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1. Introduction

Let M be a connected Kaehlerian manifold of complex dimension n
covered by a system of real coordinate neighborhoods { U; x*}, where, here
and in the sequel the indices 4, i, j, k, . . . run over the range {1, 2, . .., 2n},
and let g, F, {*;}, V., K;*, K, and K be the Hermitian metric tensor, the
complex structure tensor, the Christoffel symbols formed with g;i» the opera-
tor of covariant differentiation with respect to {;*;}, the curvature tensor, the
Ricci tensor and the scalar curvature of M respectively.

A vector field v* is called a holomorphically projective (or H-projective, for
brevity) vector field [1], [2], [5] if it satisfies
(1.1) Bo{jhi} =Vjvivh + kakjih = pjsih + pisjh - PsF}SFih - P:Fisl'}h
for a certain covariant vector field p; on M called the associated covariant
vector field of v”, where £, denotes the operator of Lie derivation with
respect to o”. In particular, if p; is the zero-vector field, then v”* is called an
affine vector field.

When we refer in the sequel to an H-projective vector field v”, we always
mean by p; the associated covariant vector field appearing in (1.1).

In the present paper, we first prove a series of integral inequalities in a
Kaehlerian manifold with constant scalar curvature admitting an H-projec-
tive vector field, and then find necessary and sufficient conditions for such a
Kaehlerian manifold to be isometric to a complex projective space with
Fubini-Study metric.

In the sequel, we need the following theorem due to Obata [4]. (See also
31)

Theorem A. Let M be a complete connected and simply connected
Kaehlerian manifold. In order for M to admit a nontrivial solution @ of a system
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of partial differential equations
(12) v; Vl(ph + (Z%glh + (Plg]h + q’hgjl F_;'iFhs‘ps - F}hF}s .\’) =0

with a constant ¢ > 0, where ¢, =V, and F; = Fg,, it is necessary and
sufficient that M be isometric to a complex projective space CP" with Fubini-
Study metric and of constant holomorphic sectional curvature c.

We assume in this paper that the Kaehlerian manifold under consideration
is connected.

2. Preliminaries
Let M be a Kaehlerian manifold of complex dimension n. The complex
structure tensor F” and the Hermitian metric tensor g;; satisfy

hpi — _sh ho_
(2.1) F,.Fj-—aj,V.F =0, V,F, =0,
2.2) F'g; + F'g, =0.
(2.2) is equivalent to
(2.3) — F'Fg, = 0.
We have [5], for the curvature tensor K,q.,. ,
(2.4) I:sthji‘y - I:i:Kkjsh =0,
or equivalently
(2.5) Kkjih + E’F:thkjts =0,
(2:6) Fy'Kyjis + F' Ky, = 0,
or
27) Kiin — Fi'Fy’Ky = 0,

where Ky, = Ki;' g
Using (2.4) and the identity

K" + Ky + Ky = 0,

K"
we obtain

FPK? = g“F/'K,,* = F*K,* = AF5(K," — K,") = ~LF*K},
where g/ are contravariant components of g; and F* = gF;, that is,
(2.8) FK? = -3 FYK!,
from which it follows that
(2.9) F’K,, = _%F ijkjih’
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For the Ricci tensor K,

i» from (2.8) we have

(2.10) FPK! - FIK; =0,

or equivalently

(2.11) K" + F'F'k} = 0.

