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INTRODUCTION

This paper is a continuation of parts I and II of the same title which ap-
peared in Acta Math. 136 (1976) 103-239, and its theme is the study of exten-
sions of transitive Lie algebras, their realization as Lie equations on manifolds
and their cohomology (linear and non-linear). We present a unified viewpoint
on the solvability and non-solvability of the integrability problem; the methods
used in the preceding parts of this paper to obtain solvability results are ex-
tended here to prove non-solvability. Our attention is mainly centered on
abelian extensions of transitive Lie algebras, whose importance is underscored
by the Jordan-Holder decomposition of Guillemin [12].

Consider the exact sequence of topological Lie algebras

0>I—-L—->L"-0,

where L, L” are transitive Lie algebras, and 7 is a closed abelian ideal of L.
Two questions arise, namely: how is this sequence realized by Lie equations on
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manifolds and how are the cohomologies (linear and non-linear) of the ideal /
of L and of the Lie algebras L and L” related? We attempt to resolve these
questions. In addition, we show that H'(L, I) and H'(L, I') are isomorphic as
cohomologies, and do not depend on the choice of the extension L of L” by I
but only on the structure on / of module over the Lie algebra L’ determined
by the extension L. We obtain further results for such an exact sequence when
we impose further conditions on L”, with no assumption on the closed ideal /:
if L” is elliptic, then A'(L, I) = 0 if and only if A'(L) = 0; moreover if L” is
finite-dimensional, we have an isomorphism of cohomology A'(L, I) — H'(L).

The first example of non-solvability of the integrability problem was given by
Guillemin and Sternberg [15] and was later analyzed and generalized by Buck
[23]. Following ideas of Buck [23], we use our results described above to con-
struct a class of formally transitive Lie equations for which the integrability
problem is not solvable and which includes the examples of Buck. All these
examples correspond to abelian extensions of transitive Lie algebras and the
non-solvability of the integrability problem for these examples arises from the
local non-solvability of linear differential operators. An abelian ideal 7 of a tran-
sitive Lie algebra L is realized as a Lie equation determined by a linear over-
determined differential operator P invariant under a transitive Lie equation.
The linear or non-linear cohomology of the ideal 7 of L is isomorphic to the
Spencer cohomology of P, which provides the obstruction to local solvability
of P, and vanishes if and only if P is locally solvable. In particular, any invar-
iant differential operator on a Lie group provides us with such a Lie equation
and an abelian ideal in a transitive Lie algebra.

Following is a brief summary of the contents of the paper. The first section,
§ 14, is purely algebraic and is concerned with geometric modules over a tran-
sitive Lie algebra L, which are the L-modules that arise when one considers
abelian extensions of L. In fact, a linearly compact L-module is a geometric L-
module if and only if it satisfies the descending chain condition on closed L-
submodules. This class of L-modules was first considered as filtered L-modules
by Guillemin and Sternberg [29]; they proved that a module of this kind can
be realized as a module of sections of a formal vector bundle. Our treatment,
on the other hand, leads to a quite different realization theorem. In § 15, a def-
inition is given of vector bundles associated to a Lie equation which generalizes
the notion of vector bundles associated to a principal bundle. If £ is a vector
bundle associated to a formally integrable Lie equation R, on a manifold X, sec-
tions of R, operate as first-order linear differential operators on the sections of
E; these operations are used to construct on the space J_.(E), of formal sections
of E at x € X a structure of a module over the Lie algebra R., , of formal solu-
tions of R, at x. If R, is formally transitive, J_(E), is a geometric R, ,-module,
and if N, C J,(E) is a formally integrable differential equation whose space of
sections is invariant under the action of the sections of the /-th prolongation
R, ., of R, the space of formal solutions N, , of N, at x is a closed geometric
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R, ,-submodule of J_(E),. We generalize (Theorem 15.1 and Corollary 15.1)
results of [10] concerning closed ideals of R, , to show that, whenever X is
simply connected, every closed R, ,-submodule of N, , is the space of formal
solutions of a formally integrable differential equation on E of the same type
as N,. Our realization theorem (Theorem 19.3) asserts that every geometric mod-
ule over a real transitive Lie algebra is isomorphic to an R,, ,-module of the
type N.. .. In § 16 the notion of the characteristic variety of a geometric module
is defined; in particular the characteristic variety is defined for a transitive Lie
algebra L or a closed ideal I of L, since they are geometric L-modules under
the adjoint representation of L, and coincides with the characteristic variety
given by Guillemin [27] (see also [28]). The main result of this section is Theorem
16.3 which asserts that, for a short exact sequence of geometric modules over
a transitive Lie algebra, the characteristic variety of the middle term is the
union of the characteristic varieties of the two end terms. The essential work
of defining the characteristic variety of a geometric module and of proving
Theorem 16.3 is largely concentrated in Proposition 16.2. The notion of ellipticity
is defined for a geometric module and, as a consequence of Theorem 16.3, a
transitive Lie algebra L is elliptic if and only if a closed ideal 7 of L and the
transitive Lie algebra L/I are elliptic (Corollary 16.3). If L and 7 are realized as
Lie equations on a manifold (as in § 10), then the characteristic varieties of
these equations are completely determined by the characteristic varieties of L
and 7 respectively. These results together with those of § 10 will be used in a
future publication to give an independent proof based on the Newlander-
Nirenberg theorem and the local solvability of linear analytic elliptic equations
(Proposition 17.4) of the theorem of Malgrange [19] asserting that H'(L, I) = 0
for a closed elliptic ideal 7 of L (see Theorems 17.1 and 17.9).

In § 17, we first give various results on the cohomology of elliptic or analytic
Lie equations, which we use subsequently in our study of exact cohomology
sequences, both linear and non-linear. We obtain stronger results about these
sequences than those of [6] and of § 9, whenever conditions such as ellipticity
or finite type are imposed on one of the equations whose cohomology appears
in the sequences (Theorems 17.2, 17.5 and 17.6). As a consequence of our study
in § 9 of the non-linear cohomology sequences (9.5) and (9.11), we establish the
relation between lifting properties for solutions and information about the non-
linear cohomology of the equations which appear in these sequences (Theorems
17.3 and 17.4). We exploit this last fact to obtain our version (Corollary 17.1)
of the Kuranishi-Rodrigues theorem about lifting of solutions of analytic Lie
equations. Finally, we generalize some of our results on the non-linear coho-
mology sequences in Theorems 17.7 and 17.8 and give their consequences con-
cerning the cohomology of transitive Lie algebras and their closed ideals in
Theorem 17.10.

In § 18 we pursue our study of abelian Lie equations and their cohomology
which we started in § 11. If R, is an integrable and formally integrable abelian
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Lie equation, its structure is described (at least locally) by Theorem 18.6 and
there is an isomorphism of cohomology A'(R,) — H'(R,); moreover, we show
how certain such equations arise from vector bundles associated to Lie equa-
tions and invariant differential equations. The first part of § 19 is devoted to
the construction of two classes of formally transitive and formally integrable
Lie equations for which the integrability problem is not always solvable. We
next use results of [10] to prove our realization theorem for geometric modules
over real transitive Lie algebras. This enables us to associate to a geometric
module E over a real transitive Lie algebra L a graded module H*(L, E) of
linear Spencer cohomology over the graded Lie algebra of linear Spencer co-
homology H*(L) of L. The remainder of the section is devoted to the study of
this cohomology. In particular, if E is a closed ideal of L, this cohomology
coincides with the one defined in [10] (Proposition 19.3). If L’ is a transitive
Lie algebra which is an abelian extension of L by E defining the given structure
of L-module on E, then (Theorem 19.5) the cohomology H*(L’, E) of the closed
abelian ideal E of L’ is isomorphic to H*(L, E) and thus does not depend on
the choice of the extension. Finally, we derive the results mentioned above con-
cerning the linear and non-linear cohomologies of such extensions, under the
additional hypothesis that L is elliptic or finite-dimensional (Corollary 19.1). In
§ 20, we construct Lie equations which are counterexamples to the solvability
of the integrability problem and which belong to the classes of such equations
considered in § 19; we show how locally non-solvable invariant differential oper-
ators on Lie groups give rise to such Lie equations and that the example of
Guillemin and Sternberg [15] arises in this way.

Finally, we ought to point out to the reader that all differential equations
considered throughout this paper are assumed to be of order greater than or
equal to one.

CHAPTER 1II. GEOMETRIC MODULES AND LIE EQUATIONS

14. Geometric modules over Lie algebras

Consider a field K endowed with the discrete topology and linearly compact
topological vector spaces over K, i.e., those which are topological duals of
vector spaces over K endowed with the discrete topology. We shall require the
general facts about linearly compact topological vector spaces which are to be
found in [12, § 1] and the following properties of such spaces.

Proposition 14.1. Let E be a linearly compact topological vector space over
K, and F be a closed subspace of E.

(i) Let

.. CFY'CFFC ... CF!

be a decreasing chain of closed subspaces of E with (\;., F* = F. If Uis an
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open subspace of E containing F, there is an integer k, such that F* C U.

(ii) There exists a closed subspace F’ of E such that E is the topological di-
rect sum F® F’.

The first part of the proposition is obtained by applying the corollary of [12,
Proposition 1.5] to E/F and its subspaces F*/F, U/F. The second part is the
statement 12. (5) of [30, § 10].

Let L be a linearly compact Lie algebra over K, that is, a topological Lie al-
gebra over K whose underlying topological vector space is linearly compact. A
linearly compact L-module E is a topological L-module whose underlying top-
ological vector space (over K) is linearly compact and for which the mapping
L X E— E determining the action of L on E is continuous. If 4 is a subspace
of E, let

D, A={ecA|é-ec Aforall&e L},

and define inductively
D'A=D,A, DiA= D/(D:?A), k>1;

set DA = (g, Dt A.
Proposition 14.2. (i) If E° is an open subspace of E, there exists an open
subalgebra L° of L such that

L' EC E°.

(ii) If E® is an open subspace of E, so is D E".
(iii) If A is a closed subspace of E, then D} A is a closed submodule of E and
every submodule of L which is contained in A is contained in D3 A.

