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ANTI-INVARIANT SUBMANIFOLDS WITH
FLAT NORMAL CONNECTION

KENTARO YANO, MASAHIRO KON & IKUO ISHIHARA

1. Introduction

Anti-invariant, i.e., totally real, submanifolds of a Kaehlerian manifold have
been studied by Blair [1], Chen [2], Houh [3], Kon [4], [10], [11], Ludden [5], [6],
Ogiue [2], Okumura [5], [6], Yano [5], [6], [8], [9], [10], [11] and others. In particu-
lar, anti-invariant submanifolds of complex space forms have been recently
studied by two of the present authors [10], [11].

The main purpose of the present paper is to study anti-invariant submanifolds
of complex space forms with parallel mean curvature vector and flat normal
connection, and to prove Theorems 1, 2, 3 and 4.

§ 2 contains preliminaries on field of frames convenient for the study of anti-
invariant submanifolds of a complex space form. In § 3 we study anti-invariant
submanifolds of a complex space form with flat normal connection, and prove
some lemmas. The purpose of § 4 is to prove some theorems on anti-invariant
submanifolds with parallel mean curvature vector and flat normal connection.
In § 5, the last section, we give some examples of anti-invariant submanifold
with parallel mean curvature vector and flat normal connection immersed in a
complex projective n-space CP" or complex n-space C", and prove our Theo-
rems 3 and 4.

2. Preliminaries

Let M be a Kaehlerian manifold of complex dimension n + p with almost
complex structure J. A real n-dimensional Riemannian manifold M isometrical-
ly immersed in M is said to be anti-invariant or totally real in M if JT (M) C
T.(M)*+ for each point x of M, where T,(M) and T,(M)+ denote the tangent
space and the normal space to M at x respectively.

We choose a local field of orthonormal frames e, -+, €,;€,,1, -+, €,.p;
e =Je, -, =Je; e =JC 1 0, €pips = Je,,, in M in such a
way that, restricted to M, e,, - - -, e, are tangent to M. With respect to this field
of frames of M, let @', - - -, 0*; 0", - - -, 0" P, 0", - - -, @™ @YY, - @R
be the field of dual frames. Unless otherwise stated, we use the following ranges
of indices:
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A, B,C,D=1,---,n+p, 1* ... (n+ p)*,
Lk, Lt,s=1,---,n,
ab,c,d=n—+1,.-..,n+p, 1% ... (n + p)*.
afr=n+1,--,n+p,
Apyv=n+1,---n+p + D% - (n+p*,
and the convention that when an index appears twice in any term as a subscript

and a superscript, it is understood that this index is summed over its range.
Then the structure equations of M are given by

4 _ 4 B 4 B _
@1 do* = —og N\ 0®, ow0z+0f=0,
. . . . % ¥ ik
o+ o0l =0, o =04, o =,
2.2) o+ or=0, o =o0%, o =",
0+l =0, 0fj=o05, 0f =,
A A (o} A A A D
(2.3) dog = —og N\ 0f + 03, B=%KBCDCUC/\(D .

When we restrict these forms to M, we have

(2.4) w*=0.
Since 0 = dw® = —w? /\ o', by Cartan’s lemma we can write o as
2.5) 0! = hiw’, he; = he; .

From these formulas we obtain the following structure equations of M:

26) do'= —wi Ao, dot= —wi Aot+ 0, 0 =LIR,0"A o,

(2-7) R?’kl = K?‘kl + Z (h?kh(;L - h?zh?k) s
2.8) doj = —of N oy + 27, 05 = IR0 A o',
(2-9) Ry = ngz + ; (hlillch?l - h?lh‘zi’k .

The forms («’) define the Riemannian connection of M, and the forms (f)
the connection induced in the normal bundle of M. From (2.2) and (2.5) it fol-
lows that

(2.10) By = i, = K,

where we have written 4%, in place of A%} to simplify the notation. The second
fundamental form of M is represented by Af,w'w’e,, and is sometimes denoted
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by its components h¢,. If the second fundamental form is of the form
0:5( 22« hive,)/n, then M is said to be totally umbilical. If hY; is of the form h¢; =
(X« h)d/n, then M is said to be umbilical with respect to e,. We call
(25« hicey)/n the mean curvature vector of M, and M is said to be minimal if its
mean curvature vector vanishes identically, i.e., >, A%, = 0 for all . We define
the covariant derivative A7, of A7, by

(2.11) hio* = dhi; — hjw; — hi;of + hie) .