Similarly, from (2.9) we have

(2.12) F’K; + FK; =0,

or equivalently

(2.13) K; — F'F’K,, = 0.
A vector field u* on M is said to be contravariant analvtic if

(2.19) F’Vu + F'Vu =0,

or equivalently

(2.15) V,u, — F'FV,u, =0,

where u; = g, u". Since

L F" = -F'Vu" + F/Vu* = - (F/Vu, + F'V,u)g*,
a vector field #* on M is contravariant analytic if and only if
(2.16) L F'=0

holds, where £, denotes the operator of Lie derivation with respect to u®. It is
known [5] that if M is compact, then a necessary and sufficient condition for
a vector field u* on M to be contravariant analytic is that

(2.17) VjVju" + Khi=0
holds, where V/ = g/'V,.
For an H-projective vector field v” on M defined by (1.1), we have
(2.18) V,Vo' =2(n + 1)p,
(2.19) VYo" + KM’ = 0.
(2.18) shows that the associated covariant vector field p; is gradient. Putting
1

(220) p = 2—(;T1—)-V_‘,v
we have
(2.21) o, =V,p.

h

If an H-projective vector field v” on M is contravariant analytic, then
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substituting (1.1) in the well-known formula [5], [6]
E’v Kkjih =V, E’v {jhi} - Von { khi}
and using a straightforward computation we find
(222) L Ky = ~8iV,p, + 8"Vyp, + (FV 0, — F'V,0,) F?
+ (stvjp: - F;’:Vkps)}:;'h’
from which by contracting with respect to 4 and k we obtain
(2.23) £,Ki = —2nV,p, — 2F'F’V p..
A Kaehlerian manifold M has the constant holomorphic sectional curva-
ture k if and only if
k
(2.29) Kkjih = Z(S:gji - ajhgki + F khFji - thF i — 2F, kjl;;'h)'

We define tensor fields G; and Z,;* on M by

. K
(2.25) G; =K, — > i
K
h_p h_ K rop _ sh h
(2.26) Zy;' = Ky an(n + 1) (skgji 88 + F'F;

— F'F,; — 2FyF})
respectively. We then easily see that the tensor fields G; and ij,." satisfy

(2.27) Gji = Gij’ GﬂgJ "=0, thit = Gji’
(2.28) ijih = _ijih’ ijih = Zihkj’
(2.29) ij,.” + Z,.,g.'l + Zﬁk" =0,

where Z,;;, = Z,;'g,. If G; = 0, then M is a Kaehler-Einstein manifold and
K is a constant provided n > 1; if Z,;* = 0, then M is of constant holomor-
phic sectional curvature K/n(n + 1) provided n > 1.

3. Lemmas
In this section, we prove some lemmas which we need in the next section.
Lemma 1. If an H-projective vector field v* on a Kaehlerian manifold M of
complex dimension n > 1 is contravariant analytic, then the associated vector

field p* is also contravariant analytic, and
(3.1) £,K; =-2(n+ 1)V,p,

where p* = p,g™.
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Proof. Applying the operator £, of Lie derivation with respect to v” to
both sides of (2.13) and using £, F* = 0, we have

Bo I(ji = F_;'tFis Bu K,

15>

from which together with (2.23) we see that p” is contravariant analytic and
(3.1) holds.

Lemma 2. If a Kaehlerian manifold M is compact, then an H-projective
vector field v* on M is contravariant analytic, and consequently £ F' = 0.
Moreover, if n > 1, then the associated vector field p" is contravariant analytic.

Proof of this lemma is easy and therefore omitted.

Lemma 3. For a contravariant analytic H-projective vector field v* on a
Kaehlerian manifold M with constant scalar curvature K of complex dimension
n > 1, we have

(3.2) R.G,=-Vw —Vw

v ji Ji iy
where we have put
(3.3) wh=(n+ 1)p"+ 2—1511)",
and w, = g,w".
Proof. This follows from (2.25), (3.1) and the fact that p; is gradient, that
is, p; =V,p.

Lemma 4. For an H-projective vector field v* on a compact Kaehlerian
manifold M, we have

1
(34) fM oV = -5y fM p.fdv

for any real function f on M, where dV denotes the volume element of M, and p
is the function defined by (2.20).

Proof. This follows from (2.20) and

0= fM V,(fo) dV = fov,.o" v + fM o'V.fdv.

