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Let E be a holomorphic vector bundle over a compact complex manifold.
If E admits a hermitian metric whose curvature satisfies a certain analytic
condition which we describe in §1 below, then E is said to be positive. In this
note, we prove two results on positive vector bundles.

Positive vector bundles were investigated by Griffiths in [3]. He conjectured
that a bundle is positive if and only if it is ample in the sense of Hartshorne.
Although Griffiths showed that positive bundles are ample, and although his
conjecture has been proven for bundles over Riemann surfaces (see [7]), the
conjecture in general remains unsolved. To some extent, the intractability of
this problem can be traced to the fact that we do not know many "functorial"
properties of positive bundles, such as the properties that Hartshorne proves
for ample bundles in [4]. In §1, we establish such a functorial property: We
show that if one pulls a positive bundle back under a finite mapping, one
obtains a positive bundle (Theorem 1.1). Hartshorne proved the analogue for
ample bundles [4, p. 73, Proposition 4.3].

Another functorial result Hartshorne proved for ample bundles is
Theorem A [4, p. 73, Proposition 4.4]. Let f: X -^ Y be a proper morphism,

and let E be a bundle on X. Suppose that for somey E Y, the restriction of E to

the fiber f~ι(y) is ample. Then there exists a neighborhood U of y such that the

restriction of E to f~ι(U) is ample.

This theorem immediately yields the weaker
Theorem B. Given the notation and assumptions of Theorem A, let K be a

bundle on X. Then there is a neighborhood U ofy such that ify' E U, then

Hq(f-ι(y'),E^® K) = 0 forallq>0 and μ > μ{y%

μ(y') being a positive integer depending ony\
In §2, under the (possibly) stronger assumption that the restriction of E to

f~ι(y) is positive, together with an assumption on the rank of/, we show that
one can choose μ(yf) to be the same integer for a l l/ E U (Theorem 2.1).
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The two sections can be read independently, except that the first paragraph
of § 1, in which the basic definitions are given, should be read before §2.

The author thanks David Lieberman and Peter Orlik for their invaluable
advice and encouragement.

1. Behavior of positive bundles under finite mappings

Let E be a holomorphic vector bundle over a compact complex manifold,
and let A be a hermitian metric on E. Let θ denote the curvature of A; that is,
θ is the Hom(E, £)-valued (l,l)-form which is given locally by θ = d(h~ιdh).
We say that A is positively curved if for any e E E,e =£ 0, h(θe, e) is a, positive
(l,l)-form. (A (l,l)-form £ is positive if for any nonzero holomorphic tangent
vector u, we have ξ(v /\v) > 0.) If the bundle E admits a metric A which is
positively curved, E is said to be positive.

Theorem 1.1. Let f: X -> Y be α finite mapping of compact complex

manifolds, and let E be a holomorphic vector bundle over Y. Then E positive

implies f* E positive.

The proof involves the following simple lemma.
Lemma 1.2. Let E be a holomorphic vector bundle over a complex manifold

X. Suppose E admits a metric A which is positively curved except at a point

z0 E X. Then there exists a C°° function g: X -» R such that the metric e8h is

positively curved everywhere, and such that egh = h outside of a presassigned

neighborhood of z0.

Proof of the lemma. The result is local in nature, so we may assume
X = Cπ, E = the trivial bundle 6Γ, and z0 = 0. We now construct the
function g required in the statement of the lemma.

Let p: R -» R be a compactly supported C°° function satisfying: (i) p(0) >
0, (ii) p'(0) = 0, and (iii) p"(0) < 0. In C , let zl9 , zn be coordinates with
Zj = Xj + V^T yΓ Define

ξ(z) = p(χι)p(χ2) - p(χn)p(y\) - - p(yn)

Then ξ has compact support, and a direct computation shows that the matrix
W^ζ/dzfizjWfj is negative-definite at z = 0. So for some R > 0, ddξ is a
positive (l,l)-form for \z\ < R.

Let ε > 0, and consider the metric eεξh on 0Γ. Its curvature is (locally)
θ(h) + (εddξ)/, where / is the r X r identity matrix. So for sufficiently small
ε, this curvature is positive when \z\ > R/2. But for \z\ < R, θ(h) is semiposi-
tive and εddξl is positive. Thus for ε small, eεζh has positive curvature
everywhere, and we let g = εf.

Proof of the theorem. We are given a positive bundle E, and want to show
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that its pullback under a finite mapping/is positive. Let h! be a metric on E

with positive curvature, and let h = f*h\ a metric on f*E. We are going to

show that eεZh is positively curved, for some function Z on X and ε > 0. Let

us begin by seeing how close h itself comes to being positively curved. We

compute the curvature of h: Let x G X, e G (f*E)x, and let v be a holomor-

phic tangent vector at x with v φ 0 and e 7̂  0. If h were positively curved, we

would have
h(θ(h)e, e)(v Λϋ)>0.

