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ANTI-INVARIANT SUBMANIFOLDS WITH
FLAT NORMAL CONNECTION

KENTARO YANO, MASAHIRO KON & IKUO ISHIHARA

1. Introduction

Anti-invariant, i.e., totally real, submanifolds of a Kaehlerian manifold have
been studied by Blair [1], Chen [2], Houh [3], Kon [4], [10], [11], Ludden [5], [6],
Ogiue [2], Okumura [5], [6], Yano [5], [6], [8], [9], [10], [11] and others. In particu-
lar, anti-invariant submanifolds of complex space forms have been recently
studied by two of the present authors [10], [11].

The main purpose of the present paper is to study anti-invariant submanifolds
of complex space forms with parallel mean curvature vector and flat normal
connection, and to prove Theorems 1, 2, 3 and 4.

§ 2 contains preliminaries on field of frames convenient for the study of anti-
invariant submanifolds of a complex space form. In § 3 we study anti-invariant
submanifolds of a complex space form with flat normal connection, and prove
some lemmas. The purpose of § 4 is to prove some theorems on anti-invariant
submanifolds with parallel mean curvature vector and flat normal connection.
In § 5, the last section, we give some examples of anti-invariant submanifold
with parallel mean curvature vector and flat normal connection immersed in a
complex projective /i-space CPn or complex π-space C n , and prove our Theo-
rems 3 and 4.

2. Preliminaries

Let M be a Kaehlerian manifold of complex dimension n + p with almost
complex structure /. A real ^-dimensional Riemannian manifold M isometrical-
ly immersed in M is said to be anti-invariant or totally real in M if JTX(M) C
TX(M)L for each point x of M, where TX(M) and TX(M)L denote the tangent
space and the normal space to M at x respectively.

We choose a local field of orthonormal frames eί9 , en; en + ί, , en + p;
ex* = Jex, , en* = Jen; ein + 1)* = Jen + 19 , e(n + p)* = Jen + P i n M i n s u c h a
way that, restricted to M, eλ, , en are tangent to M. With respect to this field
of frames of M, letω 1 , -,ωn;ωn + \ , ωn + p; ω1*, , ωw*; ω(n + 1)\ •• ,ω(n + p)*
be the field of dual frames. Unless otherwise stated, we use the following ranges
of indices :
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A9B9C,D=l,...9n+p, 1*, . . . , ( « + / > ) * ,

i,j,k,l, t,s = 1, --,n ,

a,b,c,d=n + 1, ,n + p, 1*, • • • , ( / ! + / > ) * ,

a, β,γ = n + 1, • ., w + / ? ,

-J, ^, i/ = /i + 1, •• , / i + / > , ( / ! + 1)*, • • • , ( * + / > ) * ,

and the convention that when an index appears twice in any term as a subscript
and a superscript, it is understood that this index is summed over its range.
Then the structure equations of M are given by

dωA = -ωi A ωB , ωA

B + ωB

A = 0 ,

ω* + ω/ = 0 , ωj = ω}** , ω*/ = ωf ,

ωi + ω? = 0, ωi = ωi* , ώ1* = ωf ,

ωa

β + ωβ

a = 0 , ωa

β = <o$ , ωf = ωβ

a* ,

(2.3) dωA

B = -ωA

cΛωc

B + Φi, ΦA

B = \KA

BCDuf Λ ωD .

When we restrict these forms to M, we have

(2.4) ωa = 0 .

Since 0 = Λυα = — ωj Λ ω\ by Cartan's lemma we can write ω? as

(2.5) ω? - A?χ , hij = h% .

From these formulas we obtain the following structure equations of M:

(2.6) dωι = -ω) A ωj , dω) = - ω j Λ ω) + β j , Ω) = iR)uω
k A ω1 ,

(2.7) ΛJW - ΛΓJW + Σ (MM ~ ha

uh%) ,

(2.8) rf< = - ω ? Λ o>S + fiS , Ω% = \Ra

hklω
k A ωL ,

(2.9) Ra

bkl = Kitι + Σ (Λ?Λ*ι - ^«Λ?4) .