The proof of this proposition is similar to those proofs given in [12, §2] and
will be omitted.

Let E° be an open subspace of E; set E~* = E, E¥* = DYE° for k> 1. Then
L.E* C E* ! and by Proposition 14.2 (ii), E* is open and E**! C E* for all k.
Let L’ be an open subspace of L satisfying
(14.1) L' E"C E°.

Then it is easily verified that
(14.2) L'.E* C E*, fork > 0.

According to the definition of E* and (14.2), the finite-dimensional vector space
V = L/L° considered as an abelian Lie algebra has a natural representation on
the graded vector space gr E= @;__, E¥/E**" and therefore also on the graded
vector space

(e £ = @ (EY/E*")*.
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Thus we may consider (gr E)* as a graded module over the universal envelop-
ing algebra of V, which is the symmetric algebra SV of V.

Proposition 14.3. [f L' C L and E° C E are open subspaces satisfying (14.1)
and V = L|L", then the graded SV-module (gr E)* is finitely generated.

Proof. It suffices to show that the mapping

V®(Ek—1/Ek)* __)(Ek/Ek+l)*
defined by multiplication by V is surjective for £ > 0, or therefore that the dual
mapping
(14.3) E*|E*Y — V* ® (E*'/E¥)

is injective for k > 0. Suppose that a belongs to the kernel of (14.3). Then if
e e E* is a representative of a, we see that Le C E* and hence that e belongs

to E**' and a = 0.
The Lie algebra cohomology

H*(V,gr E) = @ H'(V, gr E)

J
of V with values in the graded V-module gr F is naturally bigraded. Let
GNV*QgrE— N*"V*Qegr E

be the coboundary operator defined by
j+1
WA - A, 805 = ’;(_1)”11,1,,@1 A ABA o Ay 0

for e N'V*QgrE, v, ---,v,;,, €V, where §, indicates that v, is to be
omitted. Then

H(V, gr E) = k_éél Hi¥(V, gr E)
where H/*(V, gr E) is the cohomology of the complex
N TV Q EFER? L) NV*® EXE*! —i+/\"”V* &® E*E" .
The injectivity of (14.3) implies that
H""(V,grE) =0, fork > 0.

We observe that H'(V, gr E) is the dual of Tor$"((gr £)*, K) and from Prop-
osition 14.3 we deduce that it is a finite-dimensional vector space.

We consider the Lie algebra L as a linearly compact L-module via the ad-
joint representation of L. We set L' = L, L* = DL’ for k > 1. If we require
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that the open subspace L° of L satisfy the stronger condition L°-E C E, it is
easily seen that

Li.E* C Ei** forj,k>0.

Definition 14.1. An open subspace E° of E is said to be fundamental if it
contains no L-submodules of E except 0.

Let E° be a fundamental subspace of E. Then by Proposition 14.2 (iii),
Mi-_1 E¥ = 0, and by Proposition 14.1 (i), {E*},~_, is a fundamental system
of neighborhoods of 0. Let L° be an open subspace of L satisfying (14.1). If F
is a closed subspace of E, set

(14.4) g F= @ (FN E*+ EFYE
k=-1

this is a graded subspace of gr E.

Lemma 14.1. Let E° be a fundamental subspace of E and L' an open sub-
space of L satisfying (14.1), and let V = L|L’. If F,, F, are closed subspaces of
E with F, C F,and gr F, = gr F,, then F, = F,.

Proof. We show by induction on k that

F,C F, + E*.

This is true for k = —1; assume that it holds for an integer K > — 1. By our
hypothesis, the components of degree k of gr F, and gr F, are equal and hence

F,ﬂEk—f—EkH:FzﬂEk-}-EkH;
therefore we have
F,CF, +F, N E*CF + E*'.

Since F, is closed, we conclude that
F, CkOI(Fl + E¥) = F,.

The following result generalizes [12, Theorem 3.1] and its proof is the same
as the one of that theorem:

Theorem 14.1. Let E be a linearly compact L-module. Then the following prop-
erties of E are equivalent:

(i) E possesses a fundamental subspace;

(i) E satisfies the descending chain condition on closed L-submodules.

Proof. (ii) = (i). Assume that (i) does not hold. Let {E*},., be a funda-
mental system of neighborhoods of 0 consisting of open subspaces of E. Then
the closed submodule F, = D3 E* C E* is non-zero. According to Proposition
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14.2 (iii), we obtain a descending chain of non-zero closed submodules of E
(14.5) EDFDOF DO .---DF,DF,,,D -

satisfying (¢_, F, = 0, since (\g_, £* = 0; thus (14.5) does not stabilize.

(1) = (ii). Let (14.5) be a descending chain of closed submodules of E. Let
E, be a fundamental subspace of E. Consider the graded vector space gr F,
given by (14.4) and the annihilator (gr F,)* of gr F, in (gr E)*. Let L° be an
open subspace of L satisfying (14.1) and ¥V = L/L’. Then gr F, is a V-sub-
module of gr E; thus (gr F,)* is an SV-submodule of (gr E)*. By Proposition
14.3, {(gr F,)*'} is an increasing sequence of submodules of a finitely generated
module gr E over the noetherian ring SV, and thus this sequence stabilizes.
Therefore so does the decreasing sequence {gr F,} of graded subspaces of gr E.
By Lemma 14.1, the chain (14.5) stabilizes and so (ii) holds.

Definition 14.2. A linearly compact topological L-module E satisfying the
properties (i) and (ii) of Theorem 14.1 is called a geometric L-module.

From Theorem 14.1, we easily deduce

Proposition 14.4. Let F be a closed L-submodule of a linearly compact L-
module E. Then E is a geometric L-module if and only if F and E|F are geometric
L-modules.

If E% is a fundamental subspace of a geometric L-module E, then F°* = F N
E" is a fundamental subspace of F and

F*= D:F' = F ) E*.

If L' is an open subspace of L satisfying (14.1), then L’- F* C F°.

If $: M — L is a continuous epimorphism of linearly compact Lie algebras,
and E is a geometric L-module, then the M-module ¢*E, which is equal to £
endowed with the structure of M-module given by

E-e=¢(&)-e,

for all £e M, e e E, is a geometric M-module.

Let 7 be a closed ideal of L. Then the adjoint action of L on / determines
the structure of a linearly compact L-module on /. If ] is abelian, this L-module
structure of 7 determines on [ a structure of linearly compact L/I-module. Con-
sider the linearly compact Lie algebra L as an L-module via the adjoint rep-
resentation of L; a fundamental subspace of L is obviously an open subspace
of L containing no ideals of L other than 0. We say that L is a transitive Lie
algebra if it is a geometric L-module. According to [12], such a transitive Lie
algebra L possesses a fundamental subalgebra L°; if we set L™' = L, L* = D%L°,
for k > 1, then (My__, L* = 0 and [L/, L¥] C L’**, for j, kK > —1. Moreover

©

grL = @ L¥L:!

k=<1
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is a graded Lie algebra; according to Proposition 14.4, a closed ideal 7 of L is
a geometric L-module, and, if I* = I N L* for k > —1, then

©

gr I — @ Ik/1k+l
k=-1
is a graded ideal of L.
We now generalize to linearly compact Lie algebras some of the standard
results on extensions of Lie algebras (see [24]).
An extension M of the linearly compact Lie algebra L by E is an exact se-
quence of linearly compact Lie algebras over K

(14.6) 0—sE—>M-251 >0,

whose mappings are continuous. Two extensions M and M’ of L by E are said
to be equivalent if there is a commutative diagram

M

Ei/l“&
™~ g

! MI
where 4 is a continuous homomorphism of Lie algebras. If E is abelian, we
say that M is an abelian extension of L; then the adjoint action of M on its
ideal E defines by passage to the quotient a structure of linearly compact L-
module on E.

Proposition 14.4 implies

Proposition 14.5. Let M be the abelian extension (14.6) of the linearly com-
pact Lie algebra L by E. Then M is a transitive Lie algebra if and only if L is a
transitive Lie algebra and E is a geometric L-module.

Let E be a linearly compact L-module. Consider the continuous Lie algebra
cohomology

L

H¥(L,E) = @ H{L, E)

of L with values in E defined in terms of continuous cochains with values in E.
We shall establish a correspondence between the abelian extensions of L by E
defining the given structure of L-module on E and H%(L, E).

If M is the abelian extension (14.6) of L by E, by Proposition 14.1 (ii) there
exists a continuous linear mapping ¢: L — M such that ¢ o ¢ = id; then

(14.7 a(§, n) = [0(5), o()] — o([&, 7]) ,

for & ne L, belongs to E; thus « is a continuous 2-cochain on L with values
in E, which, by Jacobi’s identity, is easily seen to be a cocycle. The cohomology
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class of « depends only on the extension M.

Conversely, a continuous 2-cocycle « on L with values in E defines a struc-
ture of Lie algebra M on the linearly compact topological vector space E X L
by setting

(14.8) (e, &), (ipl = (E-f—n-e+ a9, &),

for e, fe E, &, ne L. We define the exact sequence (14.6) by setting i(e) = (e, 0),
de, &) = &, for ec E, £ e L. Clearly E is an abelian ideal of M, and i, ¢ are
continuous Lie algebra homomorphisms, so that M is an abelian extension of
L defining the given L-module structure on E. The mapping ¢: L — M, sending
& into (0, £), is continuous and satisfies ¢ o ¢ = id. Furthermore,

[0(8), a(p] — a([€, 7)) = (£, 7), 0) ,

for &, pe L, so « is a cocycle defined by the extension M.

An extension M of L by E is inessential if there exists a closed subalgebra L’
of M such that M is the topological direct sum of L’ and E. An extension
(14.6) is inessential if and only if there exists a continuous Lie algebra homo-
morphism ¢: L — M such that ¢ o ¢ = id; then the cocycle a defined by (14.7)
vanishes. Finally, if « is the zero 2-cocycle on L, (14.8) gives us the semi-direct
product of L and E, which is an inessential extension of L.

