ANTI-INVARIANT SUBMANIFOLDS WITH FLAT NORMAL CONNECTION

KENTARO YANO, MASAHIRO KON & IKUO ISHIHARA

1. Introduction

Anti-invariant, i.e., totally real, submanifolds of a Kaehlerian manifold have been studied by Blair [1], Chen [2], Houh [3], Kon [4], [10], [11], Ludden [5], [6], Ogiue [2], Okumura [5], [6], Yano [5], [6], [8], [9], [10], [11] and others. In particu lar, anti-invariant submanifolds of complex space forms have been recently studied by two of the present authors [10], [11].

The main purpose of the present paper is to study anti-invariant submanifolds of complex space forms with parallel mean curvature vector and flat normal connection, and to prove Theorems 1, 2, 3 and 4.

§ 2 contains preliminaries on field of frames convenient for the study of anti invariant submanifolds of a complex space form. In § 3 we study anti-invariant submanifolds of a complex space form with flat normal connection, and prove some lemmas. The purpose of $\S 4$ is to prove some theorems on anti-invariant submanifolds with parallel mean curvature vector and flat normal connection. In § 5, the last section, we give some examples of anti-invariant submanifold with parallel mean curvature vector and flat normal connection immersed in a complex projective *n*-space \mathbb{CP}^n or complex *n*-space \mathbb{C}^n , and prove our Theo rems 3 and 4.

2. Preliminaries

Let \overline{M} be a Kaehlerian manifold of complex dimension $n + p$ with almost complex structure J. A real *n*-dimensional Riemannian manifold *M* isometrically immersed in \overline{M} is said to be *anti-invariant* or totally real in \overline{M} if $JT_x(M) \subset$ $T_x(M)$ ^{\perp} for each point *x* of *M*, where $T_x(M)$ and $T_x(M)$ ^{\perp} denote the tangent space and the normal space to *M* at *x* respectively.

We choose a local field of orthonormal frames $e_1, \dots, e_n; e_{n+1}, \dots, e_{n+p}$ $e_{1*} = Je_1, \dots, e_{n*} = Je_n$; $e_{(n+1)*} = Je_{n+1}, \dots, e_{(n+p)*} = Je_{n+p}$ in \overline{M} in such way that, restricted to M , e_1 , \dots , e_n are tangent to M . With respect to this field of frames of \overline{M} , let $\omega^1, \dots, \omega^n$; $\omega^{n+1}, \dots, \omega^{n+p}$; $\omega^{1*}, \dots, \omega^{n*}$; $\omega^{(n+1)*}, \dots, \omega^{(n+r)}$ be the field of dual frames. Unless otherwise stated, we use the following ranges of indices :

Communicated December 1, 1976.

578 KENTARO YANO, MASAHIRO KON & IKUO ISHIHARA

A, B, C, D = 1, ...,
$$
n + p
$$
, $1^*, \dots, (n + p)^*$,
\ni, j, k, l, t, s = 1, ..., n,
\na, b, c, d = n + 1, ..., n + p, $1^*, \dots, (n + p)^*$,
\n $\alpha, \beta, \gamma = n + 1, \dots, n + p$,
\n $\lambda, \mu, \nu = n + 1, \dots, n + p, (n + 1)^*, \dots, (n + p)^*$,

and the convention that when an index appears twice in any term as a subscript and a superscript, it is understood that this index is summed over its range. Then the structure equations of \overline{M} are given by

(2.1)
$$
d\omega^4 = -\omega^4_B \wedge \omega^B , \qquad \omega^4_B + \omega^B_A = 0 ,
$$

$$
\omega^i_j + \omega^i_i = 0 , \quad \omega^i_j = \omega^{i*}_{j*} , \quad \omega^{i*}_j = \omega^{i*}_{i} ,
$$

(2.2)
$$
\begin{aligned}\n\omega_{\alpha}^{i} + \omega_{i}^{\alpha} &= 0, & \omega_{\alpha}^{i} &= \omega_{\alpha^{*}}^{i^{*}}, & \omega_{\alpha}^{i^{*}} &= \omega_{i}^{\alpha^{*}}, \\
\omega_{\beta}^{\alpha} + \omega_{\alpha}^{\beta} &= 0, & \omega_{\beta}^{\alpha} &= \omega_{\beta}^{\alpha^{*}}, & \omega_{\beta}^{\alpha^{*}} &= \omega_{\alpha}^{\beta^{*}},\n\end{aligned}
$$

$$
(2.3) \t d\omega_B^A = -\omega_C^A \wedge \omega_B^C + \Phi_B^A , \t \Phi_B^A = \frac{1}{2} K_{BCD}^A \omega^C \wedge \omega^D .
$$