The Laplacian 4h{; of hf; is defined to be

(2.12) dhy; = ; hee >

where we have defined 4§, by

(2.13) hiot = dh, — hiel — hieh — hi el + hoef .

In the sequel we assume that the second fundamental form of M satisfies
equations of Codazzi:

(2.14) hey — hi; =0.

Then, from (2.13), we have ’

(2.15) hije — hiju = hiRGq + hi;RG, — hiR3,,
On the other hand, (2.12) and (2.14) imply that

(2.16) dng; = ‘kj h, = ; hn -

From (2.14), (2.15) and (2.16) it follows that

(2.17) dhi; = ; (Mi; + MR + hGRE ;e — GRS
Therefore we have

(2.18) 23 hi; Ak, 2 (hihie; + hihi R + hEhER: . — hihRS ;)

@iy j a,i,j,k

If the ambient manifold M is of constant holomorphic sectional curvature c,
then the Riemannian curvature tensor K4cp, of M is of the form

(2.19) Kgop = 4¢(04605p — 04p0s¢ + Jacdsp — Jandne + 2J48Jcp) »

and the second fundamental form of M satisfies equations (2.14) of Codazzi.
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3. Flat normal connection

In this section we study the normal connection of a real n-dimensional anti-
invariant submanifold M of a complex space form M"*?(c), that is, of a com-
plex (n + p)-dimensional Kaehlerian manifold M of constant holomorphic sec-
tional curvature c.

If R¢,, = 0 for all indices, then the normal connection of M is said to be

fat.

From (2.19) we see, first of all, that
3.1 K, =0, Ki,=0, Ki,=0.
If the normal connection of M is flat, then (2.9) and (3.1) imply that

(32 2 (hihiy — hyhy) =0, 30 (hichiy — hihi) = 0.

Moreover, using (2.9) and (2.10), we see that

(3-3) ; (h:khiz - hfzhfk) = Z (h}'kh:l - hzzh:k) = _ic(atkasl - 5”5316) .

Proposition 1. .Let M be an n-dimensional (n > 1) anti-invariant submanifold
of a complex space form M"*?(c). If the normal connection of M is flat, and M
is umbilical with respect to some e,., then ¢ = 0.

Proof. If M is umbilical with respect to e,., then the second fundamental
form h¢; is of the form Al; = (35, h)d;;/n. Thus we have

Z (hfkhgz — hﬁzhik) =0.

[

From this and (3.3) we see that ¢ = 0.
Lemma 1. Let M be an n-dimensional anti-invariant submanifold of a complex
space form M™*?(c). If the normal connection of M is flat, then we have

34 Ry, = Z; (hihs, — hihsy)
Proof. From (2.7) and (2.9) we find
R = 5¢@udy — udy) + 25 (hishi, — hihiy)
+ X2 (hh — i)

= Rjos + 25 (i — i) -

Since the normal connection of M is flat, we have R, = 0 and hence (3.4).
In the sequel, we put 4, = (h%;), 4, being a symmetric matrix.
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Lemma 2. Let M be an n-dimensional anti-invariant submanifold of a com-
plex space form M™*?(c) (¢ # 0). If the normal connection of M is flat, then M
is umbilical with respect to all e,.

Proof. From (3.2) we see that 4,4, = A,A4, and 4,4, = A,A, for all 2 and
2. Thus we can choose a local field of orthonormal frames with respect to which
A, and all 4, are diagonal, i.e.,

O N

(3.5) A = - , A, = .

0 o 0 i
Putting ¢t = [ and k = 1 in the first equation of (3.2) and using (3.5), we find
(3.6) (hty — hiDhy, =0 .

On the other hand, putting t = k = 1 and s = / # 1 in (3.3) and using (3.5),
we have

(3.7 (hy — mhy, = —4c.

Since ¢ = 0, (3.7) implies that 4}, # 0. From this fact and (3.6) we see that 4,
=h,(t =2, --,n)forall 2. Thus M is umbilical with respect to e, for all A.

Lemma 3. Let M be an n-dimensional anti-invariant submanifold of a complex
space form M"*?(c) (¢ + 0). If the normal connection of M is flat, then we have

; 1
(3.8) R, = nT; (Tr A)(0:x0;, — 6:041) -

Proof. From Lemma 2 we see that 4}; = (Tr A4,)d;;/n for all 2. Therefore
(3.4) implies (3.8).