Lemma 5. In a compact Kaehlerian manifold M, we have

o fM Rph dV = fM Conf dV = fM(VJ)(V‘h) dv
= -foAh dv = —thAde
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Jor any real functions f and h on M, where BDf denotes the operator of Lie
derivation with respect to the vector field Vf, and A = g"V V.
Proof. This follows from

0= fM V.(fVh) dV = fM(VJ)(V"h) dv + fM fAR av,

0= fM V,(hV¥) dV = fM(V,.h)(v"f) dv + fM hAf dV.

Lemma 6. If, in a compact Kaehlerian manifold M, a nonconstant function
@ satisfies

c
(36) V)V, + 2(2%&1: + 9.8 + 9,8 — FiFy'o, — FF ) =0,

where @, =V, @, ¢ being a real constant, then the constant c is necessarily
positive.
Proof. Transvecting (3.6) with g”, we have

VA + (n + l)cg, =0,
from which and Lemma 5 it follows that

1
n+1

1
n+1

c fM Q¢ dV = - fM(V Ag)g’ dV = fM(A<p)2 dv,

where ¢/ = g’/g,. Since ¢ is a nonconstant function, two inequalities
f @9 dV >0, f (Ap)*av >0
M M

hold, and consequently C is necessarily positive.

Lemma 7. If a Kaehlerian manifold M with constant scalar curvature K
admits an H-projective vector field v*, and the vector field w* defined by (3.3) is
a Killing vector field, then the associated covariant vector field p; satisfies

K s s
37 ViV + m(zpjgm + 0.8y + Pu8i — FiF'o, — F,Fp,) = 0.

Moreover, if M is complete and simply connected, K is positive and v" is

non-affine, then M is isometric to a complex projective space CP" with

Fubini-Study metric of constant holomorphic sectional curvature K/n(n + 1).
Proof. By using (1.1) we have

(38) ViV, + V,0) =2p8, + g + pugi — FuFy'e, — FF/p,
If w” is a Killing vector field, then
Viw, + V,w, =0~
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holds, and consequently
2n+ D)V, + 5-(Vi0, + V40) =0,

which together with (3.8) implies (3.7). The second part of the lemma follows
from Theorem A.

Remark. Using Lemma 6 we see that in Lemma 7 if M is compact, then
we can remove the positiveness of the scalar curvature K.

In the following Lemmas 8, . .., 15, M is a compact Kaehlerian manifold
of complex dimension n > 1 with constant scalar curvature K, and v” is an
H-projective vector field on M.

Lemma 8. For a vector field v* on M we have

(39) fM(vjw,. + V) (Vw' + Viw/) dV = 2 fM(V,w')2 av.

Proof. By using a well-known integral formula [5], [6] on a compact
orientable Riemannian manifold, we have

fM(VIvjwh + K'w')w, av — fM(v,w')2 av
1 o o
+3 fM(vjw,. + VW) (Vw' + Vind) ¥ = 0.

On the other hand, by Lemma 2 the associated vector field p* is con-
travariant analytic and hence satisfies
v Ak hoi
V/V,p* + K'p' = 0.
Consequently (3.9) follows immediately from (2.19) and the above relations

since K is a constant.
Lemma 9. For a vector field v* on M we have

. 1 . -
; _olw’ =— | (V.w, + V.w)(Viw' + Viw/ .
(3.10) fM Gpw' dV = 30— fM( w4+ Vow ) (V! + Viwd) av
Proof. From Lemma 2, the associated vector field p® is contravariant
analytic and hence satisfies
VjVjpi + Kj"pA =0,
from which and the equality
ViVip! =V'Vp, — K_]lpj
we find
V.V,p'= —2Kj,.pf.
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Using the above equation, (2.18), (2.25), (3.3) and Lemma 8, we have

.o 1 N K .

o 4 = —— V.ol)w! - _ V.V.o!)wi
fMG,,pfw dv 2fM(v, P )W dv yprPa 1)fM( V00w dv

1 )y i = 1 12
i e fM(v,.v,w WAV = fM(v,w )} av

1
=4_(n+_1)f(vW + Vw)(Vw' + Vind) dv.