When we restrict these forms to M , we have

$$
\omega^a=0.
$$

Since $0 = d\omega^a = -\omega_i^a \wedge \omega^i$, by Cartan's lemma we can write ω_i^a as

(2.5)
$$
\omega_i^a = h_{ij}^a \omega^j \ , \qquad h_{ij}^a = h_{ji}^a \ .
$$

From these formulas we obtain the following structure equations of *M:*

$$
(2.6) \quad d\omega^i = -\omega^i_j \wedge \omega^j \ , \quad d\omega^i_j = -\omega^i_k \wedge \omega^k_j + \Omega^i_j \ , \quad \Omega^i_j = \frac{1}{2} R^i_{jkl} \omega^k \wedge \omega^1 \ ,
$$

(2.7)
$$
R_{j_{kl}}^i = K_{j_{kl}}^i + \sum_a (h_{ik}^a h_{jl}^a - h_{il}^a h_{jk}^a) ,
$$

$$
(2.8) \t\t d\omega_b^a = -\omega_c^a \wedge \omega_b^c + \Omega_b^a , \qquad \Omega_b^a = \frac{1}{2} R_{bk}^a \omega^k \wedge \omega^l ,
$$

(2.9)
$$
R_{bkl}^a = K_{bkl}^a + \sum_i (h_{ik}^a h_{il}^b - h_{il}^a h_{ik}^b).
$$

The forms (ω_i^i) define the Riemannian connection of M, and the forms (ω_i^a) the connection induced in the normal bundle of *M.* From (2.2) and (2.5) it fol lows that

$$
(2.10) \t\t\t h_{jk}^i = h_{ik}^j = h_{ij}^k,
$$

where we have written h_{jk}^i in place of h_{jk}^i to simplify the notation. The second fundamental form of *M* is represented by $h_{ij}^a \omega^i \omega^j e_a$, and is sometimes denoted

by its components h^a_{ij} . If the second fundamental form is of the form $\delta_{ij}(\sum_k h_{kk}^a e_a)/n$, then *M* is said to be *totally umbilical*. If h_{ij}^a is of the form $h_{ij}^a =$ $(\sum_{k} h_{kk}^{a})\delta_{ij}/n$, then *M* is said to be umbilical with respect to e_{a} . We call $(\sum_{k} h_{kk}^{a}e_{a})/n$ the *mean curvature vector* of *M*, and *M* is said to be *minimal* if its mean curvature vector vanishes identically, i.e., $\sum_{k} h_{kk}^{a} = 0$ for all a. We define the covariant derivative h^a_{ijk} of h^a_{ij} by

(2.11)
$$
h_{ijk}^{a}\omega^{k} = dh_{ij}^{a} - h_{il}^{a}\omega_{j}^{l} - h_{lj}^{a}\omega_{i}^{l} + h_{ij}^{b}\omega_{b}^{a}.
$$

The Laplacian Δh^a_{ij} of h^a_{ij} is defined to be

$$
\Delta h_{ij}^a = \sum_k h_{ijkk}^a,
$$

where we have defined h^a_{ijkl} by

$$
(2.13) \t h_{ijkl}^a \omega^l = dh_{ijk}^a - h_{ijk}^a \omega_i^l - h_{ilk}^a \omega_j^l - h_{ijl}^a \omega_k^l + h_{ijk}^b \omega_j^a.
$$

In the sequel we assume that the second fundamental form of *M* satisfies equations of Codazzi:

$$
(2.14) \t\t\t h_{ijk}^a - h_{ikj}^a = 0.
$$

Then, from (2.13), we have

$$
(2.15) \t\t h_{ijkl}^a - h_{ijkl}^a = h_{il}^a R_{jkl}^t + h_{ij}^a R_{ikl}^t - h_{ij}^b R_{bkl}^a \t.
$$

On the other hand, (2.12) and (2.14) imply that

(2.16)
$$
4h_{ij}^a = \sum_k h_{ijkk}^a = \sum_k h_{kijk}^a.
$$

From (2.14), (2.15) and (2.16) it follows that

$$
(2.17) \t\t\t\t\t Ah_{ij}^a = \sum_k (h_{k\kappa ij}^a + h_{\kappa i}^a R_{ijk}^t + h_{\kappa i}^a R_{kj\kappa}^t - h_{\kappa i}^b R_{ijk}^a).
$$

