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ALBERTO BAIDER

Introduction

This paper grew out of an attempt to characterize those complete noncom-
pact surfaces of revolution in R3 whose Laplacians have a discrete spectrum.
Since a surface of revolution is a cylinder of the form R1 X S1, it is only
natural to try the separation of variables method to study this problem. Now
the spectrum of Sι is discrete, and therefore the space L2 of the original
surface splits into a direct sum of infinitely many copies of L*(Rι), one for
each eigenvalue of the Laplacian on Sι, repeated according to multiplicity.
Here μ is a measure which varies with the surface under consideration;
likewise the original Laplacian decomposes into a direct sum of 'component'
operators An on R1, symmetric relative to μ (in fact essentially selfadjoint on
Q^ίR1)), so that spectral questions concerning the Laplacian become ques-
tions about each one of these components. It turns out, as it often happens,
that the study of the combined effect of these operators is in no way
facilitated by the fact that one is only considering surfaces of revolution in
R3, say. That is why we decided to abstract and present here the common
features which always occur when studying a manifold Z which, at least
outside some compact subset, can be expressed as a product X X Y, and
whose Riemannian structure is reasonably well adapted to this decomposi-
tion. For the exact conditions we require, see the beginnings of §§3 and 4. If
the fibre Y is discrete, i.e., if its Laplacian has a discrete spectrum, one is led
to operators An on X, just as in the case of a cylinder. These operators have a
simple description in terms of the geometric data pertaining to the manifold
under consideration; in other words, although the An occur as a result of
'separating variables', they are intrinsic objects, independent of coordinate
choices. Our main result (Theorem 3.3), is that all these operators, but the
first one Aλ, can be disregarded as far as the discreteness of Z is concerned.
What we have here is truly a reduction theorem, the end product being the
manifold X together with the operator Ax on it, which for expediency we refer
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to as an Ax-manifold. Theorem 3.3 states that the discreteness of the
(Riemannian) manifold Z is equivalent to the discreteness of the Aλ -manifold
X, When Z is a surface of revolution, X is 1-dimensional and Λx is an
operator which can be analyzed completely, leading to the sought characteri-
zation (Theorem 4.1). In particular we find that a manifold of this type can be
discrete only if its total volume (i.e., its surface area) is finite, although this
condition is by no means sufficient. For example any surface generated by
the rotation around the c-axis in R3 of y(x) = I*!"**, |JC| large, has a finite
volume if a > 1; none of these surfaces is discrete though. Among the
surfaces generated by decaying exponentials of the form γ( c) = e"1*1", |JC|
large, the only ones which are discrete are those for which a > 1. Finally, we
use the reduction method outlined above to show that surfaces of revolution
are rather exceptional in so far as they must have a finite volume in order to
be discrete. For each dimension n greater than 2 we construct (Proposition
4.3) a whole class of ^-dimensional complete discrete manifolds whose
volumes are infinite.

The organization of the paper is as follows: in §1 we study an abstract
version of an operator A which is the direct sum of a sequence of operators
An and obtain a discreteness criterion (Corollary 1.4) which is all we need
from this section later on. A complete description of the relationship between
the spectrum of A and the spectra of the An is given in Theorem 1.3. §2 is a
miscellany of assorted statements and results concerning second order elliptic
differential operators on a noncompact manifold most of which have ap-
peared in one form or another in the literature. We have included it because
we know of no source which presents these theorems in the generality needed
here and/or in the spirit of this article. §§3 and 4 constitute the heart of the
paper, but they have already been essentialy discussed.

1. Infinite direct sums of operators

Let H be a Hubert space. If A is a densely defined symmetric operator on
H with domain Z>, we shall denote by Dι the domain of the adjoint of A. This
adjoint is an extension of A [ D, which for simplicity will also be called A, Dι

is a Hubert space relative to the graph norm of A the closure of D in this
space is the domain of the minimal extension of A and will be denoted by D°.
Finally if A { D is semibounded, then DF will stand for the domain of the
Friedrichs extension of A. Now suppose H is the complete direct sum @Hn

of a sequence of mutually orthogonal subsapces Hn, and let Pn be the
corresponding projections. In addition suppose that on each Hn there is given
a densely defined symmetric operator with domain Dn. Let A = 0 An be the
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(algebraic) sum of the An \ Dn with domain ®Dn. Our aim in this section is

to relate properties of the An to corresponding properties of A. To begin with,

we remark that A is nonnegative if and only if all the An are.

Proposition 1.1. The space Dj (j = 0, 1 or F in case all the An are

nonnegative) is the complete direct sum 0 D{. The corresponding orthogonal

projections are just the restrictions of the Pn

9s to £>*; moreover all the diagrams

of Hiϊbert spaces and continuous maps

& 4. H
PΛ 1Λ,

commute.

The proof of all this is standard and will be left to the reader.

