1.10 we have λ < L0 1 and L — λ < L^. It means in particular

that the total curvature of γol |[0 ^ is equal to θr Addition yields L < LoX +

Lo2. But Lo l + Lo2 is the length of a curve which consist of γ îno,̂ ,] a n ( i the

specular reflection of the arc yo2\[o,^2] with respect to the diameter Z0Y0. The

straight line of support of such a curve rotates in the same direction as along

the curve, and its total curvature is θx 4- θ2 = θ. That is why L < lθ.

Finiteness of lθ is quite obvious (see also §4.2).

2.6. Proof of inequality (1.6). Let X G int M, and let XY, Y G Γ, be a

shortest path of the length p(X, Γ). Let w G Γ X M be a unit vector, and z(u)

be the maximum number such that the geodesic gu: [0, z(w)]->Af with

&/0 = e x P * ( M 0 is a shortest path.
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Let us put Φ = 0 u {a E TXM\ \a\ ψ 0, \a\ < z(a/\a\)}. Obviously, the set

Ψ = exρ^(Φ) = M \ (C U Γ) where C is the cut locus for the point X. The

mapping exp^ restricted to Φ is one-to-one. As in [2, Lemma 9], one can see

that the set C has Λ-dimensional measure zero. Therefore

(2.4) V(M) - V(Ψ),

where V( . ) denote the volume.

Let 0 be the center of the ball M£, Of be its radius, and the point X E Of

be such that XΫ = XY (< Ro; see (1.4)). Denote by i: TXM -> TxMζ an

arbitrary isometric mapping which transforms the direction of the shortest
/v <« def

path XY into the direction of the segment XY. Let / = exp^ ° ί. ° exp^1:
w def

Ψ -> Pn. We want to show that Ψ = f(Φ) c Mξ and consequently that

(2.5)

Let a point B G Ψ, B φ X, and let XB be the (unique) shortest path with

the end points X, B. Consider P2 passing through the radius Of and the

geodesic f(XB). Obviously, P2 n M£ = Mo, and the geodesic f(XB) c P2

has length XB and forms the same angle with XΫ as the shortest path XB

with XY. Now by §1.11 we have f(XB) c Mo, so that/(5) E Λ/O

n.

On the strength of (2.4) and (2.5), the proof will be completed if we show

that V(Ψ) < K(Ψ). For this, it is enough to establish that/*: TΨ -+ TΨ does

not decrease the length of tangent vectors; then the mapping / does not

decrease volume since for any point 5 G Ψ the mapping f+B: TBΦ-* TβΨ

(B = f(B)) can be reduced to expansions into n pair-wise orthogonal direc-

tions and an orthogonal transformation.

L e t 5 6 Ψ , 5 ^ I and w e TBΨ. We need to show that 1/̂ (̂ )1 > |w|. Let

vectors w~ and w± E TBΨ be such that w = w~ + w1, w" ±w±, and >v" is

directed along the shortest path XB. It follows easily from the definition off

that /+(w") is directed along XB, |/*(w")| = |w"|, and /J|t(w-L)±/J|t(w").

Since /^(w) = /^(w") + /^(w-1-), it will be enough to prove that |/„,(*>"Όl >

\w-\.

Let £(0, t E [0, ε], be a curve such that B(0) = B, B(0) = w 1 , and

XB(ί) = XB. Put B(t) = f(B(ί)). Obviously, XB(ί) = XB(t) - XB and

$BXB(t) = ^BXB(t). By Rauch comparison theorem, |2?(0)| > \Bφ% i-e.,

3. Proof of Theorem 1.10

3.1. By a simple limit reasoning, we may assume that S G C1, S' > 0,

d > 0 and γ([0, L]) c int M. It follows from §2.1 that we may also assume

that φ = a.
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3.2. Denote by F the cut locus of M from its boundary Γ. By [2, Lemma
8], F is closed and has //-dimensional measure zero. Without loss of general-
ity, one may assume that the (closed) set Φ = {t E [0, L]: γ(0 6 F ) has
linear measure zero. Indeed, γ can be included in a suitable (zi-l)-parametric
family of curves. Then in any neighborhood of γ there should be a curve
whose set Φ has measure zero; otherwise, by Fubini theorem, the measure of
F would be positive. Obviously, one may assume that O ί Φ .