Therefore we have

$$
(2.18) \quad \sum_{a,i,j} h_{ij}^a \Delta h_{ij}^a = \sum_{a,i,j,k} (h_{ij}^a h_{k\kappa ij}^a + h_{ij}^a h_{\kappa k}^a R_{ijk}^t + h_{ij}^a h_{\kappa i}^a R_{kjk}^t - h_{ij}^a h_{\kappa i}^b R_{kjk}^a).
$$

If the ambient manifold \overline{M} is of constant holomorphic sectional curvature c, then the Riemannian curvature tensor K_{BCD}^A of \overline{M} is of the form

$$
(2.19) \tK_{BCD}^A = \frac{1}{4}c(\delta_{AC}\delta_{BD} - \delta_{AD}\delta_{BC} + J_{AC}J_{BD} - J_{AD}J_{BC} + 2J_{AB}J_{CD}),
$$

and the second fundamental form of *M* satisfies equations (2.14) of Codazzi.

580 KENTARO YANO, MASAHIRO KON & IKUO ISHIHARA

3. Flat normal connection

In this section we study the normal connection of a real n -dimensional antiinvariant submanifold M of a complex space form $\overline{M}^{n+p}(c)$, that is, of a complex $(n + p)$ -dimensional Kaehlerian manifold \overline{M} of constant holomorphic sectional curvature *c.*

If $R_{bkl}^a = 0$ for all indices, then the normal connection of M is said to be *flat.*

From (2.19) we see, first of all, that

(3.1)
$$
K_{t * k l}^{\lambda} = 0 , \quad K_{j k l}^{\lambda} = 0 , \quad K_{\mu k l}^{\lambda} = 0 .
$$

If the normal connection of *M* is flat, then (2.9) and (3.1) imply that

(3.2)
$$
\sum_i (h_{ik}^h h_{il}^t - h_{il}^h h_{ik}^t) = 0, \qquad \sum_i (h_{ik}^h h_{il}^u - h_{il}^h h_{ik}^u) = 0.
$$

Moreover, using (2.9) and (2.10), we see that

$$
(3.3) \quad \sum_i \left(h_{ik}^t h_{il}^s - h_{il}^t h_{ik}^s \right) = \sum_i \left(h_{ik}^i h_{sl}^i - h_{il}^i h_{sk}^i \right) = -\frac{1}{4} c (\delta_{ik} \delta_{sl} - \delta_{il} \delta_{sk}) \; .
$$

Proposition 1. Let M be an n-dimensional $(n > 1)$ anti-invariant submanifold *of a complex space form* $\overline{M}^{n+p}(c)$. If the normal connection of M is flat, and M *is umbilical with respect to some* e_{i*} *, then* $c = 0$ *.*

Proof. If *M* is umbilical with respect to e_{t*} , then the second fundamental form h_{ij}^t is of the form $h_{ij}^t = (\sum_k h_{kk}^t) \delta_{ij}/n$. Thus we have

$$
\sum_i (h_{ik}^t h_{il}^s - h_{il}^t h_{ik}^s) = 0.
$$

From this and (3.3) we see that $c = 0$.

Lemma 1. *Let M be an n-dίmensίonal anti-invariant submanifold of a complex space form* $\overline{M}^{n+p}(c)$. If the normal connection of M is flat, then we have

(3.4)
$$
R_{jkl}^i = \sum_{\lambda} (h_{ik}^i h_{jl}^i - h_{il}^i h_{jk}^i).
$$

Proof. From (2.7) and (2.9) we find

$$
R_{jkl}^{i} = \frac{1}{4}c(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + \sum_{l} (h_{ik}^{i}h_{il}^{j} - h_{il}^{i}h_{ik}^{j})
$$

+
$$
\sum_{\lambda} (h_{ik}^{2}h_{jl}^{2} - h_{il}^{2}h_{jk}^{2})
$$

=
$$
R_{j*kl}^{i*} + \sum_{j} (h_{ik}^{2}h_{jl}^{2} - h_{il}^{2}h_{jk}^{2}).
$$

Since the normal connection of *M* is flat, we have $R_{j*kl}^{i*} = 0$ and hence (3.4).

In the sequel, we put $A_a = (h^a_{ij}), A_a$ being a symmetric matrix.

Lemma 2. *Let M be an n-dimensional anti-invariant submanifold of a complex space form* $\overline{M}^{n+p}(c)$ ($c \neq 0$). If the normal connection of M is flat, then M *is umbilical with respect to all e .*

Proof. From (3.2) we see that $A_{\lambda}A_{\mu} = A_{\mu}A_{\lambda}$ and $A_{\lambda}A_{\lambda} = A_{\lambda}A_{\lambda}$ for all λ and μ . Thus we can choose a local field of orthonormal frames with respect to which A_1 and all A_2 are diagonal, i.e.,

(3.5)
$$
A_1 = \begin{pmatrix} h_{11}^1 & 0 \\ 0 & h_{nn}^1 \end{pmatrix}, \qquad A_\lambda = \begin{pmatrix} h_{11}^2 & 0 \\ 0 & h_{nn}^2 \end{pmatrix}.
$$

Putting $t = l$ and $k = 1$ in the first equation of (3.2) and using (3.5), we find

(3.6) *(h'nfϊuWu =* 0 .