A consequence of Proposition 1.1 is that the defect index dz(A) of A [ D at

z E C can be calculated in terms of the corresponding defect indices of the

An. Here dz(A) stands for the dimension of Keτ(A — zl) o n / ) 1 .

Corollary 1.2. dz(A \ D) = Σn dz(An \ Dn). In particular A is essentially

selfadjoint on D if and only if all the An \ Dn are.

Proof. Indeed, Proposition 1.1 implies that

Ker(Λ - zl \ Dι) = 0 Ker(ΛΛ - zl \ Df) ,
n

the closure being taken in Dι.

We shall now tu?n to a description of the spectrum S(A) of A in terms of

the spectra of the An. We recall [5, p. 7] that a complex number λ is in the

continuous spectrum C(A) of A iff there exists a characteristic sequence for

A — λ, i.e., a bounded sequence um in the domain of A having no convergent

subsequence such that Aum — λwm—>0. For simplicity we shall restrict

ourselves to the selfadjoint case which is all we need in our applications.

More precisely, we shall assume that the An \ Dn are either all essentially

selfadjoint (Z>rt° = D*% or all nonnegative. In the first case A { D is essentially

selfadjoint; its minimal closed extension is selfadjoint. In the latter the

Friedrichs extensions of A,An are selfadjoint. In all cases we shall only

consider the selfadjoint extensions just mentioned. The simplification alluded

to above results from the fact that the residual spectrum of an arbitrary

selfadjoint extension operator T is empty, and consequently its spectrum

S(T) is the set theoretical union of the continuous spectrum C(T) and the

point spectrum P(T). Since an eigenvalue of infinite multiplicity is necessarily

in the continuous spectrum, it follows that in the absence of the latter, S(T)

consists of a sequence of isolated eigenvalues of finite multiplicity with no
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accumulation point. Conversely if this is the case, then the continuous
spectrum is lacking. Following common (if somewhat confusing) usage, we
shall refer to this by saying that the spectrum of T is discrete.

Our next result establishes the sought relations between the spectra of the
An and the spectrum of A. To this effect we introduce the limit set L^ of the
family P(An) of point spectra of the An, as the set of limits of all possible
convergent sequences λ̂  e P{A^ where nt is a strictly increasing sequence of
positive integers. Equivalently, λ E Lw iff for every neighborhood N of λ
there are infinitely many Λ'S such that N π P(An) φ 0 .

Theorem 13.

(i) P(A) = U P(AΛ).

(ii) C(A)= U

(in) S(A)= U S{An).
n

(It is understood that the domains of A,An are either D° = D1, Z>π° = D* or
D F, D* respectively, as explained before.)

Proof. Part (i) as well as the inclusion C(An) C C(A) are direct con-
sequences of Proposition 1.1. That L^ C C(A) follows from observing that a
sequence u^ of unit vectors satisfying A^u^ = λ^u^ for some sequence λ^
which converges to a number λ, is characteristic for A — λl; observe that the
u^ are mutually orthogonal if the sequence nt is strictly increasing. Since the
continuous spectrum of a closed operator is closed [5, p. 8], it follows from
the above that L^ u U n C(An) C C(A). Before proving the other half of (ϋ)
we go to (iii). We have already established that S(An) = C(An) u P(An) C
S(A). Since the spectrum of an operator is closed, it is enough to show that if
λ £ U „ S(An), then λ $ S(A). Let ε > 0 be smaller than the distance from λ
to each one of the spectra S(An). If R(An\ λ) is the resolvent of An at λ, then it
is well known (see e.g. [8, p. 272]) that R(An; λ) < l/dist(λ, S(An)) < 1/ε.
Let u be in the domain of A. By Proposition 1.1, u = Σn un, where un is in the
domain of An9 the series converging in the Hubert space Dι. Therefore
Au = Σ Λ Aun - Σn Anun (in if), and

\\Au - λu\\2 = 2 I M A " "Jl 2 > * 2 Σ II"ΛH
2 = ε2||t/||2.

n n

Since λ £ P(A) it follows that λ is in the resolvent set of A which proves (iii).
We finally turn to (ii). Suppose there exists a λ in C(A) which is not in
ôo U U n C(An). It follows that some neighborhood N oϊ λ intersects at most

finitely many P(An), n = 1, 2, , k, say. We may further assume that
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N π C(An) = 0 for all n. Now consider the splitting A — L θ M where
L = 0 * ^ , and M is the closure of the algebraic sum ®£+\An, the
domains of L, M being the obvious ones in each of the two cases under
consideration. It is clear that C(A) = C(L) u C(M). Since λ is not in
θ * C(An) = C(L) it follows that λ <Ξ C(M) C S(M). Now part (iii) already
proved, applied to M, implies that

λ G U P{Λn) U U C(An) = S(M),
k+l k+l

which is a contradiction.
As a consequence of Theorem 1.3 we have
Corollary 1.4. Suppose A, An are nonnegative operators. Let λx(An) be the

least point of the spectrum of the Friedrichs extension of An. Then the following

two conditions are, together, necessary and sufficient for the Friedrichs extension

of A to have a discrete spectrum:

(i) The spectra of the An are all discrete',

(ii) λχ(A) -> oo as n -* oo.