The forms (ω^) define the Riemannian connection of M, and the forms (ωf)
the connection induced in the normal bundle of M. From (2.2) and (2.5) it fol-
lows that

(2.10) h% = h{k = tήj9

where we have written h)k in place of h)*k to simplify the notation. The second
fundamental form of M is represented by /z^ωWeα, and is sometimes denoted
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by its components A^ . If the second fundamental form is of the form
δijiΣik Kkea)ln> then M is said to be totally umbilical. If A^ is of the form hfj =
(Σikht^δij/n, then M is said to be umbilical with respect to ea. We call
(Σ*; Kkea)ln the mean curvature vector of M, and M is said to be minimal if its
mean curvature vector vanishes identically, i.e., Σk h\k = 0 for all a. We define
the covariant derivative ha

ijk of A^ by

(2.11) / ^ ω f c = dhfj - Λ?tωJ - Λ?,ω{ + A > ; .

The Laplacian JA?y of A^ is defined to be

(2.12) Jhΐj= ΣK-kk,
k

where we have defined ha

ίjkl by

(2.13) htmωι = JA?,fc - Λ?,X - AfwωJ - h\sιω\ + A?^?

In the sequel we assume that the second fundamental form of M satisfies
equations of Codazzi:

(2.14)

Then,

(2.15)

from (2 13), we have

- Ki

R)u +

= o .

ha

tjRϊkl - A?,

On the other hand, (2.12) and (2.14) imply that

(2.16) Δh% = Σ hΐjkk = Σ hiij*
k k

From (2.14), (2.15) and (2.16) it follows that

(2.17) Δkt, = Σ (hϊkij + ha

ktRljk + h^R^ - hb

kiR
a

bjk) .

Therefore we have

(2.18) Σ KjJhϊj = Σ WMkίj + kϊjhϊtRlJt + h^Rljk - h^R^) .
a,i,j a,i,j,k

If the ambient manifold M is of constant holomorphic sectional curvature c,
then the Riemannian curvature tensor KβCD of M is of the form

(2.19) KBCD = 4;c(δACδBD oADδBC + JACJBΌ JADJBC + 2JABJCD) ,

and the second fundamental form of M satisfies equations (2.14) of Codazzi.
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3. Flat normal connection

In this section we study the normal connection of a real ^-dimensional anti-
invariant submanifold M of a complex space form Mn + P(c), that is, of a com-
plex (n + /?)-dimensional Kaehlerian manifold M of constant holomorphic sec-
tional curvature c.

If R%u — 0 for all indices, then the normal connection of M is said to be
flat.

From (2.19) we see, first of all, that

(3.1) Kl*u = 0, K*kl = 0, K*μkl = 0.

If the normal connection of M is flat, then (2.9) and (3.1) imply that

(3.2) Σ WΆi - KM*) = o , Σ {KMi - h\Mu) = o .
i i

Moreover, using (2.9) and (2.10), we see that

(3.3) Σ (A{*A;, - h\Mk) = Σ (*ί*Aί, - *ίi*ί,) = -\Φtkδsl - δuδ,k).
ί

Proposition 1. Let M be an n-dimensίonal (n > 1) anti-invariant submanifold
of a complex space form Mn + P(c). If the normal connection of M is flat, and M
is umbilical with respect to some et*, then c = 0.