On the other hand, putting $t = k = 1$ and $s = l \neq 1$ in (3.3) and using (3.5), we have

(3.7) (Λh - ΛlOΛh = *-\c.*

Since $c \neq 0$, (3.7) implies that $h^1_{tt} \neq 0$. From this fact and (3.6) we see that h^2_{11} $= h_t^{\lambda}(t = 2, \dots, n)$ for all λ . Thus *M* is umbilical with respect to e_{λ} for all λ .

Lemma 3. *Let M be an n-dimensional anti-invariant submanifold of a complex space form* $\overline{M}^{n+p}(c)$ *(c* $\neq 0$ *). If the normal connection of M is flat, then we have*

(3.8)
$$
R_{jkl}^i = \frac{1}{n^2} \sum_{\lambda} (\text{Tr } A_{\lambda})^2 (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}).
$$

Proof. From Lemma 2 we see that $h_{ij}^{\lambda} = (\text{Tr } A_i)\delta_{ij}/n$ for all λ . Therefore (3.4) implies (3.8).

If, in Lemma 3, $n \geq 3$, then \sum_{λ} (Tr A_{λ})² is constant. Therefore we have

Proposition 2. Let *M* be an *n*-dimensional ($n \geq 3$) anti-invariant submanifold *of a complex space form* $\overline{M}^{n+p}(c)$ *(c* \neq *0). If the normal connection of M is flat then M is of constant curvature.*

If *M* is minimal, then Tr $A_2 = 0$ for all λ . Thus we have, by (3.8),

Proposition 3. *Let M be an n-dimensional anti-invariant minimal submanifold of a complex space form* $\overline{M}^{n+p}(c)$ *(c* \neq *0). If the normal connection of M is flat then M is flat.*

4. Parallel mean curvature vector

Using the results obtained in the previous section, we can prove

Theorem 1. Let M be an n-dimensional $(n \geq 3)$ anti-invariant submanifold *of a complex space form* $\overline{M}^{n+p}(c)$ ($c \neq 0$) with parallel mean curvature vector. If *the normal connection of M is flat, then M is aflat anti-invariant submanifold of* some $\overline{M}^{\,n}(c)$ in $\overline{M}^{\,n+p}(c),$ where $\overline{M}^{\,n}(c)$ is a totally geodesic complex submanifold *of* $\overline{M}^{n+p}(c)$ *of complex dimension n.*

Proof. Since $n \geq 3$, \sum_{λ} (Tr A_{λ})² is constant. On the other hand, from (2.7) and (3.8), we have

$$
(4.1) \qquad \frac{n-1}{n} \sum_{\lambda} (\text{Tr } A_{\lambda})^2 = \frac{1}{4} n(n-1)c + \sum_{a} (\text{Tr } A_{a})^2 - \sum_{a,i,j} (h_{ij}^a)^2.
$$

Therefore the square of the length of the second fundamental form of *M* is constant, i.e., $\sum_{a,i,j} (h_{ij}^a)^2 = \text{constant}$. From this we see that

(4.2)
$$
\sum_{a,i,j,k} (h_{ijk}^a)^2 + \sum_{a,i,j} h_{ij}^a \Delta h_{ij}^a = \frac{1}{2} \Delta \sum_{a,i,j} (h_{ij}^a)^2 = 0.
$$

Substituting (3.8) into (2.18) and using (4.2) , we obtain

$$
\sum_{a,i,j,k} (h_{ijk}^a)^2 = -\frac{1}{n^2} \sum_{\lambda} (\text{Tr } A_{\lambda})^2 \sum_{a,i,j} [n(h_{ij}^a)^2 - h_{ii}^a h_{jj}^a]
$$
\n
$$
= -\frac{1}{n^2} \sum_{\lambda} (\text{Tr } A_{\lambda})^2 \sum_{i,i,j} [n(h_{ij}^t)^2 - h_{ii}^t h_{jj}^t]
$$
\n
$$
= -\frac{1}{n^2} \sum_{\lambda} (\text{Tr } A_{\lambda})^2 \sum_{i} \left[\sum_{i>j} (h_{ii}^t - h_{jj}^t)^2 + n \sum_{i \neq j} (h_{ij}^t)^2 \right].
$$