2. A -manifolds

Although our main interest in this paper are Riemannian manifolds we
shall see in §3 that we need to consider a slightly more general structure
which we now pass to explain. Let I b e a smooth (C0 0) manifold which for
simplicity we shall assume to be connected. A real second order elliptic
differential operator with smooth coefficients and a positive definite (prin-
cipal) symbol will be referred to as an operator, for short. Here the sign
convention for the symbol is made consistent with the requirement that at
( c, ξ) the symbol of Dj = Γιd/dxj in RΛ be | (see e.g., [7, p. 30] for an
intrinsic definition). Thus the Laplacian -Δ = - Σ 32/9x? in RΛ is such an
operator with symbol |ξ|2. More generally any Riemannian structure on X
determines an operator, namely its associated Laplacian, which in turn
uniquely determines the given structure (on T*X) via its symbol. Now let A
be an arbitrary operator with symbol a(x, Q at (x, ξ) E T*(X). We shall refer
to the pair (X, A) as an A -manifold. By definition of operator, a(x, ξ) is the
quadratic form of a Riemannian metric on T*(X) which in local coordinates
x = (x2, x2,' -, xn) has the form a(x, ξ) = Σ aiJ(x)^r Let -Δ be the corre-
sponding Laplacian. Since A and -Δ have the same symbol, A + Δ is a first
order differential operator U + c with U a real vector field and c = Λ(l) a
real valued function both uniquely determined by A in such a way that one
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has

(1) A = -Δ + U + c.

In other words, an A -structure on X is equivalent to a triple of the form
(Riemannian metric; real vector field; real valued function) and we shall

identify one with the other.

Next, we study the question of symmetry of A relative to the inner product

on CQ°(X) given by some (smooth, positive) density μ on X. Some remarks

concerning densities of this type are in order here. Let us recall that a density

is a measure which on a coordinate patch can be represented in the form

μ(x) dx, with μ(x) strictly positive and smooth. Alternatively one can think of

μ as a section of the line bundle whose transition functions are the absolute

values of the Jacobians of the coordinate changes. Thus it is clear that if v is

another section of this bundle the quotient v/μ is a well-defined function on

X. Also, since the bundle of densities is trivial, any density is of the form/μo

with μo a fixed given one. Now let V be a vector field on X. We recall that it

is usual to denote by divμ V the unique function which for all μ in C™{X)

satisfies

ί φ divμ V- μ(dx) = -[ V(φ)μ(dx).
Jx Jx

In local coordinates, if V = Σ Vi(x)d/dxi and μ = μ(x) dx, then div^ V =

We are ready to go back to the question of symmetry. Consider a triple of

the form (a(x, ξ); μ; c) where now μ is a density, and a(x, £), c are as above.

If grad stands for the gradient operation relative to the metric a(x, £), then

the expression

(2) A = -div^ grad + c

defines an operator which is in fact characterized as the unique operator with

symbol a(x, ξ\ symmetric relative to μ and such that A(X) — c. Writing A in

the form (1), it is easy to see that the vector field occurring there satisfies

(3) ί/ = gradlog(μ/μo),

where μ̂ , is the Riemannian volume element associated with a(x, Q. Con-

versely, if A *-» (a(x, ζ); U; c) is an operator symmetric relative to some

density μ, then this density satisfies (3), and it is therefore determined by A

up to a positive multiplicative constant. Thus we have a mapping

(a(x; I); μ; c) -> (a(x, ξ); U; c)*+A

which is one-one except for the action of R+ on μ, and whose image is the set

of operators which are symmetric relative to some density on X. There is then
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little ambiguity in referring to such an operator simply as a symmetric operator
and we shall do so. It is interesting to note that for a general operator to be
symmetric, there are local as well as global obstructions, namely, that the
1-form determined by U be closed and have vanishing periods. For example
on the circle every operator can be written in the form A = -&d2/dθ2 +
bd/dθ + c with a > 0, b, c, real and periodic. The 1-form alluded to above is
ba~ιdθ + ^rflog(α), and consequently the necessary and sufficient condition
for A to be symmetric is the vanishing of the integral fff ba~ιdθ. In what
follows we shall confine ourselves to the symmetric case. We just mention
that the nonsymmetric case has been the object of recent papers by Donsker
and Varadhan [1], [2] where a variational formula for the "vertex" of the
spectrum is given.

