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SOME TOPOLOGICAL OBSTRUCTIONS TO
BOCHNER-KAEHLER METRICS

AND THEIR APPLICATIONS

BANG-YEN CHEN

1. Introduction

Let Mn be a compact (complex) manifold of complex dimension n. Let L be
a line bundle over Mn. Denote by H\Mn, L) the z-th cohomology group with
coefficients in the sheaf of germs of local holomorphic sections in L, and by K
and 1 the canonical line bundle and the trivial line bundle over Mn respectively.
The m-genus or the plurigenera of Mn are given by

Pm = dim H\M\ mK) .

where mk = K® (x) K (m copies). Px is also called the geometric genus pg

of M. By the Serre duality theorem:

H%Mn, L) ^ Hn~\Mn, L 1 (x) K) ,

we also have/7^ = dimHn(Mn, 1). Put

gt = dim H%Mn

9 1) .

Then gi is called the irregularity of Mn, denoted by q. The arithmetic genus is
then given by

α = 1 -gi+g2- '" + ( - l ) n S » .

In particular, if Mn is a surface (we call a compact connected complex surface
free from singularities simply a surface), a = 1 — q + pg. It is well-known that
α, q, Pm are birational invariants.

In the following we denote by τ, χ, Ẑ  and ct the Hirzebruch signature, the
Euler characteristic, the z-th Betti number and the z-th Chern class of Mn

respectively. Let c € H2n(Mn, Z) be a 2«-th cohomology class of Mn. We shall
also regard c as the integer obtained from the cohomology class c by taking its
value on the fundamental cyclic of M2n.

Let g be a Kaehler metric on Mn. We denote by R)kh Rt] and p respectively
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the components of the curvature tensor R, the Ricci tensor S and the scalar
curvature of (Mn, g). In [2] (see also [14]), S. Bochner introduced a tensor field
by

where <Si; denote the Kronecker deltas. This tensor is considered as a complex
version of the Weyl conformal curvature tensor and is called the Bochner curva-
ture tensor. A Kaehler metric g on ¥ " is called a Bochner-Kaehler metric if its
Bochner curvature tensor vanishes.

It is a basic problem in geometry to determine the class of surfaces or mani-
folds which do or do not admit Bochner-Kaehler metric.

In § 3 we shall give some obstructions to Bochner-Kaehler metric in terms
of Hirzebruch signature, Euler characteristic and arithmetic genus. In § 4, we
shall show most surfaces admit no Bochner-Kaehler metric. In § 5, we shall in-
troduce some special (algebraic) surfaces which we shall use in the later sections
and we shall mention some results of Safarevic. In § 6, we shall give classifi-
cation theorems for Bochner-Kaehler surfaces for analytic case.

2. Preliminaries

Let Mn be an ^-dimensional complex manifold with a Kaehler metric g, and
θ\ , θn a field of unitary coframes. Then

Here and in § 3 we use the ranges i,j, k, /, = 1, , n. The fundamental
2-form is given by

Φ = - Λ Λ = T Σ 0* Λ θ* ,

which is a harmonic form. Let

Ω) = Σ R)kι0
k Λ θι

be the curvature form of M. Then the curvature tensor of M is the tensor field
with local components R)k-U which will be denoted by R. The Ricci tensor S
and the scalar curvature p are given respectively by

s = i Σ (RijP ® θj + RiSθ* ®θj), P = 2Σ *ii,
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where Ri3 = 2 £ *?*j. We denote by ||Λ||, \\S\\ and \\B\\ the length of the curva-
ture tensor, the Ricci tensor and the Bochner curvature tensor respectively, so
that

= 16 Σ RmRl* > II^ll2 = 2 Σ

= 16 Σ BmBί*

It is easily seen that

( 1 )
(„+!)(„ +2) r

A Kaehler manifold is called a space form with constant holomorphic sectional
curvature c if we have

A space form with vanishing holomorphic sectional curvature is called a flat
manifold.