To get the second line of (4.3), we have used Lemma 2. Since *M* is not umbil ical with respect to each e_{i*} by Proposition 1 and $c \neq 0$ by the assumption, we have $\sum_{i>j} (h_{ii}^t - h_{jj}^t)^2 > 0$. Therefore we see that $h_{ijk}^a = 0$, that is, the second fundamental form of *M* is parallel and Tr $A_1 = 0$, which implies that $A_2 = 0$ for all *λ.* From these and the fundamental theorem of submanifolds, *M* is an anti-invariant submanifold of $\overline{M}^n(c)$, where $\overline{M}^n(c)$ is a totally geodesic com plex submanifold of $\overline{M}^{n+p}(c)$ of complex dimension *n*. Moreover, since $A_{\lambda} = 0$ for all *λ,* Lemma 3 shows that *M* is flat. From these considerations we have our assertion.

When $n = 2$, we need the assumption that M is compact. In this case we have

Theorem 2. *Let M be a compact anti-invariant surface of a complex space form* $\overline{M}^{2+p}(c)$ ($c \neq 0$) with parallel mean curvature vector. If the normal connec*tion of M is flat, then M is a flat anti-invariant surface of some* $\overline{M}^2(c)$ *in* $\overline{M}^{2+p}(c)$ *, where* $\overline{M}^2(c)$ *is a complex 2-dimensional totally geodesic submanifold of* $\overline{M}^{2+p}(c)$ *.*

Proof. Since *M* is compact, we have

$$
\int_{M} \sum_{a,i,j,k} (h_{ijk}^a)^{2*}1 = - \int_{M} \sum_{a,i,j} h_{ij}^a A h_{ij}^{a*}1.
$$

Using this and an argument quite similar to that used in the proof of Theorem

1, we have our assertion.

When $c = 0$, we have the following result under an additional assumption on *Λ .*

Proposition 4. Let M be an n-dimensional $(n \geq 3)$ anti-invariant submanifold *of a flat complex space form* $\overline{M}^{n+p}(0)$ with parallel mean curvature vector and *flat normal connection. If M is umbilical with respect to all e , then either M is a flat anti-invariant submanifold of some* \overline{M} *ⁿ(0) in* \overline{M} *^{n+p}(0), where* \overline{M} *ⁿ(0) is a fla totally geodesic complex submanifold of* $\overline{M}^{n+p}(0)$, or M is a totally umbilical *anti-invariant submanifold.*

Proof. From the assumption and (3.4) we have (3.8), so that (4.3) holds. If Tr $A_{\lambda} = 0$ for all λ , then by (3.8) M is flat and immersed in some $\overline{M}^{n}(0)$ as an anti-invariant submanifold. If Tr $A_{\lambda} \neq 0$ for some λ , then we have

$$
\sum_{t}\left[\sum_{i>j}(h_{ii}^{t}-h_{jj}^{t})^{2}+n\sum_{i\neq j}(h_{ij}^{t})^{2}\right]=0.
$$

From this we conclude that $h_{ii}^t = h_{jj}^t, h_{ij}^t = 0$ ($i \neq j$), so that each e_{i*} is an umbilical section. Thus *M* is totally umbilical.

Remark. If, in Proposition 4, M is totally umbilical and $n > 1$, then we have $A_t = 0$ for all *t* (see [10, p. 218]).

Proposition 5. *Let M be a compact anti-invariant surface of a flat complex* space form $\overline{M}^{2+p}(0)$ with parallel mean curvature vector and flat normal connec*tion. If M is umbilical with respect to all e , then either M is a flat anti-invariant* surface of some $\overline{M}^{\text{2}}(0)$ in $\overline{M}^{\text{2+p}}(0),$ where $\overline{M}^{\text{2}}(0)$ is a flat totally geodesic complex *submanifold of* $\overline{M}^{2+p}(0)$, or M is a totally umbilical anti-invariant submanifold.

5. Flat anti-invariant submanifolds

In this section we give some examples of flat anti-invariant submanifolds with parallel mean curvature vector and flat normal connection immersed in \overline{CP}^n or \overline{C}^n

First of all, we describe some properties of Riemannian fibre bundles.