Lemma 10. For a vector field v* on M we have

G [, Gt v+ T [ Bl €G] av

ml_)f (V,w, + Vow)(Viw' + Viw/) av.

Proof. From (2.25) and (3.3), we have
A . K ‘,.
(3.12) fM Gyp'w' dV = (n + 1) fM Gu'p’ dV + - fM Gp'o' V.

On the other hand, using the identities G;g" = 0 and

(3.13)

and integrating

— n —
2n
V/(pG;v') = Gyp'o' + %pGﬁ(Vjv" + Vi)

= G,p + ujo' — %pG £,8”"

Ji
= Gjipjvi + 2P( v jl)gJ'
over M, we find
f 00 dV = ——f o(2,G,)g” dv,
which implies, in consequence of Lemma 4,
o1
(3.14) fM Gupo" dV = 2 fM £,[(2,G,)g"] av.

By (3.10), (3.12) and (3.14), we readily obtain (3.11).
Lemma 11. For a vector field v" on M we have

(3.15) f (VVE,G,)w' dv = fM(vjw,. + V,w)(Viw! + Vi) dV.
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Proof. Integrating

V(L G)w'] = (VE,G)w' + 5 ( oG (Vw' + Viwd)

over M and using (3.2), we obtain (3.15).
Lemma 12. For a vector field v* on M we have

fM gkj(BoViji)Wi av
(3.16) n . .
“ 3+ D fM(vjw,. + V,w)(Viw' + Vind) dV.
Proof. Substituting (1.1) in the well-known formula [5), [6]
BkaGji =V B {k,} ,sB {k .
and using F,;G¥ = 0 and
F’G; + F'Gy, =0,
which follows from (2.2), (2.12) and (2.25), we have
gL, v, G, = gYv.L G, —2G0/,

v ji

and therefore

fMgkj(Bka Jw' dvV = f(V’ .G )w' dv — 2f G,p'w' dv.

(3.16) follows from (3.10), (3.15) and the above relation.
Lemma 13. For a vector field v" on M we have

(3.17) fM £[(8,G,)G*] av = - f (V,w, + Vw)(Vwi + Viwd) a.
Proof. Using (3.2) and (3.13) we have
V(pGw') = Guo'w' — p( . G;i) G7.

Integrating this over M and using Lemmas 4 and 9, we arrive at (3.17)
immediately.

Lemma 14. For a contravariant analytic vector field v" on M we have

(3.18)  (8,2Z,")e" = - (Vew” + Viw,) — s,:'v w’,

+1

(319) (szkﬂh)zkjih = ( © jI)GJ'
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Proof. Using (2.16), (2.22) and (2.26), we have
szkjih = ‘81:' Vjpi + ajhvkpi + F, kh(VjP:)F;'J
_Fj"h(vkps)F}: + st(vjps)F;‘h - F_}s(vkps)i;'h

K s
- m[&fﬁogﬂ B sjhﬁogki + FkhFj" Bogsi
— I;}"Fk-" ngﬁ _ 2st(e’og;j)Fih]'
Using this relation, (2.1),- - -, (2.13), (225), (226), Lemma 3 and con-

travariant analyticity of v* and p”, we obtain (3.18) and (3.19) by a straight-
forward computation.
Lemma 15. For a vector field v"* on M we have

f L[ (8,Z")Z%,] av
M

4
n+1

Proof. This follows from (3.17) and (3.19).

(3.20)

fM(v,w,. + Vw)(Viw! + Viwd) dV.