Thus we obtain

Theorem 14.2. Let E be a linearly compact L-module. To each abelian exten-
sion of L by E, defining the given structure of L-module on E, corresponds a co-
homology class in HXL, E); this correspondence determines a bijective mapping
between the equivalence classes of such extensions and HXL, E). The inessential
extensions form a single class and correspond to the zero element of HXL, E).

Let L be a transitive Lie algebra, and L° a fundamental subalgebra of L. We
say that a closed ideal I of L is defined by a foliation in (L, L) if the only ideal
I’ of L satisfying

Icrcir+nr

is 1 itself.

Let M be the abelian extension (14.6) of a transitive Lie algebra L by a geo-
metric L-module E and ¢: L — M be a continuous linear mapping such that
oo = id. Let « be the continuous 2-cocycle on L with values in E defined by
(14.7). Let E° be a fundamental subspace of E, and L° be a fundamental sub-
algebra of L satisfying (14.1) and

a(L’ X L% C E°.

We remark that, given ¢ and E°, there always exists a fundamental subalgebra
L® of L satisfying these conditions. Then M°® = E° + ¢(L°) is an open subal-
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gebra of M. If I C M" is an ideal of M, its image in L under ¢ is contained in
L’ and so vanishes; thus 7 is contained in E°® and is equal to O, since E°is
fundamental. Therefore M° is a fundamental subalgebra of M satisfying ¢(M°)
= L° By [10, Proposition 10.2] we have:

Proposition 14.6. The open subalgebra M° of the transitive Lie algebra M is
fundamental. The closed abelian ideal E of M is defined by a foliation in (M, M").

15. Vector bundles associated to Lie equations

Let R, C J(T) be a formally integrable Lie equation, and E be a vector
bundle over X. We shall identify J,(E) with E. The following definition gen-
eralizes the definition of vector bundles associated to J(T) given in [9, § 3].

Definition 15.1. We say that E is associated to R, if, for all & e I'(X, R)),
we have a linear differential operator

(15.1) PE): & &

satisfying the conditions:

(i) 2(18) =120,

(i) 2E+9) = 2@ + £G),

i) L 7) = [£E), 26,

@) LOf = [2Es + E-Ds,
forall &, e I'(X, Ry), fe I'(X, Oy), s€ 6.

A section s of E determines a diffecomorphism 7, of E sending e ¢ E, into
e + s(x), where x € X, and a vertical vector field

on E. If ¢’ = s(x), then p(e) is equal to the image (d/dt)(e + te’)|,., of ¢’ under
the isomorphism

i E, — V(E) .

Assume that E is associated to R, and let e e E,, with x ¢ X. Consider the
mapping

(15'2) Ge: RB’k,.r - Te(E) B
defined by
(15.3) 0.8(x) = 5,7 E(X) — p(LE9)X) ,

where & and s are sections of R, and E over a neighborhood of x satisfying
s(x) = e. We now verify that the right-hand side of (15.3) depends only on &(x)
and e. According to conditions (i), (ii) and (iv) of Definition 15.1, we see that
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(Z(&)s)(x) depends only on £(x) and j,(s)(x); moreover, if s’ is a section of E
over a neighborhood of x satisfying s’(x) = e and u is the element of (T*® E),
given by the exact sequence (1.1) satisfying

eu = ji(s" — s)(x),
then (iv) implies that
(ZE)sN)x) = (LE)s)x) + 7(x) = u .

By [4, Proposition 5.3] and the remarks following [4, Proposition 5.6], we
see that

S:k”oé(x) = s*”oé(x) + #e(”oé(x) Nu).

From these last two relations, it follows that (15.3) is well-defined. The diagram

R, .25 T(E)
N
T,

is commutative. If & is a section of R, over X, the vector field ¢(£) on E de-
fined by

a(®)e) = a.((x)) ,

for ee E,, x ¢ X, is projectable onto z,£. Using condition (iii) of Definition
15.1, it is easily seen that

(15.4) o((, 7)) = [0(5), o] ,

for & 7 e I'(X, R,). Moreover, if £ e I'(X, R,) and s e I'(X, E), then #(&)s is
the unique section of E such that

(15.5) 7:x0&) = 0(8) + foiers »
(15.6) [0(8), 1) = procers -

Indeed, let e € E,, with x € X, and s’ be a section of E over a neighborhood of
x satisfying s’(x) = e. Then

Tsosl =5+ s’ ) Ts*ﬂe(e/) = ﬂe-rs(x)(e,) 5

for ¢’ € E,; therefore we have

Tex0(E)(€) = ToxSkmf(X) — 1oxttel (L(E)s')(X))
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= (5 + )4mEX) — fror i (L(E)S)(X))
= a(&)(e + 5(X) + pe, s (LE)X)) ,

giving us formula (15.5). Equation (15.6) is a direct consequence of (15.5).
Assume that R, is formally transitive, and that E is associated to R,. An R,-
connection w: J(T) — R, induces a connection V' in E by setting

Vs = L(@&))s , foréeJ,seé,

where @: T — R, is equal to v~' o w o v. If the curvature of w vanishes, then so
does the curvature of the covariant derivative V (see [9, Proposition 3.3]).

Let P, be a finite form of R, and a € X. Assume that the projection of P, (a)
onto X sending F ¢ P,(a) into the target of F is surjective; this condition always
holds if X is connected. Then P,(a) is a principal bundle over X whose group
is the set P,(a, a) of F e P, with source F = target F = a. If ¢ is a section of
P.(a) over an open subset U of X, define @: T — R, on U by

(15.7) (&) = ¢,(E)-¢(x), foréeT, xeU.

Then w = vo@oy~! is an R,-connection on U whose curvature vanishes (see
9, p. 71).
Let E, be a finite-dimensional P,(a, a)-module, and let E be the vector bundle

E = Pk(a) ><Pk(a,,a) EO
associated to P,(a). Denote by
@: Pa) X E,— E

the canonical projection.
For H e P,, with x, = source H and x, = target H, we have a mapping

©(H): P(a),, — Py(a),, ,
sending F into H-F, and an isomorphism
o(H): E,, —~ E,,,

sending @(F,e) into w(H - F, ¢), where F e P,(a),e e E,.If H ¢ P,, with source H’
= x, and target H' = x,, then

(15.8) o(H'-H) = o(H")-0(H)
as mappings from E,, to E,,. These mappings t(H) determine isomorphisms
TF: ﬁk.z — TW(P(a) ,

where F e P,(a) and x = target F, and the mappings ¢(H) determine a mapping
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(15.9) 0. R, — T(E),

where ee E,, x e X. Then, if Fe P, (a), ¢, € E,, with x = target F and ¢ =
@(F, e,), we easily see that the diagram

To(P@) X To(E) —> TAE)

T(TF:O)
T¢
R, .
commutes. If £ is a section of R, over X, then the vector field #(§) on P,(a)
defined by

w(E)F) = () ,

for Fe P,(a), with x = target F, is P,(a, a)-invariant; we have a vector field
o(€) on E defined by

a)e) = a.6(x)),

for ee E,, x e X. Then ¢ is a morphism of Lie algebras from I'(X, R,) to the
algebra of projectable vector fields on P,(a), and so is ¢ from 7I'(X, R,) to the
algebra of projectable vector fields on E.

Let ¢ be a section of P, over an open set U C X, and assume that z,¢ is a
diffeomorphism of U onto an open subset U’ of X; then the mappings o(¢(x)),
with x e U, give us an isomorphism of vector bundles

a(@): Ey — E

over m,p. If £ € R, ,, with x € U, there is a curve H, in P,(x) such that H, =
I(x) and dH,/dt|,_, = &. By (2.5), we see that

5 4 yg a0
¢(5)—“dt¢Ht B(x L

Using this last relation and (15.8), for e € E,, we derive the equality

(15.10) o(§)40.8) = 0.(8(9)) ,

where ¢’ = a(g)e.

We identify E, with E, by means of the isomorphism E, — E, sending e,
into @(1(a), e,). If G € P,(a, a), under this identification, the automorphism of
E, determined by G and the P,(a, a)-module structure of E, is the same as ¢(G);

moreover

a(F, e) = a(F)e, ,
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for Fe PJa), e, € E,.

To a section s of E over X corresponds the Ej-valued function § on P,(a)
defined by

S(F) = o(F) 's(x)
or
a(F, §(F)) = s(x) ,

for Fe P,(a), with x = target F. It is easily seen that § is equivariant in the
sense that

(15.11) $(F-G) = G'§(F) ,

for Fe P,(a), G e P,(a, a). Conversely, if f is an E,-valued function on P,(a)
satisfying

(15.12) f(F-G) = G'f(F), for Fe Py(a), Ge Pa,a),

there exists a unique section s of E such that § = f.

If € is a section of R, and s is a section of E over X, the function f = ¢(§)§
on P(a) satisfies (15.12), since z(€) is a right-invariant vector field on P,(a);
we define #(€)s to be the section of E corresponding to f. We thus obtain op-
erators (15.1) which satisfy the conditions of Definition 15.1 and so E is associ-
ated to R,. Let F, be a curve in P,(x), with F, = I,(x) and dF,/dt|,_, = &(x);
set x, = target F,. Then for F e P,(a), with target F = x, we have by (15.8)

(&) HF) = G()-F)-§ = 5 5(F-F)
— - o(F,-F)s(x)

= 2 o(F) (0(F) 5x)

oF) L o(F)s(x)
dt t=0

where we consider ¢(F,)~'s(x,) as an element of E_; hence

(15.13) (ZEs)(x) = 7%0(F,)-1s(xt):t_o .

If e = s(x), then we have
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. \
e & aE) 5| ) = sum) — -4 otF)-5(9)

= 5,7 E(xX) — 0 (E(x)) ;

it follows from (15.13) and (15.3) that the mapping (15.9) coincides with the
mapping (15.2) defined in terms of the structure of associated bundle to R, on
E.