If, in Lemma 3, n > 3, then ), (Tr 4,)* is constant. Therefore we have

Proposition 2. Let M be an n-dimensional (n > 3) anti-invariant submanifold
of a complex space form M"**(c) (¢ # 0). If the normal connection of M is flat,
then M is of constant curvature.

If M is minimal, then Tr 4, = 0 for all 1. Thus we have, by (3.8),

Proposition 3. Let M be an n-dimensional anti-invariant minimal submanifold

of a complex space form M™*?(c) (¢ # 0). If the normal connection of M is flat,
then M is flat.

4. Parallel mean curvature vector

Using the results obtained in the previous section, we can prove
Theorem 1. Let M be an n-dimensional (n > 3) anti-invariant submanifold
of a complex space form M"**(c) (c # 0) with parallel mean curvature vector. If
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the normal connection of M is flat, then M is a flat anti-invariant submanifold of
some M"(c) in M"**(c), where M"(c) is a totally geodesic complex submanifold
of M™*?(c) of complex dimension n.

Proof. Since n > 3, Y, (Tr A, is constant. On the other hand, from (2.7)
and (3.8), we have

@n "> ! = (Tray = %n(n — e+ D (Trd);— 5 ().

a,t,]

Therefore the square of the length of the second fundamental form of M is
constant, i.e., >, ; (h%)* = constant. From this we see that

(4.2) 2 (i)' + 30 kil =34 2 (R =0
Ayly ],

a,iyj a,i,j

<

Substituting (3.8) into (2.18) and using (4.2), we obtain

1
Zk (hi) = — o ; (Tr A, 2 [n(h))* — hishs,]
[ 2% 2% 2} a,,]
4.3) - _% (T A 5 () — hi)

— L DAy B[ T o hr 0 TGy

n 2 ¢ >3 iE]
To get the second line of (4.3), we have used Lemma 2. Since M is not umbil-
ical with respect to each e,« by Proposition 1 and ¢ # 0 by the assumption, we
have 33,.; (hi, — h%;* > 0. Therefore we see that 4%, = 0, that is, the second
fundamental form of M is parallel and Tr 4, = 0, which implies that 4, = 0
for all 2. From these and the fundamental theorem of submanifolds, M is an
anti-invariant submanifold of M"(c), where M"(c) is a totally geodesic com-
plex submanifold of M™*?(c) of complex dimension n. Moreover, since 4, = 0
for all 2, Lemma 3 shows that M is flat. From these considerations we have
our assertion.

When n = 2, we need the assumption that M is compact. In this case we
have

Theorem 2. Let M be a compact anti-invariant surface of a complex space
SJorm M***(c) (¢ # 0) with parallel mean curvature vector. If the normal connec-
tion of M is flat, then M is a flat anti-invariant surface of some M*(c) in M**?(c),
where M*(c) is a complex 2-dimensional totally geodesic submanifold of M**?(c).

Proof. Since M is compact, we have

Z k(h?jk)z*l == - Z<h?jdh;l;1 .

M a,i,j, M a,i,j

Using this and an argument quite similar to that used in the proof of Theorem
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1, we have our assertion.

When ¢ = 0, we have the following result under an additional assumption
on A4,.

Proposition 4. Let M be an n-dimensional (n > 3) anti-invariant submanifold
of a flat complex space form M™*?(0) with parallel mean curvature vector and
flat normal connection. If M is umbilical with respect to all e,, then either M is a
Sflat anti-invariant submanifold of some M"(0) in M"*?(0), where M™(0) is a flat
totally geodesic complex submanifold of M"**(0), or M is a totally umbilical
anti-invariant submanifold.

Proof. From the assumption and (3.4) we have (3.8), so that (4.3) holds. If
Tr A, = 0 for all 2, then by (3.8) M is flat and immersed in some M "(0) as an
anti-invariant submanifold. If Tr 4, # O for some 2, then we have

M PP ] = 0.

t >]

From this we conclude that hi, = h%;, hi; = 0 (i # j), so that each e, is an
umbilical section. Thus M is totally umbilical.

Remark. If, in Proposition 4, M is totally umbilical and » > 1, then we have
A, = 0 for all ¢ (see [10, p. 218]).

Proposition 5. Let M be a compact anti-invariant surface of a flat complex
space form M**?(0) with parallel mean curvature vector and flat normal connec-
tion. If M is umbilical with respect to all e,, then either M is a flat anti-invariant
surface of some M*0) in M**?(0), where M*(0) is a flat totally geodesic complex
submanifold of M**?(0), or M is a totally umbilical anti-invariant submanifold.