Let X be an A -manifold with A of the form (2). We shall consider
A Γ C£°(X) as an unbounded operator on L\X; μ). A is semibounded if and
only if the Rayleigh "quotient"

λ i = ^(A) = int (Aφ, φ)/ (φ, φ)
^ ( )

is finite. In this case λ! is the infimum of the spectrum of the Friedrichs
extension of A. We note in passing that the value of A, (Aφ, φ)/(φ, φ) is
independent of the measure chosen relative to which A is symmetric. Also,
the set of these values for φ with support in a fixed open nonempty subset of
X contains with every λ the whole segment [λ, oo); therefore the statement 6A
is semibounded' can only mean 'semibounded below'.

Theorem 2.1. Suppose there exist a strictly positive function f G C°°(X)
and a number λ G R such that

(3) f~lΛf(x) > λ, x G X.

Then A is semibounded and in fact λj > λ. Conversely if λx > λ, then there
exists some positive f E C°°(X) which satisfies (3). As a result, λx has the
following alternative characterization:

(4) λ, = sup inf (/-'4/)(x),

the supremum being taken over all strictly positive functions f G C°°(X).
Proof. This result appears to be a folklore theorem. The characterization

(4) is a particular case of the main theorem in [1], where X is assumed to be
compact. Since we know of no reference which applies to our case we shall
give a proof, although some details will be left out.

First of all we note that the inequality λι > λ is trivial if / in (3) can be
taken to be the constant function 1. Indeed in this case A is the sum of the
nonnegative operator -divμ grad and multiplication by a function, namely
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A (I), which is bounded from below by λ. The general case can be reduced to
the one just treated by means of the following trick: multiplication by/is an
isometry from L2(X, f2μ) onto L2(X, μ) which preserves C£°(X) and inter-
twines the operators A and A = f~ι ° A ° /. The reduction alluded to above is
accomplished by noting that XX(A) = λ^A) and that A(\)(x) = f~ιAf(x).

The converse is an existence theorem for the differential inequality (3).
Now if λ! > λ, then in particular A is semibounded and λ! is the bottom of
the spectrum of its Friedrichs extension. It is well known that if λj is an
eigenvalue, its multiplicity is 1 and the corresponding eigenfunction can be
taken to be everywhere positive as well as smooth due to the ellipticity of A,
Such an eigenfunction is certainly a solution to our inequality. Again, the
general case can be reduced to the above by a well-known trick (see e.g., [3],
[12]) which consists of subtracting from A a nonnegative φ e C™(X) in such
a way that

λ < λ^A - φ) < λ^A).

Since such a perturbation is compact relative to A, the continuous spectrum
remains unchanged, and consequently A — φ does have λx(A — φ) in its
point spectrum. The corresponding positive eigenfunction/satisfies

ΓιAf(x) >ΓιAf{x) - φ(x) = X,(A - ψ) > λ.

This concludes the proof of Theorem 2.1.
We now turn to the question of discreteness of the spectrum of the

Friedrichs extension of an operator A which is symmetric and semibounded.
In what follows A is a fixed operator on X, but we shall also consider A as an
operator on open subsets G of X. For the rest of this section we shall change
somewhat our earlier notation: λ^G) will stand for the Rayleigh quotient of
A as an operator on C0°°(G). Likewise, we set κ(G) for the infimum of the
continuous spectrum of the Friedrichs extension of A [ C0°°(G) with the
understanding that κ(G) = + oo if the continuous spectrum is empty.

Theorem 2.2. The operator A has a discrete spectrum if and only if

(5) lim λλ(X - K) = sup λλ{X - K) = + oo,
κ
 K

where K runs through the family of compact subsets of X directed by inclusion.
More generally, κ(X) = lim^ λ^X - K).

Proof. Suppose there exists \ < + oo such that for every compact subset
K of X one has λ^Λ" - K) < XQ. We shall show that there is a point in the
continuous spectrum not greater than AQ. Indeed our assumption implies the
existence of a sequence of functions φy e C™(X) with mutually disjoint
supports such that (Aφp ψj) < AQU^H2. It is clear that this inequality persists
on the linear space generated by the ψj. According to [5, Theorem 13, p. 15],
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such an inequality on an infinite dimensional subspace implies that the part
of the spectrum to the left of λ0 is either an infinite set or contains at least one
eigenvalue of infinite multiplicity. Our assertion follows from this and the fact
that the spectrum of A is bounded below.