33. Put r(i) = p(γ(0, Γ) (> 0 since γ([0, L]) c int M). Obviously, \r(tj
- Φι)\ < \h ~ Ίl> r\[o,L]\Φ e C" , and |r'| < 1 in [0, L]\Φ. Varying the
curve γ within the intervals composing the set [0, L] \ Φ, one can easily see

def

that we may also assume the set Ψ = {t e [0, L] \ Φ: 1/(01 = 1} countable,
not containing 0 and having no points of condensation in [0, L] \ Φ. (One can
succeed even more in getting rid of the points with |r'| = 1; but in 2-dimen-
sional case, a finite number of such points is inevitable.)

3.4. Put Ω = [0, L)\(Φu Ψ). Obviously, Ω \0 is an open set of complete
measure, Ω contains 0 with a (positive) half-neighborhood, and Γ|Q £ C°°.

3.5. We may also assume that r{t) < RQ. Indeed, suppose Theorem 1.10
has been proved under this assumption. Take ίc G (0, K). By (1.4), r{t) <
Z*o(ic, ks) < R0(κ, ks). Now by Theorem 1.10, L < Lo (= L0(κ)). Passing here
to the limit as K -* K, we prove Theorem 1.10 in the general case.

3.6. Denote by px, ωx (or just /?, ω) the polar coordinates of a point
X G P2 with the pole at the center 0 of Λf0 and the angle ω counted in
positive direction from the radius 0 70.

3.7. Consider the curve yx: [0, L] —» Mo with the equations
(3.1) P = Ro - K0;

(3.2) ω =

J° sm(R0-r(x))Vks

dx, «ks>0,

sinh(Λ0 - r[

Obviously, γ ^ e C0 0. One can check that |γi(0l = 1 f o r ' G Ω

and that the mapping γ^ [0, L]^> Mo is Lipschitz. {\p(t + Δ/) - p(t)\ <

\r{t + Δ0 - r(i)\ < M and, say for ks = 0, \ω(t + Δ/) - ω(0| <

Ro/[RO ~ m*xx<=[o,L] K^)]/ί+ Δ ' 1 ' d x ) Therefore Ύ l is a normal curve.

Moreover, (γ^ OYQ) = cos"1 - r'(0) = φ.
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3.8. Let us now construct a function/: Ω -» R as follows. For t E Ω, let us

move the curve γ0 in P2 in such a way that the new position of the vector

Ϋo(O coincides with γ^O Denote by W(i) the new position of the point

γo(Lo). We ρut/(/) = pW(^. (For t = a, the construction is shown in Fig. 3.)

3.9. If the function/ is nondecreasing, then the proof is complete. Indeed,

suppose Theorem 1.10 is false i.e., suppose L > Lo. Take u E Ω π [LQ, L)

such that 0<u-L0<r = min/e[0^j r(t). (r is positive as γ is interior to M;

see §3.1.) By (3.1), po(yι(u)9 Γo) > r. Obviously, po(γi(w), W(ύ)) =

Po(Yo(")» Yo(Lo)) <u - Lo <f. Therefore W(u) E int M and/(w) < Ro. This

is impossible since /(0) = Λo.

FIG. 3
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def

3.10. A triangle Δ(ί) = Oγ^ί) W(0 is said to be regular if its vertices are
pairwise different, each side is shorter than the sum of the others and if the
triangle is positively oriented (in the order 0, y^t), W(i) of the vertices). It is
easy to check that, under the assumptions §§3.1-3.5, Δ(0) is regular. Since Ω
contains a half-neighborhood of zero and by continuity, Δ(/) is regular for
small /. Therefore s = suρ{/ E Ω: Δ(/) is regular} > 0.

We show first that/ does not decrease in Ω n [0, s) and then, in §§3.14-
3.16, that s = L. The consideration is based essentially on [3, Theorem 2]
which establishes some properties of the function r(/).

3.11. Let an interval / be a component of Ω n [0, s). The curve W(t\
t E /, is just the trajectory of the point yo(Lo) when γ0 rolls along γ^ . A
simple calculation based on (3.1), (3.2) shows that the oriented curvature £,(/)
of yX\Q satisfies

(3.3) r ' - V l - r ^ - i . - O - ^

where κr (> 0) is curvature of the circle of radius Ro— r centered at 0. By
[3, (3.9)] and the consequent inequality (K > κr), we have

(3.4) r " < V l - r ' 2 . | γ | - ( l - r ' 2 K .

As \r'\ < 1 in Ω, (3.3), (3.4) and the condition (III) of Theorem 1.10 imply
£j < |γ| < Ξ'. So, at the moment / E /, γ0 rotates (instantaneously) about the
point γj(O in negative direction. Regularity of Δ(f) implies OW(t) < π/yks

in the case where ks > 0 and/'(/) = (W(i), OPΓ(/)'> > 0, / E Ω n [0, s); see
Fig. 3 for / = a. (/' > 0 is not sufficient for/to increase.)