Let \overline{M} be a $(2m + 1)$ -dimensional Sasakian manifold with structure tensors $(\phi, \xi, \eta, \bar{g})$ (cf. [7]). Then they satisfy

$$
\phi^2 X = -X + \eta(X)\xi \ , \quad \phi\xi = 0 \ , \quad \eta(\phi X) = 0 \ , \quad \eta(\xi) = 1 \ ,
$$

$$
\bar{g}(\phi X, \phi Y) = \bar{g}(X, Y) - \eta(X)\eta(Y) \ , \quad \eta(X) = \bar{g}(X, \xi)
$$

for any vector fields X and Y on \overline{M} . Moreover,

$$
\overline{V}_X \xi = \phi X \,, \qquad (\overline{V}_X \phi) Y = -\overline{g}(X, Y) \xi + \eta(Y) X = \overline{R}(X, \xi) Y \,,
$$

where \bar{V} denotes the operator of covariant differentiation with respect to \bar{g} , and \overline{R} the Riemannian curvature tensor of \overline{M} . If M is regular, then there exists a fibering $\bar{\pi}$: $\bar{M} \rightarrow \bar{M}/\xi = \bar{N}$, \bar{N} denoting the set of orbits of ξ , which is a real 2*m*-dimensional Kaehlerian manifold. Let (J, \bar{G}) be the Kaehlerian structure of \overline{N} , and let * denote the horizontal lift with respect to the connection *η*. Then we have

(5.1)
$$
(JX)^* = \phi X^*, \quad \bar{g}(X^*, Y^*) = \bar{G}(X, Y)
$$

for any vector fields X and Y on \overline{N} . Let \overline{V}' be the operator of covariant differentiation with respect to \overline{G} . Then

(5.2)
$$
(\bar{\mathbf{\nabla}}'_X Y)^* = -\phi^2 \bar{\mathbf{\nabla}}_{X^*} Y^* = \bar{\mathbf{\nabla}}_{X^*} Y^* + \bar{g}(Y^*, \phi X^*)\xi.
$$

Let M be an $(n + 1)$ -dimensional submanifold immersed in \overline{M} , and N an *n*-dimensional submanifold immersed in \overline{N} . In what follows we assume that M is tangent to the structure vector field ξ of \overline{M} , and there exists a fibration π : M \rightarrow *N* such that the diagram

$$
M \xrightarrow{i} \overline{M}
$$

$$
\pi \downarrow \qquad \qquad \downarrow \pi
$$

$$
N \xrightarrow{i'} \overline{N}
$$

commutes, and the immersion *i* is a diffeomorphism on the fibres. Let g and G be the induced metric tensor fields of M and N respectively. Let \overline{V} (resp. \overline{V}') be the operator of covariant differentiation with respect to *g* (resp. *G).* We denote by B (resp. B') the second fundamental form of the immersion i (resp. i') and the associated second fundamental forms of B and B' will be denoted by A and *A'* respectively. The Gauss formulas are written as

$$
(5.3) \quad \bar{\mathit{V}}'_{X} Y = \mathit{V}'_{X} Y + B' (X, Y) \, , \qquad \bar{\mathit{V}}_{X^*} Y^* = \mathit{V}_{X^*} Y^* + B (X^*, Y^*) \, ,
$$

for any vctor fields X and Y on N . From (5.2) and (5.3) we find that

(5.4)
$$
(F'_{X}Y)^{*} = -\phi^{2}F_{X^{*}}Y^{*}, \qquad (B'(X, Y))^{*} = B(X^{*}, Y^{*}).
$$

Let D and D' be the operators of covariant differentiation with respect to the linear connections induced in the normal bundles of M and N respectively. For any tangent vector field X and any normal vector field V to N , we have the following Weingarten formulas

$$
(5.5) \qquad \bar{\mathbb{F}}'_X V = -A'_V X + D'_X V \,, \qquad \bar{\mathbb{F}}_{X^*} V^* = -A_{V^*} X^* + D_{X^*} V^* \,.
$$

From (5.2) and (5.5) it follows that

(5.6)
$$
(A'_{V}X)^{*} = -\phi^{2} A_{V^{*}}X^{*} , \qquad (D'_{X}V)^{*} = D_{X^{*}}V^{*} .
$$

Since the structure vector field ξ of \overline{M} is tangent to M , we have, for any vector field *X* tangent to M,

$$
\bar{\nabla}_x \xi = \phi X = \bar{\nabla}_x \xi + B(X, \xi) .
$$

Putting $X = \xi$ in (5.7), we see that $B(\xi, \xi) = 0$. Now we take an orthonormal frame e_1, \dots, e_n for $T_{\pi(x)}(M)$. Then e_1^*, \dots, e_n^*, ξ form an orthonormal frame for $T_x(M)$. Let *m* and *m'* be the mean curvature vectors of M and N respec tively. Then (5.4) and (5.9) imply

$$
(m')^* = \sum_{i=1}^n (B'(e_i,e_i))^* = \sum_{i=1}^n B(e_i^*,e_i^*) + B(\xi,\xi) = m,
$$

that is,

$$
(5.8) \qquad \qquad (m')^* = m \; .
$$

From (5.6) and (5.8) it follows that

$$
(5.9) \t\t\t\t(D'_X m')^* = D_{X^*} m \t.
$$

In the sequel, we prove some lemmas for later use. First of all, we have, by $(5.1),$