For the converse we need
Lemma 23. IfKis a compact subset ofX, then κ(X - K) < κ(X).
Theorem 2.2 is an immediate consequence of the lemma, for one has

limλ^Λ" — K) = supλ^X — K) < s\xpκ(X — K) < κ(X).
κ
 K K

Now Lemma 2.3 is a weak version of the so called "decomposition principle"
that can be found in [5, p. 59], or in a different context in [11, p. 192]. Since
our assumptions differ from these authors', we shall give a proof for the sake
of completeness. Let λ be a point in the continuous spectrum of A as an
operator on X. We will show that λ is in the continuous spectrum of A as an
operator on X — K. If Uj is a characteristic sequence for A — λ, it is well
known that w, belongs to the Sobolev space H^°(X)\ since this sequence is
bounded in the graph norm of A, Rellich's theorem implies that on the
compact set K, Uj may be taken to be convergent (in L2), and in fact
convergent to zero there, since as it is not difficult to see Uj could have been
taken weakly convergent to zero in the first place; for example, orthogonal.
By another modification of our choice we may even assume that Uj converges
to zero in L2 of a relatively compact neighborhood U of K. If a G Co°°({/) is
identically one on a neighborhood of K and β = 1 - α, we claim that βuj is
characteristic for A — λ on X — K; we need to show that βuj is in the domain
of the Friedrichs extension of A on X — K and that (A — λ)βuj -> 0 in ZA
Now the Friedrichs extension has for domain the set H(A) π Dι(A), where
H(A) is the completion of Co°° in the norm [φ]2 = (Aφ, φ) + γ| |φ| |2, γ
sufficiently large, and Dι(A) = {u G L2\Au G L2}, Au being understood in
the distributional sense. To see that βuj G H(A), it is enough to show that
multiplication by β is continuous on Co°° with the norm of H(A). In fact if
φ G Q00, then

[ /?φf = (A{βφ\ βφ) + γ|| βφ\\2 = {\β\2Aφ, φ) + (φ(A - A(\))β, βφ)

-2(grad β grad φ, βφ) + γ|| βφ\\2.

The first two terms of the right-hand side are clearly dominated by [φ]2, and

the third one is dominated by ||grad φ||2 + | |φ| | 2 . Now

||grad φ||2 = J grad φ grad φμ(dx) = - J φ divμ grad φμ(dx)

= (Aφ, φ) - (A(\)φ, φ).

This shows that multiplication by β is continuous in H(A) provided that Λ(l)
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is bounded below. If A(\) is not bounded below we proceed as in the proof of

Theorem 2.1, replacing A by A = f~ι ° A ° f where / is any strictly positive

function such that f~ι(x)Af(x) is bounded below, which exists in view of the

fact that A is bounded below. Finally, that (A - λ)βuj is in L2{X - K; μ)

and in fact tends to zero, follows from the identity

(A - λ)( βuj) = β(A - λ)uj - Uj divμ grad β - 2 grad Uj grad β.

Indeed it is well known from elliptic theory that grad uy G H^ and it is

bounded there; by Rellich's theorem it is relatively compact in L2 of any

compact subset of X, and in fact tends to zero there because it does so in the

sense of distributions. Since grad β has compact support and (A — λ)uj —» 0,

the lemma is proved and so is the theorem.

Combining Theorems 2.1 and 2.2 we obtain the following criterion for

discreteness:

Corollary 2.4. A is discrete if there exists a positive function f {defined in the

complement of some compact subset) such that

(6) f~\x)Af{x) -+ + oo as x -+ oo

in the sense of the Alexandroff compactification of X. Conversely if A is discrete

and λ is an arbitrary positive constant, there exist a compact subset K of X and

a positive function f G C°°(X - K) such that f~\x)Af{x) >λonX - K.

We remark that the criterion given by Corollary 2.4 is a generalization of

the following well-known result (see e.g., [5, p. 146, Theorem 1]): A = -Δ + q

on RΛ has a discrete spectrum if q(x) —» oo as x —» oo. In fact q(x) = f~ιAf(x)

with/ = 1. This result extends of course to the Laplacian on any Riemannian

manifold.

Corollary 2.5 (Decomposition principle). A is discrete if and only if A is

discrete as an operator on the complement of any compact set Ko.

Proof The limit (5) is the same for X and X — Ko.

Corollary 2.6. If A is discrete and q is a nonnegative function, then A + q is

also discrete.

Proof. Obvious, since the Rayleigh quotient of A + q on the complement

X — K of any compact set K is not smaller than \X(X — K).

3. A reduction principle

We shall consider Riemannian manifolds Z having the following structure:

Z can be expressed as a product X X Y, where X, the base, and Y, the

fibre, are Riemannian manifolds, with Y discrete, such that at each point

z = (x,y), the submanifolds Xy = X X {y} and Yx = {x} X Y are mutually

orthogonal; Xy is canonically isometric to X whereas Yx has the metric of Y

times a positive "constant" y(x) which varies smoothly with x.
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More precisely, if v G TyYx Q T^Z, then \v\(x%y) = γ(jc)|o|^, the bars
denoting the obvious lengths on both sides of this equation. We also pause to
remark that 'discrete' refers to the spectrum of the Friedrichs extension of
-Δ I Co°°( Y). The Friedrichs extension provides a unified framework in which
we need not distinguish between a compact manifold, say, and an open
relatively compact subset with sufficiently smooth boundary of a larger
manifold, both examples of discrete manifolds. In the former the Laplacian is
essentially self adjoint on Co°°. In the latter the Friedrichs extension corre-
sponds to the Dirichlet problem. In connection to this it is worthwhile noting
that on a complete manifold the Laplacian is always essentially selfadjoint,

[4].
The manifolds under consideration will be referred to as X X γ Y, for

short. Concerning completeness of this type of manifold we have
Proposition 3.1. X X γ Y is complete if and only i/X and Y are.