As it is, using the fact that θ(h) = f*θ(h') we compute that h(θ(h)e, e)(v Λ v)

> 0 if and only if v & K = ker f+, / + : TX -» TY being the induced mapping

on holomorphic tangent bundles. (In particular, if D is the ramification

divisor of /, then h is positively curved away from D.) Therefore one should

intuitively think of the situation in the following way: Locally, imagine a

tubular neighborhood of D. On any transverse fiber of this neighborhood, h is

positively curved, except at the point where the fiber meets D. This suggests

that Z be constructed by patching together functions which, in normal

directions to D, behave like the function ζ we constructed in the proof of the

lemma.

We now proceed to construct Z. Let { Va) be a covering of X by coordinate

patches such that for each α, Va c C Ua, where Ua c X is also a coordinate

patch. On Ua, perform the construction of the function ξ in the proof of the

lemma. Call this function fα, and arrange it that ddξa is a positive (l,l)-form

on Va. Now let {p'a} be a partition of unity on Y subordinate to the cover

{/(Kα)}, and set pα = f*p'a F^ally, let Z = Σ p j α .

We have

θ(eεZh) = θ(h) + (εθθZ)/,

/ being the r X r identity matrix. 8ΘZ is made up of terms of four types: (a)

(39pα)f«, (b) 3Pα3fα, (c) θPα3fα, and (d) pα33fα. If v G K = ker/+, then any of

the types (a), (b), and (c) give zero when evaluated on v Λ v. For, dpa(v) =

dp'a(f*v) = 0 since f+v = 0. But the nonvanishing term Σ pα33?α will be

positive on AT, since ρa = 0 off of Fα and 33fα is positive on Va.

So for any x G Z>, ε33Z is positive on Λ ,̂ and (by continuity) is in fact

positive on a cone in TXX containing the subspace Kx; and this cone will not

vary with ε. Therefore, for any ε > 0, θ(eeZh) will be positive on this cone.

Choose ε so small that θ(eεZh) will also be positive on the complement, in

TXX9 of a slightly smaller cone. This can be done since θ(h) itself is positive

on this complement. (By compactness, a single ε will work for all x G D.) For

such ε, we therefore see that θ(eeZh) is positive on TX restricted to D, and

(again by continuity) in fact on TX restricted to N, where JV is some
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neighborhood of D. It is clear that N will not shrink as ε -> 0. We may think
of N as the neighborhood of radius R for some R > 0, with respect to some
metric d on X. That is,

N = {x (ΞX:d(x,D) <R}.

Choose ε so small that θ(eεZh) is positive on the complement (in X) of the
neighborhood of D of radius R/2, and the proof is complete.

Corollary 13. Let f: X -^ Y be a finite mapping of compact complex

manifolds. If Y is Kahler, so is X.

This corollary is in fact well known. The usual proof follows from a
theorem of Blanchard [5, p. 142]. Our proof is more elementary.

Proof of the corollary. Let ω' be a Kahler form on Y, and let ω = f*ω'. In
the proof of the theorem, we defined a function Z and proved that θ(h) +
(εddZ)I was a positive form for sufficiently small ε. The same proof shows
that ω + εθ3Z is a positive (l,l)-form on X, with the same Z as in the proof
of the theorem. Since d(ω + ε89Z) = 0, ω 4- ε93Z is a Kahler form on X.

2. A vanishing theorem

The theorem we are headed for is

Theorem 2.1. Let f: X -> Y be an analytic family of complex manifolds.
(That is, f is proper, and of maximal rank at every point of X.) Let E be a
holomorphic vector bundle over X, and suppose that for some y EL Y we have
that E(y) is positive, where E(y) denotes the restriction of E to f~λ(y). If K is a
holomorphic vector bundle over X, then there exists a neighborhood U of y and
μ0 > 0 such that

Hq{Γ\y'), E^ ®K) = 0 forq>0,μ> μ0, and y' e U,

where iΓ(μ) denotes the μth symmetric power of E.
We begin by proving the theorem for the special case where E is a line

bundle. The proof is really an elaboration of an argument of Griffiths [3, pp.
212-213], although the theorem he was proving is of a nature somewhat
different from our Theorem 2.1.

By Kodaira-Serre duality, it suffices to prove

Hq(f-\y'\ E~μ ® K) = 0 for q < n, μ > /*<,, a n d / e U.