3.12. For / E Ω, denote by ht: [0, r(t)] —» M the (unique) normal shortest
path with λ,(0) = γ(0, ht(r(t)) E Γ. Since |γ x | = 1 in Ω (see §3.7.) and by

(3.1), φyJ^UO) = (ΛχδΓγ(O) = cos"1 - rXO =V0. Let α, 6 E Ω n
[0, s), a < b, and g: [0, λ ] ^ M b e a normal shortest path with g(0)

g(λ) = y(b). By the remark at the end of [3, §3], the function

r(u) = p(g(u), Γ), u E [0, λ], is convex. It is differentiable at u = 0 and u = λ

since the ends of g lie outside the cut locus F. Then r'(0) > r'(λ) and

(3.5) (ha(0U(0)) = cos-1 - F(0) > cos"1 - r'(λ) = (hb(0U(λ))

We denote by C (different) positive constants depending only cmΛί, γ, s,
and S. By a compactness reasoning, (g(0), γ(α)) < C(b - a), (g(λ), γ(6))
C(b - a). Therefore by (3.5) we have

(3.6) φ(b) - φ{a) < C(b - a).

3.13. Put ψ(0 = (γo(O, γo(07o(A)))> ' ^ [0, Lo) Notice that s < Lo be-
cause otherwise the triangle Δ(ί) is not regular for t E Ω n [L& s) close to Lo.
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Now ( ά ^ T , Ίχ{t)W{ή) = φ(0 + Ψ(0 f ^ Λ f Ω Π [ 0 ' J)" L e t ώ

Yl(ft)K satisfy ~ΪJb)V=yx{b)W(b\ ( 0 ^ , 7 ^ ) ? ) - Φ(*) + Ψ(*>); see Fig.
3. By §3.1, γ0 G C2. Then

(3.7) |ψ(6) - ψ(α)| < C(ft - β).

Along with the relations pΎι(β) = Ro - r(t) > C > 0 for ί e [0, L] (see

§3.5), P o(γ1(α), yx(b)) <b - a (see §3.7) and WJb)V - yx{a)W{a)\

- |Yo(£)Yo(A>) ~ YoO)Yo(A))l < * - β, (3.7) impUes

(3.8) po(F, W(a)) < C(b - a).

If φ(6) - φ(β) in (3.6) is nonnegative, then <£ W(b)yx(b)V = |φ(6) + ψ(6)

- (φ(α) + ψ(6))| = \φ) - φ(a)\ < C(b - a) and therefore po(K, W(b)) <

C(b - a), which together with (3.8) implies ρQ{W(Jb\ W(a)) < C(b - a) and

(3.9) f(b) - f(a) >-C(b - a).

If φ(b) - φ(a) < 0, then comparison of the triangles 0yx(b)V and Δ(6)

yields f(b) >0F; see Fig. 3. A combination of this with (3.8) results in (3.9)

again. The inequalities/' > 0 and (3.9) show that./JQn[Ofj) is nondecreasing.

3.14. Let / e Ω n [0, s). Since/(0 > /(0) = Ro and γ, lies inside Mo, there
def

is the unique point U(t) = yx{i)W(i) n Γo. We show here that ξ(t) = ω^) is a

nonincreasing function in Ω n [0, s).

The "rolling" described in §3.11 shows that Γ ( 0 < 0.

Let a, b G Ω π [0, 5), a <b. Obviously, any straight line intersecting yλ

forms with Γo angles > C > 0. Now following the way (3.8) was obtained,

one can see that
(3.10) P o (β, U(a)) < C{b - a).

where Q is the intersection of Γo with yx{b)V(or its extension beyond V); see

Fig. 3. If φ(b) - φ(a) > 0 then, analogously to §3.13, one obtains

P0(U(b),U(a))<C(b-a) znd

(3.11) ζ(b) - ζ(a) < C(b - a).

If φ(b) - φ(a) < 0 then obviously ζ(b) < ωQ; see Fig. 3. Combining it with

(3.10), one obtains (3.11) again.

Along with £' > 0, (3.11) shows that ?|ωn[0^) is nonincreasing. Thus

(3.12) ζ(ή < f (0) = ωyo(Lo) < 7Γ, / G Ω Π [0, s).