Proof. A proper submanifold of a complete Riemannian manifold is
obviously complete. Since Xy and Yx are proper submanifolds of Z and are
isometric to X and Y respectively, except perhaps for a 'multiplicative
constant', it is clear that they must be complete if Z is. To prove the converse
it suffices to show that the closed ball of radius r about z0 = (x0, >>0), Br(z0), is
a subset of Br(x0) X Br/yo(yo) where γ0 = inf{y(x)|;c G Br(xJ} > 0. Indeed
as is well known a Riemannian manifold is complete if and only if any closed
ball is compact. Now the projection Z -* X is distance-decreasing since for an
arbitrary piecewise smooth arc z(t) = (x(t),y(t)), t E [0, 1], joining z0 =
(x0, y0) to zλ = (xv yγ) of total length L, we have

dist(*0, xλ) < C\X\ dt < ('(Ixl2 + y2(X)\y\2y dt = L.

It follows that if zι = (xvyι) G Br(zQ), then xλ e Br(x0). Now let ε > 0;
there exists a piecewise smooth arc z(/), t E [0, 1], joining z0 to zx whose total
length is less than r + ε. Consequently

dist( cθ), x0) < dist(z(/), z0) < [\z\ dt < [ \z\ dt < r + ε.

In other words, the projection of this arc into X lies entirely in the ball
Br+ε(x0), which is compact if X is complete; consequently, with γe =
inf{γ(jc)|;c E 5 r + e(^0)}' which is positive and increases to γ 0 as ε decreases to
0, we have

γε dist^^o) < y£ C\y\ dt < C

\z\ dt <r + ε,
o
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which means that yx G B{r+έ)/y{y^) from which our assertion follows by

letting ε —»0.

We now study the form of the Laplacian - Δ z as acting on C™(X) ®

C0°°(y). This is all we need since this space is dense in C™{Z) (and therefore

in ^ ' (Z)) . We introduce some notation as follows: μ = μ(dx), v = v(dy) the

Riemannian volume elements of X, Y, respectively; m9 n, the respective

dimensions; -Δ^, -Δ y , the Laplacians; a(x, £), b(y, η) their symbols; g(z, ξ)

the symbol of - Δ z ; 0 < λ^y) < λ 2(7) < X3(Y) < , the eigenvalues of

- Δ y repeated according to their multiplicities. We remark that λχ(Y) is

simple, it vanishes if Y is compact, and that the sequence λ,( Y) tends to oo as

7->oo.

If (xv x29 - - - , xm; y^y-i* * * ,yn) is a coordinate system adapted to the

product structure of Z, the metric tensor can be written, according to our

basic assumption, in the form ds\ = ds\ + γ2(;c) ds\> with ds\ ==

Σ atj{x) dxi dxj and ds\ = Σ bkl(y) dyk dyv The matrix of this tensor is there-

fore

(g )
0 γ2(x)(bkl(y))

and its determinant g satisfies

(1) g = y2n(x)a(x)b(y),

where a(x) = det^^x)) and £(>>) = det(bkl(y)). Since locally the Riemannian

volume is g*dzx dzn+m,(l) shows that (locally and therefore globally) this

volume is the direct product in the sense of measure theory:

(2) ynμ ® v.

The inverse of the metric tensor can be written with standard notation

(α*(*)) i 0
(3) (gsl)

Consider the canonical decomposition T?Z = T%X Θ TfY, z - (x,y). If

(z, ξ) e 77Z and S = I θ 1,, we write (z, f) = ((*, ξ); (y, η)).

(3) tells us that the symbol of the Laplacian has the form

(4) g(z, ξ) = a(x, ξ) + y~2(x)b(y, η).

Let Ao be the operator on X (in the sense of §2) symmetric relative to ynμ,

whose symbol is a{x, ξ) and such that Λ0(l) = 0.

Proposition 3.2. The Laplacian - Δ z f C£°(X) ® Cf(Y) has the form

(5) - Δ z = Ao ® 1 r + γ"2 ® -Δy.
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Proof. A simple calculation in local coordinates gives (5). Alternatively,
the operator A = Ao ® l y + γ~2 ® - Δ y is clearly symmetric relative to ynμ
® v, its symbol is a(x, ξ) + y~2(x)b(y, η) and^(l) = 0.