Let ¢ be a section of P, over an open set U C X, and assume that z,$ is a
diffeomorphism of U onto an open subset U’ of X. If s is a section of E over
U, let s/ be the section o(g) o 5o (m,$)~" of E over U’; then it is easily verified
that

(15.14) rvoa(g) = a(@or,,
and hence that
(15.15) o(P)atte = i -

Let ¢ be a section of P,(a) over U C X; let w be the R,-connection deter-
mined by (15.7), and I be the connection induced by w in E whose curvature
vanishes. If s is a section of E over U and £ e T,, x e U, then

Ves = a(3(x), (z(@(£)) - S)N$(x))) = a((x), $4(8)-5) .
If ¢, € E,, the section s of E over U defined by
5(x) = @(p(x), &) = a(p(x)e,,  forxeU,
corresponds to the E;-valued function § on P,(a) satisfying (15.11) and
S$(d(x)) = e, , forxe U ;

if ¢ e T,, x e U, we therefore have ¢,(£§)-§ = 0and V,s = 0.

The vector bundle J, ,(T) is associated to J,(T) by (1.14). From the above
construction, we now obtain another interpretation of the action of J,(7) on
J._1(9). Consider the finite form Q, of J(T). By (2.1), J,._(T), is a Q,(a, a)-
module and so we have the vector bundle

Qk(a) XQk(a,a) Jk—l(T)a
associated to Q,(a). The mapping
(15'16) Qk(a) Xorca,a) Jk—l(T)a. g k—l(T) s

sending @ (F, 5) into F(y), where F e Q.(a), n € J;,_(T),, is an isomorphism of
vector bundles; when we identify the fiber at a of the first vector bundle with
J.-(T),, this mapping restricted to the fibers at a is the identity mapping of
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Ji_(T),. We now identify these two vector bundles by means of the isomor-
phism (15.16). Then for H ¢ Q,, with x, = source H, x, = target H, the map-
ping

o(H): Je_ (1), = - T),,

is equal to the usual action of H on J,_(T),, given by (2.1). Let & e I'(X, J(T)),
xe X, and let F, be a curve in Q,(x), with F, = I,(x) and dF,/dt|,_, = &(x);
set x, = target F,. If y e I'(X, J,_,(T)), then according to the formula (7.1) of
[9], the bracket (1.14) is given by

(15.17) (ZE(x) = ’j{ F((x,)) L

Therefore by (15.13), when we identify the two vector bundles under consider-
ation using (15.16), for & e I'(X, J(T)), the two operators Z(£) on J, (9,
the first given by (1.14) and the second, obtained by considering J,_,(7T) as a
vector bundle associated to Q,(a), are equal. Thus, if ¢ is a section of Q,(a)
over UC X and o is the J(T)-connection determined by (15.7), for N €
J._(T),, the section 5 of J,_(T) over U defined by

7(x) = (x)(n0) » forxe U,

is horizontal with respect to the covariant derivative induced by w in J,_,(T).
Assume that the finite form P, of R, is formally integrable and denote by

P, ., the I-th prolongation of P,. Let J(P,) C Q,.., be the bundle of jets of
order [ of sections of Z,. We have the mapping

(15.18) Py,1 Xx J(E) = J(E)
sending (H, u) into
H-u = jo(g) o s o (me) )X

where ¢ is a section of P, over a neighborhood U of x e X, such that z,¢ is a
diffeomorphism of U onto an open neighborhood of x’ = target #(x) and
Ji(@)(x) = 2,H, and where s is a section of E over U satisfying j,(s)(x) = u. By
(15.3), if H' € P,,,, with source H' = x’, then

(H'-H)-u= H'-(H-u) .
Thus J(E), is a Py, (a, a)-module, and we consider the vector bundle

Pk+L(a) XPk+l<a,a) JL(E)a

associated to P, ,,(a). The mapping
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(15.19) P (@) Xpy,iiaray JUE)y — J(E)

sending @(F, u) into F-u, where Fe P, (a), u e J,(E),, is an isomorphism of
vector bundles; when we identify the fiber at a of the first vector bundle with
J,(E),, this mapping restricted to the fibers at a is the identity mapping of
J/(E),. We now identify these two vector bundles by means of the isomorphism
(15.19). Then for H ¢ P,,,, with x, = source H, x, = target H, the mapping

o(H): J(E)s, — JU(E),

is determined by (15.18) and sends u into H-u. Thus J,(E) is associated to R, ,,.
The diagram

Pk+l+7n. XX Jl+m(E) —_—> Jl+m(E)
(15.20) lad,zm> lzm
Pk+l+m Xx Jm(Jl(E)) e Jm(Jl(E))
is easily seen to commute, where the top horizontal arrow is given by (15.18)
with / replaced by / + m and the bottom horizontal arrow is the mapping
(15.18) corresponding to the vector bundle J,(E) associated to P,,, with / re-

placed by m.
Let N, C J,(E) be a differential equation such that

(15.21) P..,-N,C N, .

Then N,, is a P,,,(a, a)-invariant subspace of J,(E), and the mapping (15.19)
restricts to give us an isomorphism of vector bundles

Pk+l(a) ><Pk+l(a,a.) Nl,a - NL .

We thus obtain a one-to-one correspondence between the sub-bundles N, of
J,(E) satisfying (15.21) and the P,,,(a, a)-invariant subspaces N, , of J,(E),.
From the commutativity of (15.20), we deduce that

Pk+l+7n'Nl+m - Nl+7n s

for all m > 0, and hence that N, ., is a vector bundle associated to &, ,,, , and
g(é)‘/‘/‘LVm e L/Vl+1n

forall e Z,.,\m-

We no longer assume that R, is formally transitive. Let E be a vector bundle
associated to R,; we then define an operation of R, ,, on J,,,(E). In the case
that k = 1, R, = J(T) and E = J(T), and the operations (15.1) are given by
(1.14), this operation reduces to (1.11) and is related to (1.14) by (1.15). Let
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(15.22) R, ®J(E)—> E

be the morphism of vector bundles sending ¢ ® u € (R, ® J(E)),, with x € X,
into

gu=(LEnu— &R DU)x),

where € ¢ %, ,, u' € J|(&), satisfy v&(x) = &, u/(x) = u. According to conditions
(i), (i), (iv) of Definition 15.1 and (1.4), this mapping is well-defined and
satisfies

(15.23) E-e(u) = e & N u),

for all £ € R,, ue T* ® E. Conversely, given a mapping (15.22) sending & ® u
into &-u satisfying (15.23), then if & € I'(X, R,) with & = v, by setting

(15.24) LEu=¢&u+ &R Dy,
for v’ e J(&) with z’ = u, we obtain well-defined differential operators (15.1)
satisfying conditions (i), (ii) and (iv) of Definition 15.1.
For / > 0, we have a mapping
(15.25) Ryt @1 (E) — J(E) ,

sending & ® u into &-u, namely the composition

A Xid
Re.i ® 4, n(E) 225 1(R) ® 7, (E) —P > I(E) ,

\ivhere the mapping B, sends j,(£)(x) ® i, (s)(x) into j(L(€)s)(x), with & € #, .,
E=v7'§, 5se &, x e X. By (15.24), the mapping (15.25) gives rise to a mapping

Rz«-z ® JL(E) g Jz(E)

sending &£ ® u into &-u = &-u/, where v’ e J,, (E) satisfies 7,/ = u. It is easily
seen that

(15.26) E-e(u) = e(v'é K ou)
holds for all £ € R,,;, ue S**'T* ® E and that
(1527) [sa 7]]'7Tl+1u = ”k+l€'(77'u) - ﬂk+l’]'($'u) 5

for & ne Ry,1.1, ueJ,,(E), by using the commutativity of (1.37). If £e
I'(X, R, .)), we define

g(é) J(&) — J (&)

to be the differential operator sending u into the element #(§)u given by



428 HUBERT GOLDSCHMIDT & DONALD SPENCER

(15.24), where u’ € J,, (&) satisfies 7,4’ = u and & = vé. From (15.26), we see
that £(€) is well-defined and that these operators satisfy conditions (i), (i) and
(iv) of Definition 15.1; from (15.27) it follows that they also satisfy condition
(iii) and thus J,(E) is associated to R, ,,. Moreover, we have

m(§-u) = (70.6) 74
for all 5 € Rk+l+m5 ue JL+m+1(E)’ and
n-l(g(é)u) = g(n’k+Lé)n‘lu ’

forallée Z,,,,m ucJ,, (). Since (R,.,,),, = Ri.,.nand J,(E) is associated
to R,.,, the above shows that the vector bundle J,(J,(E)) is associated to
Rivivn IféecI'(X,R,.,.,), the diagram
28
Jl+m((’§a) —_—> Jl+m(§)

(15.28) lam n
2&)
T (J(8)) —> J.(J(&))

is easily seen to commute.
If F is another vector bundle over X, let

D:J(6) ® J(F) > T* R J,_((€) @ Iy ((F)
be the differential operator satisfying
& Du®v)) = (& Duy Qmy_ v + m_u®(E Dy,

foré e 7 ,uce J(&), v e J,(F); by(1.4), this operator is well-defined. For / > 1,
the commutativity of the left-hand square of the diagram

B @16 B J@)®IE) —s @)
(15.29) E lD [p

. ~ . d - - Y
TH@ A1, ® 4)(6) S, 7 @ 1, () ® J(8) E0 T @, _(8)

follows from [26, Proposition 1.4]. If Ee Z’k,,, sedé,, with xe X and &= vE,
then

D(j(&) ®ji.i(8) =0,
DB,(ji(&) ® i 1(s)) = D(j(£(©E)s)) = 0.

Moreover if u € J(2,) ® J,..(&), f e Oy, then by (1.4) we have
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D(fpu) — fDBu) = df Qm,_fu = df ® B, _(m,_, ® m,)u
= (id ® B, )(D(fu) — fDu) ,

from which we infer the commutativity of the right-hand square of (15.29) and
hence of the whole diagram. The compositions of the horizontal arrows of dia-

gram (15.29) are the mappings induced by (15.25). We define the morphism of
vector bundles

(15.30) (NT* Q@ R, ) @ (NT* ® J, (E)) > N'T* ® J(E)
sending v ® w into v -w by setting
@@ BRu) =(aNpPRE-u,

for we N'T*, Be N'T* e R,,, and ue J,,(E). For/ > 1,ifue N'T*Q®
Ry, Ve NT* R J,,(6), then we have

(15.31) D(u-v) = (Du)-7,0 + (— iy, , u)-Dv .