We state the following general lemma for later use.
Lemma 1. Let M be an n-dimensional Kaehler manifold. Then

\n(n + 1) | |^ | | 2 > 2n \\S\\2 > p2 .

The first equality holds if and only if M is a space form, and the second equality
holds if and only if M is Eίnsteinian.

Proof The first inequality is obtained by considering the length of the tensor
field with components

i 1

2(n + 1

It is well-known that this tensor field vanishes if and only if M is a space form.
The second inequality is obtained by considering the tensor field with com-
ponents

3. Topological obstructions

In this section we shall give some obstructions to Bochner-Kaehler metric
and Einstein-Kaehler metric for surfaces.
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Proposition 1 [3]. If a surface M admits a Bochner-Kaehler metric g, then we
have the following inequalities:

( i ) r > 0 ;
(ii) χ < 4α;

(iϋ) Z<3τ;
(iv) α < τ.
Equality of{\) or (ii) holds if and only if(M, g) is either flat or locally a product

surface of two curves, one with constant positive Gauss curvature H and the other
with constant negative Gauss curvature — H.

Equality o/(iii) or (iv) holds if and only if(M, g) is a space form.
Proof Let M be a surface. Then the first and second Chern classes cx and

c2 are represented by

and

respectively. The first Pontriagin class px is given by

( 2 ) Pl = d-2c2.

From the Hirzebruch signature theorem, the Riemann-Roch-Hirzebruch
theorem and the Gauss-Bonnet-Chern theorem [1], [6], [10], we have

( 4 )

( 5 ) χ

where * is the Hodge star operator, and/?! the first Pontriagin form. By straight-
forward computations, we may find that

( 6 ) τ = "ZL ί (P||2-2||S||2)*1 ,
24 3 τr2 JM

( 7 ) o = ,7 1 2 f (||Rf - 8 ||51|2 + 3 ^ * 1 ,
27 3 τr JM
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( 8 ) χ = J \ (\\Rf-4\\Sf + p2)*l

If the Bochner curvature tensor vanishes, (1) implies \\R\\2 = 2 | | S | | 2 — ^p\ Thus

(6), (7) and (8) reduce to

( 9 ) τ = -1- f p2*l ,
v ; 2 5 . 3 2 τr2 JMr

(10) α = - — - ί ||Λ||2*1 + ί /o2*l
V ; 27 π2 V 27 32 π2 J ^ r

25-π2 JM 2A'3-π2 JM

respectively. From (9), (10) and (11) we obtain

(12) 4α - χ - τ > 0 .

This proves inequalities (i) and (ii). If equality of (i) or (ii) holds, then (2) and
(3) imply

(13) c\ = 2c2 .

By combing (13) with a theorem of Chen and Ogiue [4], we see that (M, g) is
either flat or locally a product surface of two curves, one with constant positive
Gauss curvature H, and the other with constant Gauss curvature — H. Con-
versely, if M is either flat or a locally product surface of this given type, then
the Bochner curvature tensor vanishes and τ = 4α — χ = 0.

The remaining part of this theorem follows immediately from Lemma 1 and
(9), (10) and (11).

4. Some applications of Proposition 1

Let Pn be an ^-dimensional projective space. An algebraic surface M is called
a complete intersection surface if it can be holomorphically imbedded in P7 1 as
the intersection of n — 2 nonsingular hypersurfaces M l5 ,MW_2 of Pn in
general position, that is, the tangent spaces of M19 ,M n _ 2 intersect trans-
versally everywhere along the surface. In [5] Chen and Ogiue proved that the
induced Kaehler metrics of complete intersection surfaces from the Fubini-Study
metric on Pn are not Bochner-Kaehler metrics unless the complete intersection
surface is a linear plane P2 in Pn. The following theorem gives a generalization
of Chen-Ogiue's result.

Theorem 1 [3]. All complete intersection surfaces except P2 admit no Bochner-
Kaehler metric.
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Proof. Let M be a complete intersection surface which can be holomor-
phically imbedded in Pn as

MX n n Mn_2,

where Mα, a = 1, , n — 2, are nonsingular hypersurfaces of degree da respec-
tively. Let h be the generator of H2(Pn, Z) corresponding to the divisor class of
a hyperplane Pn~\ Then the total Chern class c(Pn) of Pn is given by

(14) c(Pn) = (1 + h)n + 1 .