Proof. If M is umbilical with respect to et*, then the second fundamental
form h\j is of the form h^ = (Σk nkk)δij/n. Thus we have

Σ (KΆi - hlMk) = 0 .
i

From this and (3.3) we see that c — 0.
Lemma 1. Let M be an n-dίmensίonal anti-invariant submanifold of a complex

space form Mn + P(c). If the normal connection of M is flat, then we have

(2 4) R1 — y (hλ hλ hλ hλ λ

Proof From (2.7) and (2.9) we find

Rjkl = ~4:C\Pik0jl OilOjk) ~Γ 2_ι \"tk"tl "-tl^tk)

= *}'•« + Σ {h\*h)L - h'uh)k) .
λ

Since the normal connection of M is flat, we have R)**kl = 0 and hence (3.4).
In the sequel, we put Aa = (h^j), Aa being a symmetric matrix.
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Lemma 2. Let M be an n-dimensional anti-invariant submanifold of a com-
plex space form Mn + P(c) (c Φ 0). If the normal connection of M is flat, then M
is umbilical with respect to all eλ.

Proof. From (3.2) we see that ΛλAμ = AμAλ and AλAx = AxAλ for all λ and
μ. Thus we can choose a local field of orthonormal frames with respect to which
Aι and all Aλ are diagonal, i.e.,

(3.5)

Putting t

(3.6)

H
= / and

lo
k =

- • )

1 in the first

(h'n-

equation

fϊuWu =

•c
of (3.2)

0 .

i
nn]

and using (3.5), we find

On the other hand, putting t = k = 1 and s = I Φ 1 in (3.3) and using (3.5),
we have

(3.7) (Λh - ΛlOΛh = -\c.

Since c Φ 0, (3.7) implies that h\L Φ 0. From this fact and (3.6) we see that hλ

n

= h\t (t = 2, ••-,«) for all λ. Thus M is umbilical with respect to eλ for all λ.
Lemma 3. Let M be an n-dimensional anti-invariant submanifold of a complex

space form Mn + P(c) (c Φ 0). If the normal connection of M is flat, then we have

(3.8) R)kl = \ Σ (Tr Ax)\dikdn - δuδjk) .
n2 λ

Proof From Lemma 2 we see that hlj = (Tr A^δ^jn for all λ. Therefore
(3.4) implies (3.8).

If, in Lemma 3, n > 3, then 2L (Tr Aλf is constant. Therefore we have
Proposition 2. Let M be an n-dimensional (n > 3) anti-invariant submanifold

of a complex space form Mn + P(c) (c Φ 0). If the normal connection of M is flat,
then M is of constant curvature.

If M is minimal, then Tr Aλ = 0 for all λ. Thus we have, by (3.8),
Proposition 3. Let M be an n-dimensional anti-invariant minimal submanifold

of a complex space form Mn + P(c) (c Φ 0). If the normal connection of M is flat,
then M is flat.

4. Parallel mean curvature vector

Using the results obtained in the previous section, we can prove
Theorem 1. Let M be an n-dimensional (n > 3) anti-invariant submanifold

of a complex space form Mn + P(c) (c Φ 0) with parallel mean curvature vector. If
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the normal connection of M is flat, then M is aflat anti-invariant submanifold of
some Mn(c) in Mn + P(c), where Mn(c) is a totally geodesic complex submanifold
of Mn + P(c) of complex dimension n.

Proof Since n > 3, Σx ( T r A*f i s constant. On the other hand, from (2.7)
and (3.8), we have

(4.1) n~ A Σ (Tr Aλγ = I φ - \)c + Σ (Tr Λα)
2 - Σ WjT

« λ 4 α α,*,y

Therefore the square of the length of the second fundamental form of M is

constant, i.e., Σa,ίj (A?,)2 = constant. From this we see that

(4.2) Σ (A?,*)2 + Σ hϊjWj = \Δ Σ (A?,)2 = o .
a,i,j,k a,i,j a,i,j

Substituting (3.8) into (2.18) and using (4.2), we obtain

Σ (A?,*)2 = - - V Σ (TrΛ,)2 Σ MA?,)2 - A?,Λ?,]
a,i,j,k Yl λ a,ί,j

(4-3) = - - L Σ (Tr Aχy

= - - V Σ (Tr^,)2

To get the second line of (4.3), we have used Lemma 2. Since M is not umbil-
ical with respect to each et* by Proposition 1 and c Φ 0 by the assumption, we
have Σi>j (A« - A^)2 > 0. Therefore we see that AfiΛ = 0, that is, the second
fundamental form of M is parallel and Tr Aλ = 0, which implies that Λλ = 0
for all λ. From these and the fundamental theorem of submanifolds, M is an
anti-invariant submanifold of Mn(c), where Mn{c) is a totally geodesic com-
plex submanifold of Mn + P(c) of complex dimension n. Moreover, since Aλ = 0
for all λ, Lemma 3 shows that M is flat. From these considerations we have
our assertion.