5. Flat anti-invariant submanifolds

In this section we give some examples of flat anti-invariant submanifolds
with parallel mean curvature vector and flat normal connection immersed in
CP"or C™.

First of all, we describe some properties of Riemannian fibre bundles.

Let M be a 2m + 1)-dimensional Sasakian manifold with structure tensors
(¢, & 7, 8) (cf. [7]). Then they satisfy

FX = —X+9pX)E, ¢6§=0, 9gX)=0, & =1,

for any vector fields X and Y on M. Moreover,
Vi€ =¢X, Fxp)Y = —g(X, Y)E + n(Y)X = R(X, 9)Y ,

where 77 denotes the operator of covariant differentiation with respect to g, and
R the Riemannian curvature tensor of M. If M is regular, then there exists a
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fibering 7: M — M/& = N, N denoting the set of orbits of &, which is a real
2m-dimensional Kaehlerian manifold. Let (J, G) be the Kaehlerian structure of
N, and let * denote the horizontal lift with respect to the connection 7. Then
we have

(5. (UX)* = gX*,  g(X* Y¥) =G(X,7)

for any vector fields X and Y on N. Let I’’ be the operator of covariant differ-
entiation with respect to G. Then
(5.2) FrY)* = — ¢ Y* = V3 Y* + g(Y*, ¢X*)E .

Let M be an (n + 1)-dimensional submanifold immersed in M, and N an
n-dimensional submanifold immersed in N. In what follows we assume that M
is tangent to the structure vector field & of M, and there exists a fibration 7: M
— N such that the diagram

N —>N

commutes, and the immersion i is a diffeomorphism on the fibres. Let g and G
be the induced metric tensor fields of M and N respectively. Let I (resp. I’’) be
the operator of covariant differentiation with respect to g (resp. G). We denote
by B (resp. B’) the second fundamental form of the immersion i (resp. i’) and
the associated second fundamental forms of B and B’ will be denoted by A
and A’ respectively. The Gauss formulas are written as

(5.3) PLY=V,Y+ B(X,Y), V¥ =V,.Y* + B(X* Y*),
for any vctor fields X and Y on N. From (5.2) and (5.3) we find that
(5.49) PiY)* = — ¢l 4 Y*, (B'(X, Y))* = B(X*, Y*) .

Let D and D’ be the operators of covariant differentiation with respect to
the linear connections induced in the normal bundles of M and N respectively.
For any tangent vector field X and any normal vector field V' to N, we have the
following Weingarten formulas

(5-5) 711'1/ = _A/VX + D:YV > V.Y*V* = — A X* + Dy V¥
From (5.2) and (5.5) it follows that

(5.6) (ApX)* = — @A X* | (DyV)* = Dy V* |
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Since the structure vector field & of M is tangent to M, we have, for any vector
field X tangent to M,

(5.7 V& = ¢X = Vx§ + B(X, §) .

Putting X = ¢ in (5.7), we see that B(§, £) = 0. Now we take an orthonormal
framee, - - -, e, for T, ,,(M). Then ef, - - -, e¥, & form an orthonormal frame
for T,(M). Let m and m’ be the mean curvature vectors of M and N respec-
tively. Then (5.4) and (5.9) imply

() = 3 (B(ew e))* = 33 BleF,el) + BE &) =m,
that is,
(5.8) m* =m.
From (5.6) and (5.8) it follows that
(5.9 (Dym’y* = Dyum .

In the sequel, we prove some lemmas for later use. First of all, we have, by

(5.1,

Lemma 4. M is an anti-invariant submanifold of M if and only if N is an anti-
invariant submanifold of N.

Lemma 5. Let M and N be anti-invariant submanifolds. Then the Riemannian
curvature tensors R and R’ of M and N respectively satisfy

(5.10) (R'(X, Y)Z)* = R(X*, Y*)Z* .

Proof. From (5.7) we see that the vector field & is parallel on M, i.e., V& =
0 (see [12]). Thus we have

PV 3 ¥Y*) = Vyeg(Y*, 6) — g(Y*, V3.8) = 0.
From this and (5.4) we get (FyY)* = V,.Y*, which implies

(R(X, V)Z)* = PAVyZ — VyV5Z — Vix i Z)*
= ViV uZ* — VyllV 2% — Vige vy Z%)
= R(X*, Y¥)Z* .
This gives (5.10).
From (5.10) and the fact that & is parallel on M, we have
Lemma 6. Let M and N be anti-invariant submanifolds. Then M is flat if and
only if N is flat.
Lemma 7. Let M be an (n + 1)-dimensional anti-invariant submanifold of a
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(2n + 1)-dimensional Sasakian manifold M, and N be an n-dimensional anti-
invariant submanifold of a real 2n-dimensional Kaehlerian manifold N. Then the
normal connection of M is flat if and only if the normal connection of N is flat.