3.15. Put for short limx^t>x^ty(x) = y(t - 0), limJceΩ,<JC_+,>>(.x) - y(t

+ 0). By [5, Theorem 2(3), (4)], there are left and right derivatives r'_(ί), r'+(t)

of the function r(t) satisfying r'_(t) > r'+(t), t e (0, L). Moreover, r\t - 0) -

r'_(t), r\t + 0) = r'+(0 It follows now from (3.1), (3.2) and §3.5 that there are

left and right tangent vectors yx_ and γ 1 + satisfying
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(3.13)

Moreover, φ(t - 0) = φ_(0> <K' + 0) = φ+(t). Denote by Δ_(0> Δ+(0 the
triangles 0Yl(0W_(0> 0Y l(0*P+(0 constructed as Δ(ί) (see §§3.10, 3.8) with
replacement of Yl(f) by Y l_(0 and γ 1 + respectively. Obviously

(3.14) Δ_(/) - Δ(ί - 0), Δ+(/) = Δ(ί + 0).

3.16. Notice that Ύι(s) W_{s) = Y l (j) JΓ+(s) - yo(s)yo(Lo) > 0 since Y l(j)
G int Mo and OJΓ_(,y) = /(.y - 0) > Λo. (According to §3.13, s < Lo. We see
now that s < Lo.) It follows easily from (3.12) that

(3.15) φ_(s) + ψ(*) = φ(^ - 0) + ψ(j) < 7r.

Since s < Lo and Ξr > 0 (see §3.1), φ_(s) + ψ(^) > ψ(^) > 0. Thus 0 < φ_(s)
+ ψ(^) < π. Since 0Yl(^) and Yl(.y) JP_(.s) are shorter than meridian of P2

(when ks > 0), Δ_(.s) is regular.

By (3.13), 0 < ψ(s) < φ+(s) + ψ(^) < φ_(s) + ψ(s) < π. So Δ+(^) is regu-
lar as well. If s < L then, for values of t E Ω π (s> L) sufficiently close to s,
the triangles Δ(/) are also regular, see (3.14). This contradicts Definition 3.10
of s. Thus s = L.

4. The longest curve of a given total curvature in MQ

4.1. Notation. The angle between an arc of Γo with the central angle τr/2
and the chord joining its end points will be denoted throughout the section by
ω = ω(/c, ks). (Say, ω(κ, 0) = ττ/4.)

Let u: [0, 2a] -• Γo be a normal curve, and v: [0, 2a] -»Γo be a mapping
such that the total curvature of the curve composed of W|[0 ̂  and the chord
u(x)v(x) does not depend on x G (0, 2a). Suppose the length l(x)
(= x + u(x)v(x)) of the latter curve satisfies I'(a) = 0. We always denote
by ψ = ψ(κ, ks) the angle between u(a)v(a) and ύ(a). (One can check
that ψ(κ, 0) = τr/3, Ψ = cos'^-e + V*?2 + e + 1 ) for fc5 > 0, ψ =
cos'^e - λ/e2 - e + 1 ) for Λy < 0 where e = *2/|*il ) A calculation shows

that ω < ψ. Moreover, /'(α) > 0 (< 0) if (w(α)υ(α)', ti(α)) > ψ (< ψ).
Denote by /β the class of piecewise C2-curves in MQ, mentioned in §1.6,

such that the straight line of support of each curve rotates in the same
direction as along the curve, and the total curvature of each curve does not
exceed θ.
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4.2. Proposition. Let θ satisfy (1.2), i.e., let

θ e[θ,y + 8- ksσ), ifks >κ\

θ E 0, — , otherwise.
(4.1)

Then in Jθ there is the longest curve yθ, which has the total curvature θ.

Moreover, each of the following holds.

{\)Ifθ E [0, 2ω], then yθ is a polygonal line ACB with ~AC=^CB whose end

points A, B and diametrically opposite points in Γo.

(2) Ifθ E [2ω, 2ψ], then yθ is a polygonal line ACB with ~AC=~CB and A, C,

BtΞT0. ^ ^

(3) If θ E (2ψ, oo), then yθ is a line AA+B+B consisting of an arc A+B+ c

Γo of total curvature θ — 2ψ and equal chords AA+ and BB+. The line does not

intersect itself.

The family yθ is shown in Fig. 4.
43. For ks < 0, only the condition (1) makes sense as θ < π/2 < 2ω. For

ks > 0, a calculation shows that the right end points of the intervals in (4.1)
both are greater than 2ω, so that the conditions (1) and (2) always make
sense. As for the condition (3), it makes sense for some K, ks but does not for
others.