In fact, because of (1.4) it suffices to verify this formula for i = j = 0, and in this
case it follows from the commutativity of (15.29). We now verify the formula

(15.32) L)y u) = (LED-u + 9-LEwu,

for §e€ Byyiiir 7€ Ryyyy ue J,, (6). Indeed, if 5/ € By, y,1, u e J,, (&) satisfy
ol =1 mo = u and & = v, by (15.24), (15.27), (15.31) and (1.15) we
have

L E)u) = 1, &-(f' 1)) + & R D@y ')
=& 7T u+ 9 Ew)+ (€ R Dy)u+ 5 (& R D)
= (L& -u+ - LEu .

In the case k =1, R, = J(T) and E = J(T), and the operations (15.1) are
given by (1.14), the mapping (15.30) coincides with the bracket (1.19) and
formula (15.31) with (1.25); moreover, (15.32) follows from the Jacobi identity
for AJ(T)* ® J.(T).

If E is the vector bundle associated to P, considered at the beginning of this
section, then the structure of vector bundle associated to R, ., on J,(E) deter-
mined by (15.19) coincides with the one obtained by the above discussion from
the structure of vector bundle associated to R, on E given by (15.13).

Sometimes, we shall encounter the situation where E is associated to R, and
there is an integer / > 0 such that the mapping (15.25) factors through
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r, ®id: R,,, ®J,,(E) > R, ® J,, ,(E), giving rise to a mapping
R, ® J, (E) — J(E) .

Then the mapping (15.25), with / replaced by / 4 m, factors through =, ,, ®id
and gives us a mapping

Rk+m ® Jl+m+1(E) - Jlfm(E) .
Thus for € e I'(X, R, , ,,), we obtain a differential operator
g(é)' Jl+m(§) - Jl+m(£)

and J,, ,.(E) is associated to R, ,,.
The vector bundle £* is also associated to R, if we set

<s,$(§)ae> = $(§)<S, C(> - <$(é)s9 0(> ’

for £e I'(X, R,), s € & a e &*. If F is another vector bundle associated to R,,
the vector bundle E ® F is associated to R, if we set

LENe®f) = LE)e@f + e L&),

for ée I'(X, R)), ec &, fe & . The I-th symmetric product S'E of E considered
as a sub-bundle of (R'E is stable under the operations #(£), for & e I'(X, R,),
and so is also associated to R,.

Since J,(T) is associated to J,(7)) and

(ZEDE) = o7, £1x)

for e I'(X, J(T)), Ce I'(X, J(T)) and xe X, where { = v7'¢ and &(x) =
J11G)(x), with 5 € T, we see that

(15.33) (L) (x) = v* (LG*a)x)
for a € I'(X, J(T)*). Let

6: SUI(T)* — J(T)* @ SU(T)*
be the mapping (v* ' ® v* ") o §op*; then
(15.34) L(Eou = 5@ ,

for all u e S 1J(T)*.
The bundle J,(7) is associated to R, if we define

Ly = L@,
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for £ e I'(X, R)), 7 € Jy(J); thus the vector bundle S'J(T)* ® E is associated
to R, by the above constructions.

Lemma 15.1. Let E be a vector bundle associated to R,. If £ e I'(X, R,.),
the diagram

SUTY ® & L8 s Ty 6
leo(u*@id) lso(y*@id)
2()

J(&) —_—> J(&)

commutes.
Proof. We proceed by induction on /. First, we verify the lemma for /= 1;
it suffices to show that

(1535)  ZL@edf®s) = e(df @ L(mE)s + v* L(@ép*df @ s),
if se I'(X, E) and fis a function on X. We set
u = j(fs) — fjus) -
Then
mu=edf®s), Du= —df®js).

If xe X and Ap€(x) = ji(p)(x) with ye &, ,, and if we set 7 = v~'p, we have
vr,§(x) = ji(mo)(x) and
(L Ee(df @ ))(x) = vE(x)-u(x) + mE(x) X Du
= (@) — f(x)-j (L @)s)x)
— (mk(x), df Dji(s)(x)
= i(fZ @) — f(X)j (L @)s)(x)
+ i(L@DINx) — (L) f)(x)-ji(s)(x)
= e(df ® L(D)s + dL(@)f @ s)(x)
= o(df ® L(m&)s + Lz i)df ® s)(x),
which gives us (15.35) at x € X by (15.33). Now suppose that the lemma holds

for an / > 1. Since 2,: J;,(E) — J)(J,(E)) is injective, from the commutativity
of (15.28) with m = | and of the diagram

5 .

I . y

JiAE) > J(J(E))
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of [3, § 3], and from the formula (15.34), the lemma for / 4 1 follows easily.

Lemma 15.2. Assume thar X is connected and that R, is formally transitive.
Let E be a vector bundle associated to R,, and let N, C J,(E) be a differential
equation such that

PEN, C N, forallEe X,,,.

Then N,,,, is a vector bundle for all m > 0, and N,, = =, N, is a sub-bundle of
J.(E) for 0 < m < | — 1. Moreover, if r,: N,,, — N, is surjective, then N,, ,,
C (N, for 0 < m < I — 1; the sub-bundle F = r,N, is associated to R, and

LET(F) C I (F), forallée %, ., ,
N, C J(F) .

Proof. First let  be an R,,,, ,-connection on a simply connected open
subset of X whose curvature vanishes. Since N, is associated to R,,, the
bundles J,, .(E), J,.(J,(E)), J,.(N,) are associated to R,,,., and we consider
the covariant derivatives induced by o in these vector bundles. Since X is con-
nected and diagram (15.28) commutes, applying [9, Proposition 3.2] to the in-
jective mappings 1,,: J,, .(E) — J,,(J,(E)) and J,,(N,) — J,.(J,(E)), we see that
N,, . is a sub-bundle of J,, ,,(E). Next, let »” be an R, ,-connection on a simply
connected open subset of X whose curvature vanishes. The bundles N, and
J.(E), with m < I, are associated to R,,,, and we consider the covariant de-
rivatives induced by «’ in these vector bundles. Since X is connected, applying
[9, Proposition 3.2] to x,,: N, — J,(E), we deduce that N,, is a sub-bundle of
Jn(E). If n,: N,,, — N, is surjective and u ¢ A", ,,, with 0 < m < [ — 1, then
Due 7*Q® AN ,;hence N,,,, C (N,),, and N, C J,(F).

Remark. If X is an analytic manifold, R, is an analytic formally transitive
Lie equation, and E is an analytic vector bundle associated to R,, then a differ-
ential equation N, C J,(E) satisfying the hypothesis of Lemma 15.2 is analytic.

The following lemma is easily verified (see Lemma 1.5):

Lemma 15.3. Let E be a vector bundle associated to R, and let N, C J,(E)
be a formally integrable differential equation. Then the following assertions are
equivalent

@ LEN, C N, foral EeR,,,;

b)Y LEON ow C N yoms forallée R,,,,, and all m > 0;

(© RNyt C© N

(d) Rk+l+m']v-l+7n+1C Nl+m9f0r a”mZO

For x e X, according [10, § 9] and (1.25), the bracket (1.19) determines a
structure of graded Lie algebra on the Spencer cohomology H*(R,),. If condi-
tion (d) of the above lemma holds, by (15.31) and (15.27) the mapping (15.30)
determines on H*(N,), a structure of graded module over the graded Lie algebra
H*(R,),; in particular, we see that, if &e Sol (R,) and se Sol (%)), then
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L(j(&))s is an element of Sol (N,). Therefore, if R, C R, is a formally inte-
grable Lie equation satisfying

[@k+1’ '%;c] c '%I,c s

we obtain structures of graded Lie algebra and of graded H*(R,),-module on
H*(R}),, for x e X; the mapping

t H¥(R), —> H*(RY), »

induced by the inclusion R} C R,, is a morphism of graded Lie algebras which
intertwines H*(R;), and H*(R,), in the sense that

da)-B=la, fl,  or-a) =1r, (],

for a, B ¢ H*(R}),, v € H*(R,), (see [10]).

Let N, C J,(E) be a formally integrable differential equation and x ¢ X. We
consider N, , as the linearly compact topological vector space 1(12 Ny, m. OVer
R, where N, ,, . is endowed with the discrete topology. The kernel N2, of the
projection z,: N.,, , — J,(E), is an open subspace of N ,, and by Proposi-
tion 14.1 (i), {N™,} is a fundamental system of neighborhoods of 0. In particu-
lar, J..(E), is a linearly compact topological vector space and N, , is a closed
subspace of J(E),. We set N* =N, , for m <0 and N,, = =,(N,) for m <,
and let 4, be the sub-bundle of S™T* @ E with possibly varying fiber such
that the sequence

€ Tm-1
0 > h, > N, >N,.,—>0

is exact. From the equality z,,N™;' = e(h,,,), we obtain a surjective mapping
m,xT °

T, N —h

which sends u e N7! into the unique element v of 4,, , satisfying e(v) = =,u,
and whose kernel is N ™ » This mapping therefore induces an isomorphism

Vi N2 HYN™  —h, ., form> 0.
For m > I, the mappings

T®hm+l_)hm 3

sending & ® u into & X du, gives us a natural representation of 7, regarded as
an abelian Lie algebra on the graded vector space

D .
m=1
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Therefore we may consider the graded vector space
(15.36) M, =@ K,
m=1

as a graded module over the symmetric algebra ST, of T,; in fact, this struc-
ture of ST,-module on M, is the one obtained according to [5, Lemma 1] from
the mappings é: 4,,,, > T* ® h,, and the complexes (1.8).

If we consider the Lie equation R, C J,(T), then R,, , endowed with the to-
pology defined above is a linearly compact Lie algebra over R. Assume that E
is associated to R, and that

Rk+l'Nl+1 - Nl .

By Lemma 15.3, N, is associated to R, ,, and the mappings (15.25) endow J_.(E),
and N_, , with structures of modules over R, ,. We see that

R, . JYE), C JYE),, form>1,
and by (15.26) that
R . JMUE), C JUE),, form=>0.