When n = 2, we need the assumption that M is compact. In this case we
have

Theorem 2. Let M be a compact anti-invariant surface of a complex space
form M2+P(c) (c Φ 0) with parallel mean curvature vector. If the normal connec-
tion of M is flat, then M is aflat anti-invariant surface of some M\c) in M2+P(c),
where M\c) is a complex 2-dimensional totally geodesic submanifold of M2+P(c).

Proof Since M is compact, we have

ί Σ (Λ?,*)M = - f Σ hϊjΔkήl .
J M a,i,j,k J M a,i,j

Using this and an argument quite similar to that used in the proof of Theorem
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1, we have our assertion.

When c = 0, we have the following result under an additional assumption
on Λλ.

Proposition 4. Let M be an n-dimensional (n > 3) anti-invariant submanifold
of a flat complex space form Mn + p(0) with parallel mean curvature vector and
flat normal connection. If M is umbilical with respect to all eλ, then either M is a
flat anti-invariant submanifold of some Mn(0) in Mn + p(0), where Mn(0) is a flat
totally geodesic complex submanifold of Mn + p(0), or M is a totally umbilical
anti-invariant submanifold.

Proof. From the assumption and (3.4) we have (3.8), so that (4.3) holds. If
Tr Λλ = 0 for all λ, then by (3.8) M is flat and immersed in some Mn(0) as an
anti-invariant submanifold. If Tr Aλ Φ 0 for some λ, then we have

f Σ ΨU + n Σ (hlj)2] = 0
A

From this we conclude that h\t = h)^ h\j = 0 (/ Φ j), so that each et* is an
umbilical section. Thus M is totally umbilical.

Remark. If, in Proposition 4, M is totally umbilical and n > 1, then we have
At = 0 for all t (see [10, p. 218]).

Proposition 5. Let M be a compact anti-invariant surface of a flat complex
space form M2+p(0) with parallel mean curvature vector and flat normal connec-
tion. If M is umbilical with respect to all eλ, then either M is a flat anti-invariant
surface of some M2(0) in M2+p(0), where M\0) is aflat totally geodesic complex
submanifold of M2+p(0), or M is a totally umbilical anti-invariant submanifold.

5. Flat anti-invariant submanifolds

In this section we give some examples of flat anti-invariant submanifolds
with parallel mean curvature vector and flat normal connection immersed in
Cpn o r C n

First of all, we describe some properties of Riemannian fibre bundles.

Let M be a (2m + l)-dimensional Sasakian manifold with structure tensors

{φ, f, η, g) (cf. [7]). Then they satisfy

Φ2X = -X + η(X)ξ , φξ = O, η(φX) = 0 ,

g(φX, φY) = g(X, Y) - η(X)η(Y) , η(X) = g(X, ξ)

for any vector fields X and Y on M. Moreover,

Vxξ = φX , {Vxφ)Y = -g(X9 Y)ξ + η(Y)X = R(X, ξ)Y ,

where V denotes the operator of covariant differentiation with respect to g, and
R the Riemannian curvature tensor of M. If M is regular, then there exists a
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fibering π: M —• M/ξ == TV, N denoting the set of orbits of ξ, which is a real
2ra-dimensional Kaehlerian manifold. Let (/, G) be the Kaehlerian structure of
TV, and let * denote the horizontal lift with respect to the connection η. Then
we have

(5.1) (JX)* = φX* , g(X*, Y*) = G(X, Y)

for any vector fields X and Y on N. Let V' be the operator of covariant differ-
entiation with respect to G. Then

(5.2) (F'XY)* = -0X.Y* = FX.Y* + g(Y*, φX*)ξ .