Besides Ao we must consider operators

(6) A = Λ 0 + γ / ( y ) γ - 2 , i - l , 2 , - . .

The Ai are symmetric relative to ynμ, they satisfy v4f(l) = Xi(Y)y~2, and their
symbols coincide with that of -Δ^.

For example the complement of zero in R 1 + π has the form R+ X r Sn,
r(x) = | 4 and Ao = r~n(d/dr)rn(d/dr). If n = 1, At - -r~\d/dr)r(d/dr) +
i V"2 is essentially the Bessel operator of order i, although for obvious reasons
our numbering here of the eigenvalues of Sι is at variance with the rest of the
text.

We are now ready for the main result of this paper.
Theorem 33. A necessary and sufficient condition for Z = X X γ Y to be

discrete is that the A ̂ manifold X be discrete. If Y is compact {more generally if
λj(Ύ) = 0), then Z is discrete iff the A0-manifold X is discrete. Thus in this
case, whether Z is discrete or not, only depends on X and y, not on Y. In
general, the discreteness of Z depends on Y only through Xλ(Y).

Proof. Let w, be an orthonormal basis of L2( Y; v) made up of eigenvectors
of - Δ r corresponding to the eigenvalues \{Y), and let D( be the C™(X)
module generated by w, in L2(Z; ynμ ® v). We see from (5) and (6) that A
acts on Dj as the operator Ai9 if the obvious identification between Dt and
C£°(X) is made. The family of spaces Di and operators At defines as in §1 an
operator A = © At with domain ®D, dense in L2(Z; ynμ ® v) whose
Friedrichs extension coincides with that of - Δ z \ C™(Z). To substantiate the
last statement it suffices to show that the latter is an extension of the former,
since selfadjoint operators are maximally symmetric. Leaving the details of all
this to the reader we can now apply Corollary 1.4. The theorem will clearly
follow if from the assumption that Aλ is discrete we can conclude that all the
A; are, and that λ^,-) -> oo as i? -» oo. That the Ai are discrete is the content
of Corollary 2.6. Now consider \{A^. We shall show that if \ is any given
real scalar, then X^Ag) > XQ when i is sufficiently large. From Corollary 2.4
applied to Ax we see that there exist a compact subset K of X and a positive
function / G C°°(X - K) such that AJ(x) > Xof(x) on X - K. Let g be a
positive function in C°°{X) which coincides with/ on the complement of a
compact neighborhood Kλ of K, and consider g~\x)Aig(x) = g~xA x g(x) +
(\(y) - A1(r))/y"2(x). Since \(Ύ) -> oo we can find an i0 such that on the
compact set Kv g~λAtg > \ whenever i > i0. The inequality satisfied by g is
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clearly also true outside Kλ: from Theorem 2.1 we conclude that if i > i0 then

λι(Ai) > λ0.

Corollary 3.4. If Y is discrete, λχ(Y) > 0 and γ(x)->0 as x -» oo, then

X X γ Y is discrete.
Proof. Apply Corollary 2.4 to Ax with/ = 1.

4. Generalizations and examples

The Decomposition Principle (Corollary 2.5) can be used to study more
general manifolds than the ones treated in §3. For example a manifold M
with a finite number of ends in the sense of [6, p. 80], has a compact subset K
such that its complement is the disjoint union of open subsets
Zx, Z2, - , Zp, say. Corollary 2.5 implies that M is discrete if and only if all
of the Z, are, since the Laplacian on M — K breaks down into the (finite)
direct sum of the Laplacians on each one of the components. If the Z, admit
a structure of the form X. X γ Yi9 then the method of §3 can be applied, and
the study of the discreteness of M reduces further to the study of the
manifolds Xi with appropriate operators on them. Results in this direction are
most complete when the Xt are 1-dimensional. An example of such a
manifold would be the interior M of a compact manifold with boundary,
M u 3M. If the components are Yv Y2, , Yp, say, then the collar neigh-
borhood theorem implies that outside some compact subset K, M decompo-
ses in the manner described above.

As our main example we shall study surfaces of revolution in R3 generated
by revolving a meridian (x, 0, y(x)), x E R, around the c-axis say; here γ is a
strictly positive function in C 0 0 ^ 1 ) . It is easy to see that such a manifold
(called hereafter Zγ) has the structure X X γ S

ι, where X is R1 with the
nonstandard metric given by the arc length of the curve (x, y(y)) in R2:
ds2 = (1 + y2(x)) dx2, and Sι has the metric of the unit circle as a subset of
R2. This surface has two ends, and we study them separately by letting x be
greater than zero and less then zero respectively.