4.4. The remainder of the paper is the proof of Proposition 4.2.
Let a curve y1 E Jθ. We need to show that its length I1 does not exceed the

length lθ of y0 E Jθ. Without loss of generality we may assume that its end
points E, F E Γo. (If, say, E & Γo, one can extend/ beyond E as the tangent
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geodesic up to Γo and deal with the new curve which is longer and has the
same total curvature θι.) We assume also θι > 0 since the case θι = 0 is
trivial.

Let us show that j 1 does not intersect itself. (That is why E τ£ F and
j 1 U EF bound a convex nondegenerate region. It means also that the curve
yθ described in §4.2.(3) does not intersect itself.) Suppose otherwise. Then one
can easily find a convex nondegenerate loop on./1. (The important point here
is that E, F £T0 and θι < θ < π/2 < TΓ.) Denote by W the point where j ι

crosses itself forming the loop. Let Y0Z0 be a diameter of Λf0, and the
semicircle Λf0

+ be as in §1.10. Move the loop within Mo until the center 0 of
Mo is inside the loop (if it was not). Let now X be the point on the loop
closest to 0. Rotate the loop about 0 until X G07 0 . If now W G Mo

+, then
take the specular reflection of the loop with respect to the diameter Y0Z0.
Finally, the loop intersects 0 Yo at a point X ¥= 0 at the right angle, and
W e (M o\ Mo

+) u Y0Z0. w

Denote by a the length of that arc XW of the loop which intersects int Λf0

+.
Let/(0, t G (0, a], be the total curvature of the arc XF c XW of the length t.
Put now

7(0, /e((U]f

f(a\ te[a, oo).

Obviously, the set (ΫQX, TΓ/2, S) is not admissible. But Ξ(oo) = f(a) < θι < θ
where θ satisfies (4.1). By Lemma 2.2, the set above should be admissible.

4.5. In §§4.5.-4.9 we prove the inequality I1 < l9 for the case where

K > 0.
Lemma. Let a circle in P2 be less than semisphere. Denote by β(ξ) the angle

between an arc of its circumference with the central angle ξ and the chord

joining the end points of the arc. Denote by b(ξ) the length of that chord. Let

variables £x > 0 and £2 > 0 satisfy ξx + ξ2

 = const. < 2π. Then the function

β(ξι) + β(ζ2) has the unique minimum, and the function b(£x) + £(£2) ̂ ^ *ne

unique maximum when ξx = ξ2.

The proof is a simple discussion of the conditional extrema.
4.6. Let EE', FF' be the chords tangent to j 1 at its end point E, F.

(Possibly, E' = E, F' = F.) We consider in §§4.6 and 4.7 the case when
EE' Π FF' = 0. Denote^by j 2 the curve EWF'F consisting of the chords
EE', FF' and the arc E'F' c Γo such thaty2 u EF bounds a convex region
containing j 1 . Later on, the length and the total curvature of j 1 will be
denoted by l\θ\i = 1,2,3.

Obviously, I2 > I1. Gauss-Bonnet theorem applied to the region between j ι

and/implies 02 <θι.
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Lety3 be the curve EE"F"F which lies on the same side of EF asy2 does

and consists of equal chords EE\ FF" and an arc E"F" c Γo equal to E'F'\

It follows easily from Lemma 4.5 that I3 > I2, θ3 < θ2.

4.7. We realize that the family yθ andy3 have the same axis of symmetry

and that their convexities face the same direction of the axis. Suppose

θ3 > 2ψ. It follows easily from the properties of the angle ψ (see §4.1) thaty3

is not longer than γ^. If θ3 < 2ψ, then §4.1 implies thaty3 is not longer than

the polygonal line ACB with total curvature θ3 composed of equal chords AC

and CB and having the same axis of symmetry. For θ3 E [2ω, 2ψ], the line

ACB coincides with γ^. For θ3 e [0, 2ω], ACB is not longer than γ^. Thus

I3 < lθ3. Since lθ increases by θ and I1 < /3, one obtains lλ < lθ.

4.8. Let now EE' n FF' φ 0 . Since θι > 0 (see §4.4), the intersection is

a point / distinct from E and F. Denote by j 2 the polygonal line EIF. As

above_/^_> l\θ2 <θ\ Denote b y / the polygonal line EΓF c M o such that

EΓ = ΓF and /' lies on the circumference passing through E9 I, F. By

Lemma 4.5,13 > l\θ3 < θ2.