Let hE be a positively curved hermitian metric on E(y). Since hE is a C 0 0

structure, it can be extended to all of E. (This is the only place we use the
assumption that / has maximal rank everywhere. The maximality of rank
implies that, in terms of C °° structure, / exhibits X as a local product over Y.)
By continuity and compactness, hE is positive on E(y') for all y' in some
neighborhood Vofy.

Now let hκ be a hermitian metric on K. For any y' E Y, let θκ(y') and
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θE(y') denote the curvatures, with respect to hκ and hE, of K{yf) and E(y')

respectively. Given any y' e V, hE{y') and hκ(yf) determine a Hodge inner

product on E(y')~μ ® K(y')-vahied forms. Let Λ(>') denote the dual of the

operator θE(y') with respect to this inner product. Let

*(/) = (V^ϊ /2)A(y')θκ(y').

Then Φ(y') is an operator on E(y')~μ ® K(y')-va\\xed forms, bounded with

respect to the Hodge inner product. Denoting the norm of this operator by

|Ψ(/) | , one obtains

( * ( / ) Λ Φ, Φ) > μ(n - q)(φ, φ),

where φ is an E(y')~μ ® #(>>')-valued (0, q)-ioτm, and ( , ) is the Hodge inner

product. (See [3, p. 213, line 3.30].) Hence if φ φ 0,

| * ( / ) | > μ(n - q) > μ.

Therefore if μo > | Ϋ ( . y % t h e n

Hq{Γ\y'\ E~μ ®K) = 0ΐoτq<nίindμ>μ0.

So, fix any /AQ > 1^(^)1. Then by continuity, μ0 > \^(yf)\ for any./ in some

neighborhood U of y, U c V. This completes the proof of the line bundle

version of Theorem 2.1.

To prove Theorem 2.1 in the general case, we need a lemma.

Lemma 2.2. Let E be α holomorphic vector bundle over the compact

complex manifold X. Let p: P(E) ^ X denote the associated projective bundle

of hyperplanes in E9 and let L = L(E) be the tautological (hyperplane) line

bundle over P(E). Let K be a holomorphic vector bundle over X. Then

Hq(X, E(μ) ® K) = Hq(P{E\ Lμ ® p*K) for all q9andμ> μ^

This lemma is standard: It essentially amounts to the statement that E is

ample if and only if L(E) is. But we give a proof here which uses the line

bundle version of Theorem 2.1, and which is more elementary than the usual

proofs. For instance, Griffiths uses Kohn's theory of harmonic integrals to

prove this result in [2, pp. 135-136].

Proof of the lemma. We have the Leray spectral sequence for/? with

Eξ = Hq(X, R£(Lμ ®p*K)) a n d ^ a H*(P(E), Lμ ®p*K).

If we can show

(•) R£(Lμ ® p*K) = 0 for / > 0 and μ > μ0,

then we will have, by the standard spectral sequence degeneration argument,

Hq(X,p*(Lμ ®p*K)) = Hq(P(E), Lμ ®p*K).

But the left side of this equation is Hq(X, Eiμ) ® K\ so once we show (*) we

will be done with the proof of the lemma.
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To prove (*), we first fix x G X. Since the restriction of L to p~ι(x) is just
the standard hyperplane bundle on projective space and is therefore ample, it
follows from the definition of ampleness that

H'(p-ι(x), L* ® p*k) = 0 for t > 0 and μ > μ^

Therefore we can conclude from the line bundle version of Theorem 2.1 that
there exists a neighborhood U of x such that

H'ip-^x'), Lμ ® p*K) = 0 for t > 0, μ > μ^ and x' G U.

Thus by compactness of X we can actually conclude that there exists μ^> 0

such that for all x 6 l , w e have

H'(p-ι(x), L* ®p*K) = 0 for / > 0 and μ > μ^

We now obtain (*) by invoking [6, Corollary 2, p. 50].

Remark. Although this result of Mumford is stated in the language of
schemes, his proof goes through for complex manifolds by using Leray covers
where he uses affine covers. Furthermore, we can give a proof of this lemma
which avoids Mumford's result, but which uses the obstruction theory de-
scribed in [1, pp. 369-372].

Proof of Theorem 2.1. Let p: P(E) -» X denote the associated projective
bundle, and let L = L(E). fp is an analytic family, so by the line bundle
version of Theorem 2.1, we have

Hq{p-χf-\y'\ Lμ ®p*K) = 0 for q > 0, μ > μo, and y' G U.

But according to Lemma 2.2,

H*{f-\y'\ EW ®K) = H«(p-ιΓι(y% L* ®p*K),

so we are done.
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