Let y: M-+ Pn be the imbedding and v be the normal bundle of j(M) in Pn.
Then the total Chern class of c(v) of v is given by

(15) φ ) - (1 + 4A) (1 + dn_2h) ,

where h is the image of h under the homomorphism

j*:H2(Pn,Z)->H2(M,Z) .

Since j*T(Pn) = T(M) 0 y (Whitney sum), we find

where Γ(M) is the tangent bundle of M, and c(M) is the total Chern class of
M. Thus from (14) and (15) we get

(16) (1 + Λ)»+1 = {1 + Cl + c2}(l + ^Λ) (1 + dn_2h) ,

which implies

(17) C l = (/i + 1 - Σ da)h ,

(18) c2 = f i - φ + l ) - ( » + l ) Σ 4 + Σ ^
12

Combining these two equations with the Hirzebruch signature theorem we may
find that

(19) r = %{n + 1 - Σ <%} ,

If the complete intersection surface M admits a Bochner-Kaehler metric, then
by Proposition 1 and (19) we find

Σ dl < n + 1 ,

from which we may assume that d2 = = dn_2 = 1, and dι is either 1 or 2.
If dγ is 1, M is a linear plane P 2 . If ^ is 2, then M is a quadric in P3. Thus, by
using (17) and (18) we find
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χ = 1 and τ = 0 ,

contradicting Proposition 1.
Theorem 2. Let M be a surface. Then any surface M obtained from M by

blowing up k points of M admits no Bochner-Kaehler metric whenever either

k>τ - a or k> i(3r - χ)

where τ, α and χ denote the Hίrzebruch signature, the arithmetic genus and the
Euler characteristic of M.

Proof Since the arithmetic genus is a birational invariant, surfaces M and
M have the same arithmetic genus. On the other hand, topologically, blowing
up a point on a surface is equivalent to attaching P2 with opposite orientation
which is denoted by P2. Since M is obtained from M by blowing up k points of
M, M is diffeomorphic to the direct sum M # kP2. Since we have

τ{M%kP2) = τ(M)- k ,

and

this theorem then follows from Proposition 1.
A surface is called a rational surface if it is birationally equivalent to P2. For

the later use we prove the following.
Lemma 2. All rational surfaces except P2 admit no Bochner-Kaehler metric.
Proof Since a rational surface is obtained from P2 by blowing up and blow-

ing down, and rational surface is diffeomorphic to either

S2 X S2 or P2 # kP2 (k > 0) .

Since χ(S2 χ 5 2 ) - 4 and τ(S2 X S2) = 0. S2 X S2 cannot admit Bochner-
Kaehler metric by virtue of Proposition 1. If a surface P2 # kP2 admits a Bochner-
Kaehler metric, then Proposition 1 implies that k = 0, because the arithmetic
genus of all rational surface are equal to one. Thus by a result of Andreotti, the
only Bochner-Kaehler metric on rational surfaces is the standard Fubini-Study
metric on P2.

5. Some special surfaces

In the remaining part of this paper, we shall always assume that all surfaces
are analytic.

In this section we shall introduce some special surfaces for later use. For the

details, see for examples, Kodaira [7], [8], and Safarevic [11], [12].
Let Cj be a line bundle or a divisor on M for/ = 1, 2. We denote by ( Q Q )
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the intersection number of Cί and C2. By an exceptional curve (of the first kind)
on a surface we mean a nonsingular connected rational curve such that the self-
intersection number (C2) = — 1 it is known that a curve is exceptional if and
only if it arises as the result of blowing up a point via a quadric transformation.
A surface M is a minimal surface if it contains no exceptional curves.