Proof. From the assumption on the dimension we see that M is flat if and
only if the normal connection of M is flat, and N is flat if and only if the normal
connection of N is flat (cf. [10], [12]). From this and Lemma 6 we have our
assertion.

Lemma 8. Let M be an (n + 1)-dimensional anti-invariant submanifold of a
(2n + 1)-dimensional Sasakian manifold M, and N be an n-dimensional anti-
invariant submanifold of a real 2n-dimensional Kaehlerian manifold N. Then the
mean curvature vector m of M is parallel if and only if the mean curvature vector
m’ of N is parallel.

Proof. If m is parallel, (5.9) implies that m’ is also parallel. Suppose that
m’ is parallel. Then, from (5.9), we have D,.m = 0. Therefore, we need only to
prove that D.m = 0.

First of all, by the Weingarten formula we have

Dy¢Y = VypY + Ay X = 7(Y)X — (X, Y)§ + ¢V Y + ¢B(X, Y) + A, X .
Comparing the tangential and normal parts, we have
(5.11) Dy¢Y = ¢V, Y .

On the other hand, since R(X, §)Y = n(¥Y)X — g(X, Y)¢ is tangent to M for
any tangent vector fields X, Y to M, we have

(5.12) (VxB)§, Y) = (V.B)X, Y) .
We also have, from (5.7),
(5.13) Vi =0, ¢X = B(X, &) .

Lete,, - - -, e,., be an orthonormal frame for 7,(M), and denote by the same
letters local extension vector fields of this frame which are orthonormal and
covariant constant with respect to I/ at x € M. Then, using (5.11), (5.12) and
(5.13), we obtain

Dom =51 (7.B)es ) = %, 7. BYE, €)

n+1

n+l
= 2. D.ge; = 3, ¢V .e; =0
i=1 i=1

at each point x of M. Therefore we have D,m = 0, and hence m is parallel.
Example 1. Let S'(r,) = {z,e C:|z,} = ri},i =1, ---,n + 1. We consider
M = S'(r) X -+ X SYr,,,)in C"*' such that r2 + --. + rZ,, = 1. Then
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M™*'is a flat submanifold of S*"*' with parallel mean curvature vector and
flat normal connection. Moreover M is an anti-invariant submanifold of S***!
and tangent to the structure vector field & of S***! (see [12]). Now we put
Mm™*'|¢ = M?. Then the following diagram is commutative:

Mn+1 ! 3 SZn+1

|,k

Mr 5 cpr.

By Lemmas 4, 6, 7 and 8, M7 is a flat anti-invariant submanifold of CP" with
parallel mean curvature vector and flat normal connection.

Example 2. Let SY(r,) ={z;eC:|z;f =ri},i=1,---,n. Then M" =
S'(r;) X --- X S'(r,) is a flat anti-invariant submanifold of C" (see [10]).

Theorem 3. Let M be a compact n-dimensional anti-invariant submanifold of
CP™*? with parallel mean curvature vector. If the normal connection of M is flat,
then M is M? of some CP™ in CP™*?*.

Proof. By Theorems 1,2, M is a flat anti-invariant submanifold of a CP"
in CP"*?, Therefore, from Lemmas 4, 7, 8, n~'(M) is a flat anti-invariant sub-
manifold of $?"*! with parallel mean curvature vector and flat normal connec-
tion. By [12, Theorem 6.1] z='(M) is S*(r)) X - -+ X S'(rp.),ri+ -+ +ri,
= 1. Consequently M is congruent to M?.

Theorem 4. Let M be a compact n-dimensional anti-invariant submanifold of
C™*? with parallel mean curvature vector and flat normal connection. If M is
umbilical with respect to all e,, then M is S'(r,) X --- X S¥r,) ina C" in C"*?
or S™(r).

Proof. From Propositions 4, 5, we see that M is flat or totally umbilical.
If M is flat, then, by a theorem of [10] and [11], M is S'(r,) X --- X S'(r,) in
a C"in C"*?_If M is totally umbilical, then M is obviously S™*(r).
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