Therefore J_.(E), is a linearly compact R,, ,-module and N, , is a closed R, .-
submodule of J(E),.

Assume moreover that R, is formally transitive. Then R,, , is a transitive Lie
algebra and by (15.26)

JUE), = Dy, Ju(E),, Ni,=Di, N..,

for m > 1; by Proposition 14.2 (iii), J%(E), and N?, , are fundamental sub-
spaces of J_,(E), and N,, , respectively. Thus J_(E), is a geometric R,, ,-module,
and N, , is a closed geometric R,, ,-submodule of J_(E),. In § 19, we shall
show that every geometric module over a real transitive Lie algebra is isomor-
phic to a geometric module of the type N, .

From Lemma 15.2, it follows that

oth,,)C T*Q®h,, , forallm > 0.
For m > 0, the mappings
(15.37) TQhy 1 — hn s

sending £ ® u into & A du, give us a representation of the abelian Lie algebra
T, on the graded vector space

%
@ hm,z b
m=0
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which thus becomes a graded T,-submodule of P;_, S™T# ® E,. Formula
(15.26) implies that the diagram

R,,®Nr )} ——> N}
(15.38) l»-l.%@s—l.nm le-l.,,m_l

Tx®hm,x ——»hm—l,z

is commutative, where the top horizontal arrow is given by the R, ,-module
structure of N., ,, and the bottom horizontal arrow is the mapping (15.37) with
m replaced by m — 1. Now R’, , is a fundamental subalgebra of R,, ,, and N¢, ,
is a fundamental subspace of N,, , satisfying

Rgo,z'Nga,z - Ngo,.z- 5
we identify 7, with the quotient R,, /R, , via the exact sequence

yv-lemy

(15.39) 0 > RS, ., > R... >T,—>0.

According to § 14, the graded vector space

gr Noo,z' = é NZVOL,I/NWH'l

m=—1 T
has the structure of a T,-module. The commutativity of (15.38) implies that
the mapping

vigr N, . — é /-
m=0
is an isomorphism of 7T,-modules. The dual mapping
(15.40) W @ kL — (gr No )
m=0

is therefore an isomorphism of graded ST ,-modules. The natural structure of
ST,-module on @, _, h¥ , is the same as the one obtained according to [5,
Lemma 1] from the mappings é: 4,,,, — T* & h,,. Set h,, = 0 for m < 0; the

diagram
) b ) 5
NTITFQNENED—> N T¥QNZNE ) —> N TFR(N®Nm!
lid@w lid@'w lid@w
) 4 ) 1)
/\]—l T;ck@hmn,z — /\J Tj@hm,z —> /\j+1 T;k®h

m-1,zr



436 HUBERT GOLDSCHMIDT & DONALD SPENCER

is easily seen to be commutative, where the mappings 6 of the top row are the
coboundary operators for the Lie algebra cohomology

ONT¥QegrN,,—> NTFQgrN..,

considered in § 14. If H™7 denotes the cohomology of the bottom row of this
diagram, the mapping + induces an isomorphism

v H" (T, gr N.. ;) - H7

for ali j, m > 0, and hence an isomorphism of graded vector spaces
v H(T, gr N.,) — @ Hmi |
m=0

We consider the formally transitive Lie equation R, and let R,, = =, R, for
m < k. Let g,, be the sub-bundle of S™J(T)* ® J(T) with possibly varying
fiber such that the sequence

Tm-1

>R, , —>0

0——>9,—>R,

is exact. Since [R™, R?] C R™*?, for all m, p > — 1, the graded vector space

grR., = @ R",/R

m=—1

is a graded Lie algebra. The natural isomorphism

grR.,— é Im,o >
m=0

sending the class of u € R™7' in R?}/R™ , into &, u € ¢,, ., gives us a structure
of graded Lie algebra on @P;_, 9.... such that

[gm,za gp.x] C gm+p41,z .
If R, C R, is a formally integrable Lie equation satisfying
[’@k+15 ‘%I/c] c ‘%;c >

then R, is associated to R,,, and R, . is a closed ideal of the transitive Lie
algebra R, , for x € X; moreover gr R., , is a graded ideal of gr R., ,.

Assume that the finite form P, of the formally transitive Lie equation R, is
formally integrable, and denote by P, ,, its /-th prolongation. Let 4, be the sub-

bundle (v* ' ® id)h, of S'J(T)* ® E with possibly varying fiber.
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Lemma 15.4. If X is connected and a, b € X, there exists F e P,, with source F
= a, target F = b, and an isomorphism ¢: E, — E, such that

(771F® §0)(Ez,a).,= El,b .

Proof. Let ¢ be a section of P, ,(a) over a simply connected neighborhood
U of ae X, and w be the R,,,-connection on U determined by (15.7) whose
curvature vanishes. Consider the covariant derivatives // on U with vanishing
curvatures which are induced by w in the vector bundles J(T)*, E, N, and

J,_(E) associated to R,.,. By [9, Proposition 3.1], the covariant derivatives J/
give us unique isomorphisms

0I: JO(:F);k - ()(71);'l< > Soz: Ea, - Ez B

for all x e X, such that the sections x — 6,(a) of J(T)* and x — ¢,(e) of E
over U, with « e J(T)¥, e € E,, are horizontal with respect to V. In fact, by
the construction of w and V' given above, we have 6, = =,¢(x)™!, for x € U. By
Lemma 15.2, we have the exact sequence

—  eo(v*X®id _
0 N P L R VA S NN A o

of vector bundles over X; by [9, Proposition 3.2] and Lemma 15.1, we see that
h, is stable under the covariant derivative in S'Jy(T)* ® E on U induced by

the covariant derivatives V in J(T)* and E. Thus by [9, Proposition 3.2}, we
have

(”1¢(x)_1 ® goz)(};l,a) = iil,x .

The desired result therefore holds, for b ¢ U, with F = x,¢(b); since X is con-
nected, it holds for all a, b € X.

We continue to assume that the Lie equation R, is formally transitive, that
E is associated to R, and that

Rlc+l'Nl+1 - NL .

For x € X, let L, denote the transitive Lie algebra which is the semi-direct prod-
uct of R,, , and J_(E),; then L, is the abelian extension

0— J.(E), > L, —R.,—0
of R, .. By Proposition 14.6, we see that
Ly = J.(E), X R,

is a fundamental subalgebra of L, and that the closed ideal J_(E), of L, is de-
fined by a foliation in (L,, LY); it is easily verified that
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Ly = Dy Ly = JE), X RCY,

for m > 1. We may identify L,/L™ with J,,(E), X Ry, ... Let V, be the abelian
Lie algebra L,/LS and L;' = L,. Then N, , C J_(E), is a closed abelian ideal
of L, and

N..NLr=N",, form > —1;

moreover gr N, , is a V -submodule of the graded V,-module

grl, = @ Lr/Lp+.

m=—1

According to Proposition 14.3 and [6, Proposition 1], there is an integer /, > /
such that
H"™V,, grL,) =0,
(15.41) H"(V,gN.,,) =0,
forj=1,2andallm > [, xe X.
Proposition 15.1. Assume that X is connected and that R, is formally transi-

tive. Let E be a vector bundle associated to R,, and let N, C J,(E) be a differ-
ential equation such that

Rk+l'Nl+1 - Nz .

If a,b e X, there exist ¢ € Q. (a, b) and an isomorphism +: J (E), — J(E), of
topological vector spaces such that
W(JUE),) = J2(E),,  form>0,
¢(Roo,a) = Roo,b 5 1!’(]Vcc,a) = Noo,b
and the diagram
R, .®J(E), —> J(E),
(15.42) l¢®w lw
R.,® J.(E), —> J(E),
commutes, where the horizontal arrows are given by the R, ,-module structure
of J(E),, with x = a or b.
Proof. Let m>[and w an R,, , ,,-connection whose curvature vanishes on
a simply connected neighborhood U of ae X. The vector bundles J, . (E),

R, ..; are associated to R,.... forj =0, 1, and so we may consider the co-
variant derivatives F with vanishing curvature induced by w in these vector
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bundles and R, ., ® J,...(E). By [9, Proposition 3.1], we obtain isomorphisms
¢m+j,$: Rk+m+j,a. - Rk+m+j,z £
1!"m+j,x: Jm+j(E)a i m+j(E)J: )

for all xe U and j = 0, 1, such that
ﬂk+m¢m+1,z = ¢m,zﬂk+m ” ﬂm‘!’mwtl,z = 1!"m,:ﬂtm ]

and the sections x — ¢, ;.(§) of R, ., and x — ., (u) of J,, ;(E) over
U, with £ € R, .00 U € Jp . j(E),, are horizontal with respect to /. By (15.32),
we may apply [9, Proposition 3.2] to the mapping (15.25) with / replaced by m
and these covariant derivatives to deduce that the diagram

Rk+m,a, ® Jm+1(E)u —> Jm(E)a
(15.43) lszsm,x@wmﬂ,, lvfm,x
Rk+'m,z ® Jm+l(E)z —> Jm(E)z

is commutative, where the horizontal arrows are given by (15.25). Moreover,
by [9, Proposition 5.4], we have

(15.44) [Br+1,2(8)s Prner, e = G o([E 7))

for all &, 7€ Ry,n,1,.- By Lemma 15.3, the bundles N, ,, for j =0, 1, are
stable under the covariant derivatives //; therefore by [9, Proposition 3.2],

(1545) \D'm+j,a:(Nm+j,a,) = Nm+j,z 5
forj=0,1and xe U. Forj = 0,1, let
Dvio: LofL7* — L, LT

be the isomorphism ;. X ¢,.,.; from the commutativity of (15.43) and
(15.44), we infer that

[d)mﬂ,z(S)a @mn,x(’])] = d)m,z([57 v]) 5

for &, pe L,/L7*', where the brackets are the ones induced by the brackets on
L, and L,. Now take m to be equal to the integer /, >> / considered above. By
the results of Guillemin and Sternberg [13], for x € U there exists an isomor-
phism @,: L, — L, of transitive Lie algebras such that @, (L™ = L», for all
m > 0, and such that the mapping L,/L% — L /LY induced by @, is equal to
®,, .. If v, is the restriction of @, to J_(E),, then

VolJlE))) C Ju(E), + LY, ¥u(N.oo) C© Noop + LY
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by the equality (15.45) with m = /, and j = 0. Hence the ideals (/. .(E),) +
J.(E), and (N, ) + N. , of L, satisfy

JAE); C Vo(JlE),) + J(E), C J(E), + LY,
NW,I C ‘!"W(Nm,a) + NOO,J: C Noe,x + L.i‘o N

Since (15.41) holds for all m > I, by [10, Proposition 10.1] we know that N,
is defined by a foliation in (L,, LY). As J_(E), is also defined by a foliation in
(L,, L), we see that

ValJolE)e) CJAE), ,  Y(Ne) © Ny
The same argument applied to @ gives us the equalities
VolJ(E)o) = JA(E), s Vu(Noyw) = N.. s,
and thus
Vo(JUE),) = JUE), .