Let M be an (n + l)-dimensional submanifold immersed in M, and N an
^-dimensional submanifold immersed in N. In what follows we assume that M
is tangent to the structure vector field ξ of M, and there exists a ίibration π: M
—• N such that the diagram

•I „ I"
commutes, and the immersion / is a diffeomorphism on the fibres. Let g and G
be the induced metric tensor fields of M and N respectively. Let V (resp. V) be
the operator of covariant differentiation with respect to g (resp. G). We denote
by B (resp. B') the second fundamental form of the immersion / (resp. /') and
the associated second fundamental forms ofi? and B' will be denoted by A
and A' respectively. The Gauss formulas are written as

(5.3) Vf

xY = V'XY + B'(X, Y) , F x*7* = F z 7*

for any vctor fields X and Y on TV. From (5.2) and (5.3) we find that

(5.4) (FxF)* = -φWx*Y* , (B'(X, Yψ = B(X*, F*) .

Let D and D/ be the operators of covariant differentiation with respect to
the linear connections induced in the normal bundles of M and TV respectively.
For any tangent vector field X and any normal vector field V to TV, we have the
following Weingarten formulas

(5.5) V'XV = -A'VX + Df

xV , F T * F * = -AV*X* + DZ*V* .

From (5.2) and (5.5) it follows that

(5.6) {A'yX)* = -fAv*X* , φxV)* = DX*V* .
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Since the structure vector field ξ of M is tangent to M, we have, for any vector
field X tangent to M,

(5.7) Fxξ = φX = Fxξ + B(X, ξ) .

Putting X = ξ in (5.7), we see that B(ξ, ξ) = 0. Now we take an orthonormal
frame e19 , en for Tπ{x)(M). Then ef, , e*9 ξ form an orthonormal frame
for TX(M). Let m and m' be the mean curvature vectors of M and N respec-
tively. Then (5.4) and (5.9) imply

(mT = Σ (BXeif e,))* = Σ B(ef9 ef) + B(ξ, ξ) = m ,
i=l i=l

that is,

(5.8) (/wO* = m .

From (5.6) and (5.8) it follows that

(5.9) ( £ > 0 * - £>χ*™

In the sequel, we prove some lemmas for later use. First of all, we have, by
(5.1),

Lemma 4. M is an anti-invariant submanίfold of M if and only ifN is an anti-
invariant submanίfold of N.

Lemma 5. Let M and N be anti-invariant submanifolds. Then the Riemannian
curvature tensors R and R; of M and N respectively satisfy

(5.10) (R'(X, Y)Z)* = R(X*, 7*)Z* .

Proof From (5.7) we see that the vector field ξ is parallel on M, i.e., Vxξ =
0 (see [12]). Thus we have

ξ) - g(γ*, vx4) = o .

From this and (5.4) we get (F'XY)* = FX*Y*, which implies

(R'(X, Y)Z)* = {F'xF
f

γZ - F'YF'XZ - F[X,Y,Z)*

= (FX*FY*Z* - FY*FX*Z* - Fίx*,

= R(X*, r*)z*.

This gives (5.10).
From (5.10) and the fact that ξ is parallel on M, we have
Lemma 6. Let M and N be anti-invariant submanifolds. Then M is flat if and

only if N is flat.
Lemma 7. Let M be an (n + \)-dimensίonal anti-invariant submanifold of a
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(2/7 + 1)-dimensional Sasakian manifold M, and N be an n-dίmensional anti-
invariant submanifold of a real In-dimensional Kaehlerian manifold N. Then the
normal connection of M is flat if and only if the normal connection of N is flat.