4. Propositions
In this section, we prove a series of integral inequalities and obtain
necessary and sufficient conditions for a Kaehlerian manifold to be isometric
to a complex projective space.
Proposition 1. A complete simply connected Kaehlerian manifold M of
complex dimension n > 1 with positive constant scalar curvature K admits a
nonaffine and contravariant analytic H-projective vector field v" such that

(4.1) £ G, =0,

v ji
if and only if M is isometric to a complex projective space CP" with Fubini-
Study metric and of constant holomorphic sectional curvature K/n(n + 1).

Proof. This follows from Lemmas 3 and 7.

Remark. In Proposition 1 if M is further compact, then by Lemmas 2 and
6 we can remove the contravariant analyticity of H-projective vector field v”
and the positiveness of scalar curvature K. The same remark applies to the
following Proposition 2.

Proposition 2. A complete simply connected Kaehlerian manifold M of
complex dimension n > 1 with positive constant scalar curvature K admits a
nonaffine and contravariant analytic H-projective vector field v* such that

(4.2) RoZyi" =0,
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if and only if M is isometric to a complex projective space CP" with Fubini-

Study metric and of constant holomorphic sectional curvature K/n(n + 1).
Proof. If (4.2) holds, then from (3.18) we have V,w’ = 0 and hence w” is a

Killing vector field. Consequently the proposition follows from Lemma 7.
Remark. In Proposition 2, (4.2) can be replaced by

(4.3) (B,2,")g" = 0.

In the following Propositions 3, - - - , 8, we suppose that a compact Kaeh-
lerian manifold M of complex dimension n > 1 with constant scalar curva-
ture K admits an H-projective vector field v*.

Propeosition 3. For M we have

(4.4) J, Gt av >0,

where w' is defined by (3.3). Assume moreover that M is simply connected and
v" is nonaffine, then the equality in (4.4) holds if and only if M is isometric to a
complex projective space CP" with Fubini-Study metric and of constant holo-
morphic sectional curvature K /n(n + 1).

Proof. This follows from Lemmas 7 and 9.

Proposition 4. For M we have
__K
8n(n + 1)
Assume moreover that M is simply connected and v" is nonaffine, then the
equality in (4.5) holds if and only if M is isometric to a complex projective space
CP" with Fubini-Study metric and of constant holomorphic sectional curvature
K/n(n + 1).

Proof. This is an immediate consequence of Lemmas 7 and 10.

Proposition 5. For M we have

(4.5) fM G0’ dV + fM e.[(8,Gg"] av > o.

(4.6) [ (Ve G)wiav >0,
M

where w' is defined by (3.3). Assume moreover that M is simply connected and
v* is nonaffine, then the equality in (4.6) holds if and only if M is isometric to a
complex projective space CP" with Fubini-Study metric and of constant holo-
morphic sectional curvature K/n(n + 1).

Proof. This follows from Lemmas 7 and 11.

Proposition 6. For M we have

4.7) /|, 87(€5.Gw av >0,
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where w' is defined by (3.3). Assume moreover that M is simply connected and
o"* is nonaffine, then the equality in (4.7) holds if and only if M is isometric to a
complex projective space CP" with Fubini-Study metric and of constant holo-
morphic sectional curvature K/n(n + 1).
Proof. This is an immediate consequence of Lemmas 7 and 12.
Proposition 7. For M we have

(4.8) fM £.{(8,G,)G"} av < 0.

Assume moreover that M is simply connected and v* is nonaffine, then the
equality in (4.8) holds if and only if M is isometric to a complex projective space
CP" with Fubini-Study metric and of constant holomorphic sectional curvature
K/n(n + 1).
Proof. This is an immediate consequence of Lemmas 7 and 13.
Proposition 8. For M we have

(4.9) fM 2. {(8,Z") 2%} av < 0.

Assume moreover that M is simply connected and v* is nonaffine, then the
equality in (4.9) holds if and only if M is isometric to a complex projective space
CP” with Fubini-Study metric and of constant holomorphic sectional curvature
K/n(n + 1).

Proof. This follows from Lemmas 7 and 15.
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