Let ¢,: R.. ,— R.. , be the isomorphism of transitive Lie algebras which makes
the diagram

0 0

l

JAE), Y25 J(E),

<

commute. Since L, and L, are abelian extensions of R., , and R,, ., the diagram
(15.42) commutes with b = x, ¢ = ¢, and + = v,. Moreover ¢,(R}) = R for
m > k, and the mapping R, , — R,, , induced by ¢, is equal to ¢,, ,. There-
fore ¢,(R") = R™ for m > 0, and by the results of Guillemin and Sternberg
[13] there is an element of Q. (a, x) which induces the isomorphism ¢,. Thus
the conclusions of the proposition hold for all b e U; since X is connected,
they also hold for all b ¢ X.
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We siill suppose that the Lie equation R, is formally transitive, and that E
is associated to R,. Using the method of proof of Lemma 15.2 and the formulas
(15.24) and (15.32), the proofs of [10, Lemma 10.4 and Theorem 10.1] can be
suitably modified in order to obtain the following generalizations of results of
[10, § 10]:

Lemma 15.5. Let E be a vector bundle associated to a formally transitive Lie
equation R,, and W a subspace of E,, with x € X, such that RS .- W C W. Then

there exists a sub-bundle F of E over a neighborhood U of x such that F, = W
and

YEOF Cc F, forallée Z,,y .

If Fis a closed R., ,-submodule of J_(E),, with xe X, we set F' = F N
JY(E),; then R’, .- F* C F’ and we can identify

gr F= é FY/Ft+
l=-1
with a T,-submodule of gr J(E),.
Theorem 15.1. Assume that X is simply connected, and that R, is formally

transitive and formally integrable. Let E be a vector bundle associated to R,, and
F a closed R, ,~submodule of J.(E),, with x e X.

(i) For all m > 1, there exists a unique differential equation N,, C J,(E)
such that

Nm,z = ﬁmFa
$EN N, foralléeZ,,,.

(ii) For m > 1, we have
Rk+l'Nm+1 - Nm .

(iii) There is an integer | > 1 such that H™ VYT,, gr F) = 0 for all m > L
If 1 is such an integer, N, is formally integrable and N, , ,, is the m-th prolongation
of N,. Moreover r,,(N,) = N,, for m < I, and

N.,=F.

Corollary 15.1. Assume that X is simply connected, and R, is a formally
transitive and formally integrable Lie equation. Let E be a vector bundle associ-
ated to R,, and F a closed R., ,-submodule of J.(E),, with x € X. There exist an

integer | > 0 and a unique formally integrable differential equation N, C J,(E)
such that

Noo,x =F P
(15.46) SEON, C N, forfed..,.
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These last results imply that, if X is simply connected and x € X, the mapping
between the set of differential equations N, C J,(E) in E satisfying (15.46) and
the set of closed R, ,-submodules of J,(E),, which assigns to N, the submodule
N, of J.(E),, is surjective; moreover, two such equations correspond to the

same submodule of J_(E), if and only if one of these equations is a prolonga-
tion of the other.

16. Characteristic varieties of geometric modules

Let L be a linearly compact Lie algebra over the field K, and E a linearly
compact L-module. Let L' C L, E* C E be open subspaces satisfying L°- E°
C E° If E* = D%E® for k > 1, then according to Proposition 14.3,

=

(16.1) (gr E)* = @ (Ek/Ek+1)>k ,

k=-~1

where E-' = E, is a finitely generated graded module over the symmetric al-
gebra SV of V = L/L". If M is an SV-module, we denote by .#, the annihi-
lator ideal of M; if K’ is an extension field of K, we denote by ¥ (M, K’) the
subvariety of V'* @ K’ defined by the ideal .#,,. We write

VUL, E, K)o, ;0 = ¥ ((gr E)*, K) .

The natural projection mapping L — ¥V gives us a dual injective mapping
V*@ K’ — L* @ K’, where L* is the topological dual of L. We denote by
v (L, E, K')o o the image of ¥ (L, E, K')0 5 in L* ® K’. If E is finite-di-
mensional, then ¥ (L, E, K)oz = 0.

The proof of the following lemma is left to the reader.

Lemma 16.1. Let

0O-M —>M-—->M"->0
be an exact sequence of SV-modules. Then
I I C Iy C Iy N Iy
and, if K’ is an extension field of K,
Y (M,K)=9vM,K)U ¥V(M"’, K.

Proposition 16.1. Ler ¢: L — L” be a continuous epimorphism of linearly
compact Lie algebras, and E a geometric L"-module. If L' C L, L' C L” are
open subspaces, and E° a fundamental subspace of E such that

¢(LO) c LNO s L//[].EO C EO )
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then E° is a fundamental subspace of ¢*E satisfying L°- E° C E°; moreover, if K’
is an extension field of K, we have

(16.2) (¢* ®id) (7 (L, E, K)o, z0) = V" (L, $*E, K') 1o 50 »

where ¢* @ id: L'* ® K’ — L* @ K’ is the injective mapping induced by ¢.
Proof. Since

LE'Cc L'-E°C E°,

the first part of the proposition is obvious. Let V= L/L° and W = L”/L"; the
mapping ¢ induces a surjective mapping p: ¥ — W. Since the diagram

@k O ek

T T
W*QK’ p—®ld> V*®K’
is commutative, to prove (16.2) it suffices to verify that
(16.3) (0* @1V (L", E, K")oo,p0) = V"L, E, K') o o -
We have
E* = DYE' = D%.E° fork > 1.

Then (16.1) is a graded module over SV and SW; moreover, if p: SV — SW
is the natural projection,

p-a=p(p)a,

for all pe SV, ae (gr E)*. Thus if #” C SW is the annihilator ideal of the
SW-module (gr E)*, the annihilator ideal of the S¥V-module (gr E)* is equal to
e '(#"); now (16.3) is an immediate consequence of this fact.

The proof of the following proposition should be compared with that of [6,
Theorem 1].

Proposition 16.2. Let

0— e s E YSE" 50

be an exact sequence of linearly compact L-modules, whose mappings are con-
tinuous. Let L' C L, E’® C E’, E° C E, E""° C E" be open subspaces such that

L'E*"C E®, L"E°'CE, L-E"CE",

4
(16 ) ¢(E/0) — ¢(E/) m EO s \[/‘(Eo) C E//o .
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Assume that E is a geometric L-module, and that E’" is a fundamental subspace
of E”. If K’ is an extension field of K, then

Y (L, E, K")po,p0 = V" (L, E', K)o, 500 U 7" (L, E”, K') o, g0
Proof. For k > 0, set
E’* = DYtE", E* = DYE", E"*= DYE'",
E"*=E', E*=E, E'"*=E",
Then
HE™) = §(E) N E*,  (E") C E™;
if we write F* = +"'(E’’¥), we have
L-F*' C F*, L. F* C F*,
E*C F*, Fet C F* |
and since £’ is a fundamental subspace,
N F* = §(E).
Let k be a fixed integer; since the open subspace E* + @(E’) of E is a neigh-
borhood of ¢(E”), by Proposition 14.1 (i) there exists an integer m such that
F™ C E* + §(E'),
and hence
(16.5) () (E* + F™) = E* + §(E") .
Consider the mapping
EV[E"**' — > FY|(E* 4 F**Y)

sending the class of ¢’ € E’’* into the class of an element e € F* satisfying (e)
= ¢ and the exact sequence

0 N (Fk+l ﬂ Ek)/Ek+1 3 Ek/Ek+l
(16.6) "
3 E//k/E//k+1 3 Fk/(Ek + Fk+1) > 0 .
whose mapping v is induced by : E¥ — E”*. For [ > 0, we set
gl(cl) — (Ek+1 + Fk+l+1 m Ek)/Ek+1 s
h’il) — (Ek+1 + Fk+t+1)/(Ek+1 + Fk+l+2) ;
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the sequence
(16.7) 0 — g — i — h — hg"P -0,

whose mappings are induced by inclusions, is easily seen to be exact. The vector
space V' = L/L° considered as an abelian Lie algebra has natural representa-
tions on the graded vector spaces

9P =P g, o =@ hP .

k k

If we set
(=1 = @ AV(—1)
k

where h'P(—1), = h{",, we obtain from (16.6) and (16.7) the exact sequences of
V-modules

(16.8) 0—> g —>gr E—Vs gr E" — > hO(—1) —> 0,
(16.9) 0 — g 5 g® 5 hD 5 (1) 5 0,

for [ > 0. The mapping ¢ induces injective mappings of V-modules
(16.10) p:gr B/ — g, for/ >0,

(16.11) ¢:grE'— gr E

such that the diagrams

(16.12)
g
, ¢
grEl —> gt E
]
g

commute, for all /, m > 0.
We next verify certain properties of these V-modules.
Lemma 16.2. Let [ > 0; the following assertions are equivalent:
(i) the mapping (16.10) is an isomorphism of V-modules;
(ii) for all m > 0, the mapping
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¢. gr E’—) g(l+m)

is an isomorphism of V-modules;
(iii) for all m > 0, the mapping

(I+m) (€3]
g9 -9

is an isomorphism of V-modules;
(iv) for all k, we have

(16.13) Freist 0 E¥ C E** 4 ¢(E') ;
(v) forall k, we have

(16.14) Ft C E* + ¢(E') 5
(vi) A® =0;

(vii) for all m > 0, we have h**™ = 0.
Proof. (i) = (ii) and (ii) = (iii) follow from the commutativity of (16.12).