Theorem 4.1. A necessary and sufficient condition for the surface or revolu-

tion Z γ to be discrete, is that the expressions

(1) U{x) = f (1 + y\t)fy-\t) dt(±C°{\ + y2(sψy(s) ds

tend to 0 as x —» ± oo respectively. When y is bounded the I± can be replaced

by the simpler integrals

(la) J+(x)= fX

Ύ-\ήdtΓy(s)ds.
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Proof. We shall only consider the case x > 0, the other being similar.

According to Theorem 3.3 we must prove that the operator Ao = -γ" ! ( l +

y2)ϊ(d/dx)(l + y2)~ϊ(d/dx) is discrete on (0, oo). To simplify Ao we in-

troduce the variable y — y(x) defined by the equation y = γ - 1 (l + γ2)2,

y(0) = 0. In this new coordinate Ao takes the form -r~2d2/ay2, with r(y) =

y(x(y)). We claim that the mapping x -*y is a diffeomorphism of [0, oo) onto

itself. Indeed the integral /£°(1 + γ2)2γ- 1 dt is divergent if (and only if) either

So\y\y~X ^ = oo or else Jo 7"1 dt = oo. If f^\y\y~ι dt < oo, / " γγ"1 dt con-

verges and therefore log γ has a finite limit as x -^> oo, which implies that γ

has a nonvanishing limit as x —> oo. But then /£° γ"1 dt must diverge which

proves our claim. We are now in a position to apply the following discrete-

ness criterion of I. S. Kats and M. G. Krein [9], (a proof of which can be

found in [5, p. 93]): the operator -r~2d2/dy2 has a discrete spectrum if and

only if l i m ^ ^ y /£° r\s) ds = 0; here y is a variable which ranges through

the interval (0, oo), and 0 is a regular end-point for the operator. Reverting to

the original variable x, the theorem follows.

Corollary 4.2. If a surface of revolution is discrete, then its total volume

must be finite.

Proof. We see from formula (2) of §3, or by direct calculation, that the

total volume of Z γ is 2π J00^ y(s)(l + y\s))2 ds. Corollary 4.2 is clearly a

consequence of the finiteness of the integrals /±(Λ;).

It is interesting to note that there is a wide gap between the volume of a

surface of revolution being finite and its spectrum being discrete. Indeed a

surface of the form Zγ with 7 = 1x1"** near infinity has finite volume if and

only if a > 1. Yet no surface of this type is discrete, for the integrals (la) are

~ |x | 2 /(α 2 — 1) as x -> oo. The simplest examples of (noncompact, complete)

discrete surfaces of revolution are provided by generators of the form e~'x'β

when |Λ: I is large. Even in this case not all orders of exponential decay will do.

In fact such a surface is discrete if and only if a is strictly greater than 1!

Indeed repeated integration by parts shows that as x -> oo

e-'adt~- ^ , and that / e < dt ~- — i f α < l .

x « J\ a

In any case f* e'" dt = O(ex°). Thus we see that the integrals J± of (la)

satisfy

i χ2(l-a)

i f α < l ,
a

O(xil~a)) ifα > 1,
from which our assertion follows by applying Theorem 4.1.
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To close, we take a final look at the conclusion of Corollary 4.2. For

general manifolds, finiteness of the volume is by no means necessary for the

spectrum to be discrete. For example in RΛ with its standard metric, a region

with a sufficiently smooth boundary will be discrete for the Dirichlet problem

if and only if for every positive r there is only a finite number of disjoint balls

of radius r which can be placed inside the given region (Molchanov [10]; see

also [5, p. 154]). For instance the subset of R2 {(Λ:,J>)| \xy\ < 1} has infinite

volume and a discrete spectrum. On the other hand the surfaces we have been

considering are all complete. Thus a natural question arises, namely: is it

necessary for a complete discrete manifold to have finite volume? As we shall

see the answer is in the negative; in fact we have

Proposition 4 3 . If n > 2 there are functions φ E C°°(Rn) such that the

complete manifold RΛ X eΨ Sx is discrete and has infinite volume.

Proof. The operator Ao on Rπ associated to such φ is -e~^ div eφ grad. We

shall assume that φ depends only on the distance to the origin r, at least for

large r. We write φ = φ(r), φ = dφ/dr. With

ί r 2 - if«>2,
Ψ \log(l/r) if ft - 2,

we have when r is large,

_ ί (« - 2)r '-(φ + (2 + ny~") if n > 2
0 ~tr- (φ-r->) if* = 2 .

Let φ be any function of a real variable r whose slope is bounded below by

crp for some scalars c > 0 and p > n - 1. These conditions imply that

l i m ^ ^ e^AtfP = + oo. We see using Corollary 2.4 that Ao is discrete; by

Theorem 3.3 so is Rn X eΨ Sι, because the fibre is compact. The proposition

follows from the observation that the volume of Rπ X ^ S 1 is 277 /RΛ e
ψ dx =

00.
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