A surface is said to be regular if b{ = 0. A K3 surface is a regular surface
with trivial canonical line bundle, i.e., K = 0, an Enriques surface is a regular
surface with 2K = 0. A Hirzebruch surface Fn = P(Hn © 1) is the projective
bundle associated to the vector bundle Hn 0 1 over P\ H being the line bundle
defined by a hyperplane section. A surface is of general type if we have

Urn ~~m > 0 .
m2

It is known that all surfaces of general type are algebraic. By using the Atiyah-
Singer index theorem, Van de Ven [13] proved that all such surfaces satisfying
c\ < 8c2. Recently, Bogomulov (in Moscow) improved Van de Ven's result as
follows: All surfaces of general type satisfy c\ < 4c2. Recently, Y. Miyako [9]
shows that all surfaces of general type satisfy c\ < 3c2.

A surface is said to be ruled if it is birationally equivalent to the direct product
of a curve with a projective line, a surface M is called an elliptic surface if there
exists a curve C and a surjective morphism /: M —> C such that a generic fibre
off is an algebraic curve of genus one (i.e., elliptic curve).

We consider an arbitrary regular mapping π: V-+ B of a surface V onto a
nonsingular algebraic curve B with an irreducible generic fibre F. The fibre Fb

= π~\b) is connected for all b e B. For all points b e B, except perhaps, a finite
number, Fb is an irreducible nonsingular algebraic curve with genus g. The set
of points {bί9 , bs} for which this is not true will be denoted by S, and the
corresponding fibres Fb. are called singular fibres. We state the following known
lemmas for later use.

Lemma 3 [11, p. 58]. Let χ{L) denote the Euler characteristic of a topological
space L. Then

X(V) = χ(F)χ(B) + Σ (AFtt) - χ(F)) .
ί l

Lemma 4 [11, p. 60]. If F is nonsingular and Fo is singular fibre of π and the
surface V is minimal, then

X(FO) > χ(F) ,

where equality holds only when the genus of F is equal to 1 and Fo is a nonsingular
curve of genus 1 taken with some multiplicity.
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6. Classification of Bochner-Kaehler surfaces

In this section we shall give a classification of Bochner-Kaehler surfaces for
the analytic case.

Theorem 3. If an analytic surface M admits a Bochner-Kaehler metric g, then
either (M, g) is a space form, or (M, g) is a locally product surfaces of two curves,
one with constant positive Gauss curvature H, and the other with constant negative
Gauss curvature —H.

Proof According to Kodaira's classification theorem [7, p. 796], [8, p. 1064],
surfaces free from exceptional curves can be classified into the following seven
classes:

( I )0 the class of projective plane and ruled surfaces,
( II )0 the class of K3 surfaces,
(IΠ) 0 the class of complex tori,
(IV )0 the class of minimal elliptic surfaces with bx = 0(2), P12 > 0, K Φ 0,
( V )0 the class of minimal algebraic surfaces with P2 > 0, c\ > 0,
(VI )0 the class of minimal elliptic surfaces with b1 = 1(2), Pn > 0,
(VΠ)0 the class of minimal surfaces with bx = 1, Pn = 0.

Moreover, surfaces of classes (Π)o, (IΠ)0, (IV)0 and (VI)0 satisfy c\ = 0, surfaces
of class (II) satisfy bx = 0, and surfaces of class (IΠ)0 satisfy bx — 4.

In the following a surface is said to be of class (Y) if it is obtained from a
minimal surfaces of class (7)0, (Y ranges from I to VII) by means of a finite
number of quadric transformations. The corresponding minimal surfaces Mo of
M are called minimal models of M.

Since the first Betti number bι is a birational invariant and is even for Kaehler
surfaces, which is equal to 2q, all surfaces of classes (VI) and (VII) admit no
Bochner-Kaehler metric. Now we consider the remaining cases separately.

(a) Surfaces of class (I). Surfaces in this class are either rational or ruled.
If a surface is rational and admits a Bochner-Kaehler metric, then Lemma 2
implies that it is the projective plane and hence the Kaehler metric on it is the
standard Fubini-Study metric. So we may assume that the surface M is ruled
and nonrational. Thus the surface M is birationally equivalent to the direct
product of the projective line P 1 with a curve C of genus g > 1.