4.9. We realize thaty3 is located with respect to yθ as in §4.7. If θ3 < 2ψ,

then j 3 can be matched with a part of yθ3 by a movement preserving the

symmetry with respect to the axis. Suppose θ3 > 2ψ. Let us movey3 pre-

serving the symmetry until /' G γtf3. Since θ3 > 2ψ > 2ω, the end points E, F

are in Mo after the movement. Let the chords ΓE\ ΓF' contain ΓE, ΓF

respectively. By the properties of the angle ψ (see §4.1), the line E'ΓF' is not

longer than γ^. So againy3 is not longer than yθ3.

Thus /3 < lθ3. Since lθ increases by θ and Z1 < /3, one obtains Z1 < lθ.
4.10. In the remainder of the paper, we prove the inequality I1 < lθ for the

case where ks < 0.

Sinceyι can be approached with inscribed polygonal lines, we may consider

only the case wherey1 is a polygonal line ECXC2 CmF9 m > 1, bounding

(along with the chord EF) a nondegenerate convex region (see §4.4) and

having pairwise distinct vertices with angles different from 0 and TΓ at each

vertex C, .

4.11. Let m > 1 and i e (0, 1, 2, , m - 2}. Suppose ^CiCi+lCi+2 <

3 Ci+ιCg+2Ci+3 with Co = E, C m + 1 = F. We consider here the following

variation j \ of the polygonal lineyι.

Take ^(Λ:) G Ci+2Ci+3 satisfying B(x)Ci+2 ~ χ- F°Γ sufficiently small

x > 0, in the extension of the segment CtCi+l there is a point A(x) such that

the polygons ECX C l ^(x)5(x)C l + 3 C m F£ and ECλ Cm-FB

b o u n d e q u a l areas (see F ig . 5). D e n o t e the l ine

ECr CiA(x)B(x)Ci+3 - CmF by jx

χ9 and put α - ^ CiA(x)B(x)9 β =
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By Gauss-Bonnet theorem, the total curvature of j \ is less than or equal to

that of j 1 , which is θι; it is less than if and only if C l + 3 = F, x = Ci+2Ci+y

Obviously a decreases while β and CtA(x) increase by x. It is clear now that
def

A(x) exists for any x satisfying 0 < x < d = C i + 2 C i + 3 ; otherwise CtA(x)->

oo and a -> 0 as x grows, which is impossible since π — a < θλ < θ <\π.

4.12. We show now that the length l(x) of j\ satisfies dl/dx > 0 for

x G (0, d). Denote by A.., B= the projections of the vectors A(x\ B(x) on

the direction A(x)B(x), and by A±9 B± their projections on the normal to

A(x)B(x) directed into the half-plane containing EF. Consider the "elemen-

tary triangles" A(x)IA(x + Δx) and B(x)IB(x + Δx) where / = A(x)B(x) n

A(x + Δx)B(x + Δx); see Fig. 5. Since the triangles have equal areas, it

follows easily that A ± = -B±. Thus we have

B± = sin β, B_ = -cos β, \B\ = 1;

smα ^ tanα

sin α
Γsin ^S(l + cos a) — sin α(l + cosL

4 α β . β a\
c o s τ c o s ^ - s i n •=--•=•).

m α 2 2 \2 2/sin a

Now dl/dx > 0 since a < ^ Q Q + j C , ^ < ^C l + 1 C ί . + 2 C | . + 3 <β.
4.13. ThusyJ, i.e., the polygonal line ECX CiA(d)Ci+3 F(see Fig.

5) has the length l(d) > 1(0) = I1, and its curvature does not exceed θι by

§4.11. It also bounds along with EF a nondegenerate convex region and has

pairwise different vertices with angles different from 0 and π. ButyJ has one

vertex less thany 1. Repeating the described process m - 1 times, one gets a

polygonal line EIF (call i t / ) satisfying θ2 <θ\l2 > l\

If m = 1, we puty 2 = j 1 .

Denote byy 3 the polygonal line EΓF with total curvature θ3 = θ2 and

such that ~EI' =ΓF. A simple discussion of the conditional maximum shows

that 2EΪ' = I3 > I2.

4.14. As in §4.7, we realize that the family yθ andy 3 have the same axis of

symmetry and that their convexities face the same direction of the axis. Since

θ3 < θ1 < m/2 < 2ω, the curve y3 can be matched with a part o γ^ by a

movement preserving the symmetry with respect to the axis. Since lθ increases

byθj1 <13<1Θ><1Θ.
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A(d)

FIG. 5
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