Proof From the assumption on the dimension we see that M is flat if and
only if the normal connection of M is flat, and N is flat if and only if the normal
connection oϊ N is flat (cf. [10], [12]). From this and Lemma 6 we have our
assertion.

Lemma 8. Let M be an (n + X)-dimensional anti-invariant submanifold of a
(2n + \)-dίmensional Sasakian manifold M, and N be an n-dimensional anti-
invariant submanifold of a real 2n-dimensional Kaehlerian manifold N. Then the
mean curvature vector m of M is parallel if and only if the mean curvature vector
m! of N is parallel.

Proof If m is parallel, (5.9) implies that mf is also parallel. Suppose that
mf is parallel. Then, from (5.9), we have Dx*m = 0. Therefore, we need only to
prove that Dξm = 0.

First of all, by the Weingarten formula we have

DxφY = VxφY + AφYX = V(Y)X - g(X, Y)ξ + φVxY + φB(X, Y) + AφYX .

Comparing the tangential and normal parts, we have

(5.11) DxφY=φFxY.

On the other hand, since R(X, ξ)Y = η(Y)X — g(X, Y)ξ is tangent to M for
any tangent vector fields X, Y to M, we have

(5.12) (FzB)(ξ, Y) = (PζB)(X, Y) .

We also have, from (5.7),

(5.13) F*£ = 0, φX=B(X,ξ).

Let e19 , en + 1 be an orthonormal frame for TX{M), and denote by the same
letters local extension vector fields of this frame which are orthonormal and
covariant constant with respect to V at x e M. Then, using (5.11), (5.12) and
(5.13), we obtain

Dζm - Σ (F,B)(ei9 et) = U (PV0(£, et)

n+1

= Σ D.tφet = Σ #V< = 0
ϊ l i l
ϊ = l

at each point x of M. Therefore we have Dζm = 0, and hence m is parallel.
Example 1. Let S^fo) = {zt e C: \zt\

2 = r*}, i = 1, , n + 1. We consider
Mn + 1 = SXrJ X X S\rn + 1) in Cn + ί such that r\ + • + r2

n+1 = 1. Then
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Mn + 1 is a flat submanifold of S2n + 1 with parallel mean curvature vector and
flat normal connection. Moreover M is an anti-invariant submanifold of S2n + 1

and tangent to the structure vector field ξ of S2n + 1 (see [12]). Now we put
Mn + 1/ξ = Λf?. Then the following diagram is commutative:

M\ ~^-> CPn .

By Lemmas 4, 6, 7 and 8, M" is a flat anti-invariant submanifold of CPn with
parallel mean curvature vector and flat normal connection.

Example 2. Let S\rt) = {z, e C: |z,|2 = r?}, ι = 1, , n. Then M* =
*S'1('Ί) X X S^rJ is a flat anti-invariant submanifold of Cn (see [10]).

Theorem 3. Let M be a compact n-dimensional anti-invariant submanifold of
Cpn + p with parallel mean curvature vector. If the normal connection of M is flat,
then M is Ml of some CPn in CPn+p.

Proof By Theorems 1, 2, M is a flat anti-invariant submanifold of a CPn

in CPn + p. Therefore, from Lemmas 4, 7, 8, π -^M) is a flat anti-invariant sub-
manifold of S2n + 1 with parallel mean curvature vector and flat normal connec-
tion. By [12, Theorem 6.1] π~\M) is S\rx) X X S\rn + ι\ r\ + + r2

n+1

= 1. Consequently M is congruent to Λf?.

Theorem 4. Lei M be a compact n-dimensional anti-invariant submanifold of
Cn + P with parallel mean curvature vector and flat normal connection. If M is
umbilical with respect to all eλ, then M is S\r^) X X S\rn) in a Cn in Cn + P

or Sn(r).
Proof From Propositions 4, 5, we see that M is flat or totally umbilical.

If M is flat, then, by a theorem of [10] and [11], M is S\rλ) X X S\rn) in
a Cn in Cn + P. If M is totally umbilical, then M is obviously Sn(r).
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