Case (i). If the genus of C is one, M is elliptic. Hence a minimal model Mo

of M satisfies

(20) χ(M0) > 0 , d(M0) = 0

by virtue of Lemmas 3 and 4 and Theorem 3 of [11, p. 166]. On the other hand,
since the arithmetic genus α of M is equal to zero, Proposition 1 shows that M
admits no Bochner-Kaehler metric unless χ(M) < 0. Since blowing up a point
will increase the Euler characteristic by one, (20) shows that M admits no
Bochner-Kaehler metric unless χ(M) = 0, and M itself is a minimal surface.
From this we find that if M admits a Bochner-Kaehler metric, then c\ = χ =
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τ = 0. Applying Proposition 1 again, we see that M is a flat surface
Case (ii). If genus g of C is > 2, then

(21) α = 1 - g < - 1 .

Let Mo be the minimal model of M by blowing down all exceptional curves of
M. Then Lemmas 3 and 4 imply that

(22) χ ( M 0 ) > 4 ( l - g) .

Since M is obtained from Mo by blowing up, we find

(23) χ(M) > 4(1 - g) .

Thus, if M admits a Bochner-Kaehler metric, then (21), (23) together with
Proposition 1 imply that (a) M is a minimal surface, (b) all fibres are generic,
and (c) χ(M) — 4(1 — g). From these we may conclude that M is the direct
product of P1 with a curve of genus g > 2 and τ = 0. Hence by applying Pro-
position 1 again, all Bochner-Kaehler metric is the given locally product one.

(b) Surfaces of class (II). All surfaces in this class are regular. Thus their
Euler characteristics satisfy

(24) χ > 3 .

On the other hand, since c\ = 0 for minimal K3 surfaces we get

(25) c\ < 0

for every surface M in this class. From these it follows that the Hirzebruch
signature of every M satisfies

(26) τ < - 2 .

This together with Proposition 1 shows that all surfaces in this class admit no
Bochner-Kaehler metric.

(c) Surfaces of class (III). Surfaces in this class satisfy [7, p. 796]

(27) bx = 4 , pg= 1 .

Thus we get

(28) a=l-q+pg = 0.

On the other hand, since the minimal models Mo of these surfaces satisfy

(29) χ(MQ) = 0 , cl(M0) = 0 ,
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we find

(30) χ(M) > 0 ,

for all surfaces M in this class. Thus using index theorems again we find

τ = 4α - χ < 0 ,

where the equality holds only when the surfaces M are minimal. By Proposition
1 we see that all surfaces in this class admit no Bochner-Kaehler metric unless
they are minimal in which case we have

Thus the Bochner-Kaehler metrics are the flat ones.
(d) Surfaces of class (IV). Surfaces in this class are elliptic surfaces. Thus

minimal models Mo of these surfaces satisfy [11, p. 166]

(31) c?(M0) = 0 .

On the other hand, Lemmas 3 and 4 imply that χ(M0) > 0 which together with
(31) yields

τ(M) = i(cl(M) - 2c2(M)) < 0 .

Combining this with Proposition 1 we see that if a surface M admits a Bochner-
Kaehler metric, then M is minimal and the metric is the flat one.

(e) Surfaces of class (V). Surfaces in this class are algebraic surfaces of
general type. Combining Proposition 1, Miyaoka's theorem and Theorem 3 of
[4] we see that if a surface M admits a Bochner-Kaehler metric g, then we have
either

(32) τ = 0 (i.e., c\ = 2c2) or c\ = 3c2 ,

The first case holds only when (M, g) is either flat or the locally product sur-
face of the given type. The second case implies that (M, g) is a (complex) space
form [4].

As an immediate consequence of Theorem 3, we have
Theorem 4. An analytic surface admits a Bochner-Kaehler metric if and

only if it is covered biholomorphίcally by P\ C\ D2 or P1 X D\ where Dι is
the disc ofC\
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