Lemma 4. *M is an anti-invariant submanifold of* \overline{M} *if and only if* N *is an antiinvariant submanίfold of N.*

Lemma 5. *Let M and N be anti-invariant submanifolds. Then the Riemannian curvature tensors R and R; of M and N respectively satisfy*

$$
(5.10) \qquad (R'(X, Y)Z)^* = R(X^*, Y^*)Z^* \ .
$$

Proof. From (5.7) we see that the vector field ξ is parallel on M, i.e., $V_x \xi =$ 0 (see [12]). Thus we have

$$
\eta(V_{X^*}Y^*)=V_{X^*}g(Y^*,\xi)-g(Y^*,V_{X^*}\xi)=0.
$$

From this and (5.4) we get $(\mathbb{F}_X'Y)^* = \mathbb{F}_{X^*}Y^*$, which implies

$$
(R'(X, Y)Z)^* = (F'_X F'_Y Z - F'_Y F'_X Z - F'_{[X,Y]}Z)^*
$$

= $(F_{X*}F_{Y*}Z^* - F_{Y*}F_{X*}Z^* - F_{[X^*,Y^*]}Z^*)$
= $R(X^*, Y^*)Z^*$.

This gives (5.10).

From (5.10) and the fact that *ξ* is parallel on *M,* we have

Lemma 6. *Let M and N be anti-invariant submanifolds. Then M is flat if and only if N is flat.*

Lemma 7. Let M be an $(n + 1)$ -dimensional anti-invariant submanifold of a

 $(2n + 1)$ -dimensional Sasakian manifold \overline{M} , and N be an n-dimensional anti*invariant submanifold of a real In-dimensional Kaehlerian manifold N. Then the normal connection of M is flat if and only if the normal connection of N is flat.*

Proof. From the assumption on the dimension we see that M is flat if and only if the normal connection of *M* is flat, and *N* is flat if and only if the normal connection *oϊ N* is flat (cf. [10], [12]). From this and Lemma 6 we have our assertion.

Lemma 8. Let M be an $(n + 1)$ -dimensional anti-invariant submanifold of a $(2n + 1)$ -dimensional Sasakian manifold \overline{M} , and N be an n-dimensional anti*invariant submanifold of a real 2n-dimensional Kaehlerian manifold N. Then the mean curvature vector m of M is parallel if and only if the mean curvature vector m! of N is parallel.*

Proof. If *m* is parallel, (5.9) implies that *m'* is also parallel. Suppose that *m'* is parallel. Then, from (5.9), we have $D_{x*}m = 0$. Therefore, we need only to prove that $D_{\varepsilon}m = 0$.

First of all, by the Weingarten formula we have

$$
D_x \phi Y = \overline{V}_x \phi Y + A_{\phi Y} X = \eta(Y) X - g(X, Y) \xi + \phi \overline{V}_x Y + \phi B(X, Y) + A_{\phi Y} X.
$$

Comparing the tangential and normal parts, we have

$$
(5.11) \t\t Dx\phi Y = \phi Vx Y.
$$

On the other hand, since $\bar{R}(X, \xi)Y = \eta(Y)X - g(X, Y)\xi$ is tangent to M for any tangent vector fields *X, Y* to *M,* we have

(5.12) *(FzB)(ξ, Y) = (P B)(X, Y)* .

We also have, from (5.7),

(5.13)
$$
\overline{V}_X \xi = 0 , \qquad \phi X = B(X, \xi) .
$$

Let e_1, \dots, e_{n+1} be an orthonormal frame for $T_x(M)$, and denote by the same letters local extension vector fields of this frame which are orthonormal and covariant constant with respect to \bar{V} at $x \in M$. Then, using (5.11), (5.12) and (5.13), we obtain

$$
D_{\xi}m = \sum_{i=1}^{n+1} (\bar{V}_{\xi}B)(e_i, e_i) = \sum_{i=1}^{n+1} (\bar{V}_{e_i}B)(\xi, e_i)
$$

=
$$
\sum_{i=1}^{n+1} D_{e_i} \phi e_i = \sum_{i=1}^{n+1} \phi \bar{V}_{e_i} e_i = 0
$$

at each point x of M. Therefore we have $D_{\xi}m = 0$, and hence m is parallel.

Example 1. Let $S^1(r_i) = \{z_i \in C: |z_i|^2 = r_i^2\}$, $i = 1, \dots, n + 1$. We consider $M^{n+1} = S^{1}(r_1) \times \cdots \times S^{1}(r_{n+1})$ in C^{n+1} such that $r_1^2 + \cdots + r_{n+1}^2 = 1$. The

 M^{n+1} is a flat submanifold of S^{2n+1} with parallel mean curvature vector and flat normal connection. Moreover *M* is an anti-invariant submanifold of S^{2n+1} and tangent to the structure vector field ξ of S^{2n+1} (see [12]). Now we put $M^{n+1}/\xi = M_1^n$. Then the following diagram is commutative

By Lemmas 4, 6, 7 and 8, M_1^n is a flat anti-invariant submanifold of \mathbb{CP}^n with parallel mean curvature vector and flat normal connection.

Example 2. Let $S^1(r_i) = \{z_i \in C : |z_i|^2 = r_i^2\}$, $i = 1, \dots, n$. Then $M^n =$ $S^1(r_1) \times \cdots \times S^1(r_n)$ is a flat anti-invariant submanifold of C^n (see [10]).

Theorem 3. *Let M be a compact n-dimensional anti-invariant submanifold of Cpn + p^w ith parallel mean curvature vector. If the normal connection of M is flat, then M* is M_1^n *of some CP*^{*n*} *in CP*^{*n+p*}.

Proof. By Theorems 1, 2, *M* is a flat anti-invariant submanifold of a \mathbb{CP}^n in \mathbb{CP}^{n+p} . Therefore, from Lemmas 4, 7, 8, $\pi^{-1}(M)$ is a flat anti-invariant sub manifold of S^{2n+1} with parallel mean curvature vector and flat normal connection. By [12, Theorem 6.1] $\pi^{-1}(M)$ is $S^1(r_1) \times \cdots \times S^1(r_{n+1})$, $r_1^2 + \cdots + r_{n+1}^2$ $= 1$. Consequently *M* is congruent to M_1^n .

Theorem 4. Lei *M be a compact n-dimensional anti-invariant submanifold of* C^{n+p} with parallel mean curvature vector and flat normal connection. If M is *umbilical with respect to all* e_{λ} *, then M is* $S^1(r_1) \times \cdots \times S^1(r_n)$ *in a Cⁿ in Cⁿ⁺ or* $Sⁿ(r)$.

Proof. From Propositions 4, 5, we see that *M* is flat or totally umbilical. If *M* is flat, then, by a theorem of [10] and [11], *M* is $S^1(r_1) \times \cdots \times S^1(r_n)$ in a C^n in C^{n+p} . If M is totally umbilical, then M is obviously $S^n(r)$.

Bibliography

- [1] D. E. Blair, *On the geometric meaning of the Bochner tensor,* Geometriae Dedicata 4 (1975) 33-38.
- [2] B. Y. Chen & K. Ogiue, *On totally real submanifolds,* Trans. Amer. Math. Soc. **193** (1974) 257-266.
- [3] C. S. Houh, Some totally real minimal surfaces in CP², Proc. Amer. Math. Soc. 40 (1973) 240-244.
- [4] M. Kon, *Totally real submanifolds in a Kaehler manifold,* J. Differential Geometry **11** (1976) 251-257.
- [5] G. D. Ludden, M. Okumura & K. Yano, A totally real surface in CP² that is not *totally geodesic,* Proc. Amer. Math. Soc. 53 (1975) 186-190.
- [6] \longrightarrow , Totally real submanifolds of complex manifolds, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 544-555.
- [7] S. Sasaki, *Almost contact manifolds,* Lecture note I, Tόhoku University, 1965.
- [8] K. Yano, *Totally real submanifolds of a Kaehlerian manifold,* J. Differential

Geometry 11 (1976) 351-359.

- [9] \longrightarrow , Differential geometry of totally real submanifolds, Topics in Differential Geometry, Academic Press, New York, 1976, 173-184.
- [10] K. Yano & M. Kon, *Totally real submanifolds of complex space forms.* I, Tόhoku Math. J. 28 (1976) 215-225.
- [11] *----, Totally real submanifolds of complex space forms.* II, Kōdai Math. Sem. Rep. 27 (1976) 385-399.
- [12] , *Anti-invariant submanifolds of Sasakian space forms.* I, Tόhoku Math. J. 29 (1977) 9-23.

TOKYO INSTITUTE OF TECHNOLOGY SCIENCE UNIVERSITY OF TOKYO