Next, we remark that (iii) is equivalent to

Fk+l+l m Ek C Ek+l + Fk+l+7ﬂ+l ,

for all k and m, and hence also by (16.5) to
Fk+l+1 m Ek,c ﬁ (Ek+l + Fk+l+m+l) — Ek+1 + ¢(E/) s
m=0

for all k, that is to (iv). We now show that (iv) implies (16.14) for all £ > 0 by
induction on k. First, the inclusion (16.13) with kK = — 1 is the same as (16.14)
with k = 0; if (16.14) holds for some k > 0, we deduce from (iv) that

Frrtst  Frrist 0 EE 4 g(E’) C E¥*' + ¢(E') .

Clearly, (v) implies that the mapping (16.10) is surjective and hence that it is
an isomorphism. showing that the assertions (i)-(v) are equivalent. Now A“ =0
if and only if

Fk+L+1 C Elc+1 + Fk+L+2’
for all k; by (16.5), this last condition is equivalent to
Fk+L+1 C ﬁ (Ek+1 + Fk+l+m) — Ek+1 + ¢(E/) s
m=1

for all k, that is to (v). The equivalence of (vi) and (vii) follows from the exact-
ness of the sequence (16.7) or the equivalence of (v) and (vi), concluding the
proof of the lemma.
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We now return to the proof of the proposition. For / > 0, we write
M}(ﬂl) — g,(cl)* , N,(cl) — h,(cl)* s

M(l) — M(l) , N(l) p— N(l) s N(l) _1 — N(l) _1 s
@ M} DN, NO(=1) = B NE(=D)

where N{®(—1) = N{,. The abelian Lie algebra V" has natural representations
on the graded vector spaces MV, N, N¥(—1); we may consider these vector
spaces as graded modules over the symmetric algebra SV of V. The sequences
(16.8) and (16.9) give the exact sequences of SV-modules

(16.15) 0 —> NO(—1) — > (gr E")* > (gr E)* —> M — >0,
(16.16) 0—> ND(—1)—> NP > MY —» M 50,
and (16.10) and (16.11) the epimorphisms of .S¥-modules

(16.17) ¢*: MV — (gr E')* ,
¢*: (gr E)* — (gr E")*,

for / > 0. Let Q° be the kernel of the epimorphism of S¥-modules (gr E)* —
M®_. We obtain the ascending chain of SV-submodules of (gr E)*

oV C OV C ... C oV C QU C ... C (gr E)* ;
by Proposition 14.3, (gr E)* is finitely generated and so this chain stabilizes.
Hence there exists an integer /, > 0 such that Q0 = Q%*™ for all m > 0.
The mappings
MU0 5 pfo+m)

are isomorphisms for all m > 0 and thus assertion (iii) of Lemma 16.2 holds
with / = [,. Therefore A%*™ = 0 and N%*™ = 0 for all m > 0, and (16.17)
is an isomorphism for all / > /,. By Lemma 16.1, since

Y (NO(—1),K)=7(NY, K,
from the exact sequence (16.15) we deduce
(16.18) v ((gr EY*, K’y C v"(M®, K") U ¥ ((gr E")*, K'),
(16.19) 7 (N, K'Yy C ¥ ((gr E")*, K"y C v (gr E)*, K") U ¥ (N, K") ,
and from (16.16) that
(16.20) v (MY, K)yC VMY, K U v (NY, K,

(1621) ¥ (N®V, K)) C 7(N®, Ky C 7" (NP, K') U ¥ (M®, K'),
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for all / > 0. We obtain by induction on /
(16.22) ¥ ((gr E)*, K') C v (M, K') U ¥ ((gr E")*, K') ,

for all / > 0; indeed, the inclusion (16.22) for / = 0 is (16.18) and. if (16.22)
holds for / > 0, then by (16.20), (16.21) and (16.19) we have

Y ((gr E)*, K’y C v(M“*P, K) U v (NY, K') U ¥ ((gr E")*, K')
C /MO, K U/ (N, K) U ¥ ((er E)%, K')
C MU, K) U ¥ (@ B K

For I = I, the inclusion (16.22) becomes

(16.23) 7" ((gr E)*, K'Y C ¥ ((gr E')*, K’) U ¥ ((gr E")*, K') .
On the other hand, since (gr E’)* is a quotient of (gr E)*, we have
(16.24) 7" ((gr E")*, K'Y C ¥"((gr E)*, K'),

and, since M“ is a quotient of (gr E)*,

(16.25) V' (M®,K') C ¥ ((gr E)*, K’) .

We obtain by induction on /

(16.26) 7 ((gr E")*, K'Y C ¥ ((gr E)*, K") U " (N",K’) ;

indeed, the inclusion (16.26) for / = 0 is given by (16.19) and, if (16.26) holds
for / > 0, then by (16.21) and (16.25) we have

¥ (@r BV, K') © 7 ((er E)*, K') U /(NO*0, K') U 7/ (M, K)
C ¥ ((gr E)*,K') U 7 (N“*", K') .
For / = [, the inclusion (16.26) becomes
(16.27) v ((gr E")*, K') C ¥ ((gr E)*, K’) .
From (16.23), (16.24) and (16.27), we obtain the equality
7" ((gr E)*, K') = 7"((gr E*, K") U 7"((er E")*, K')

which is the desired result.

We now deduce from Propositions 16.1 and 16.2 the following generalization
of Theorem 1 of the appendix of [27] and of [28, Theorem 9.1]:

Theorem 16.1. Let E be a geometric L-module; let L°, L'® be open subspaces
of L and E°, E" fundamental subspaces of E such that
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L'E°C E°, L. E"C E".
If K’ is an extension field of K, then
V(L, E, K,)LO,EO = ’V(L, E, K,)L’O,E’O .

Proof. First assume that E° = E” and L' C L”®; then apply Proposition
16.1 with L = L”, L” = L' and ¢ the identity mapping of L to deduce the
result in this case. Next, if E° C E’® and L° = L, by Proposition 16.2, with
E = E’ and + the identity mapping of E, we see that the theorem holds under
these assumptions. If L° C L’ and E* C E’°, we derive the equality

V(L’ E’ K/)LO,EO = V(Ls Ea K,)LO,E’O = V(L’ E5 K,)L’O,E’U

from the previous cases. The general case now follows from the above; indeed,
we have

V(L, Es K’)L“,EO = V(L, E, K,)LOHL’U,EOHE’O = A//(L, E, KI)L’O,E’O .
We therefore write
V' (L, E, K"y = ¥V (L, E, K") 10 g0

and call this subset of L* @ K’ the characteristic variety of the geometric L-
module E over the extension field K’ of K. If L is a transitive Lie algebra,
which we consider as an L-module via the adjoint representation of L, we write
v (L, K"y = v (L, L, K').

We have the following generalization of Theorem 2 of the appendix of [27]
and Proposition 9.3 of [28]:

Theorem 16.2. A geometric L-module E is finite-dimensional if and only if
v (L, E, K') = 0 for all extension fields K’ of K.

Proposition 16.1 can now be reformulated as

Proposition 16.3. Let ¢: L — L” be a continuous epimorphism of linearly

compact Lie algebras, and E a geometric L"-module. If K’ is an extension field
of K, then

V(L $*E, K') = (¢* ® id)(» (L, E, K")) ,

where (¢* ®id): L"* @ K’ — L* ® K’ is the injective mapping induced by §.
The main result of this section is
Theorem 16.3. Let

0—»Ee e YSEr 50

be an exact sequence of geometric L-modules, whose mappings are continuous.
If K’ is an extension field of K, then

v (L,E,K")=v(L,E',K') U 7 (L,E",K') .
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Proof. Let L°® be an open subspace of L, and E° C E, E”* C E” funda-
mental subspaces such that L°- E° C E°and L°- E””* C E”°. Replace E° by E°
N ~'(E”’), and let E”° be the subspace of E’ such that ¢(E”) = ¢(E’) N E’;
we thus have constructed fundamental subspaces E* C E’, E°C E, E”° C E”
such that (16.4) holds. We then apply Proposition 16.2 to obtain the result.

We now deduce the following generalization of [28, Proposition 9.2]:

Corollary 16.1. Let ¢: L — L” be an epimorphism of transitive Lie algebras,
and I C L, I" C L be closed ideals of L and L such that ¢(I) = I"’. Let I’ be
the closed ideal of L which is the kernel of ¢: I—I". Then, if K’ is an extension

field of K,

v(L,LK)y=7(L,I',K) U (¢* id)»(L", 1", K")) ,

where ¢* @ id: L"* ® K’ — L* @ K’ is the injective mapping induced by ¢.

Proof. The sequence

01 —> 145 g7 —50

of geometric L-modules is exact, and so Theorem 16.3 together with Proposi-
tion 16.3 gives us the desired equality.

The following result is a special case of the above corollary or of [28, Prop-
osition 9.2]:

Corollary 16.2. Let ¢: L — L be an epimorphism of transitive Lie algebras,
and let J be the kernel of ¢. If K’ is an extension field of K,

V(L K') = 7(L,J, K') U (¢* ®id)(¥"(L”, K')) ,

where ¢* @ id: L"* @ K’ — L* @ K’ is the mapping induced by .

Definition 16.1. We say that a geometric L-module F is elliptic if ¥"(L, E, K)
= 0. A closed ideal of a transitive Lie algebra L is elliptic if it is elliptic con-
sidered as an L-module.

Corollary 16.3. (i) Let ¢: L — L” be an epimorphism of transitive Lie al-
gebras, and 1 C L, I” C L"” be closed ideals of L and L" such that ¢(I) = 1”.
Let I’ be the kernel of ¢: I — I". Then I is elliptic if and only if I' and I are
elliptic.

(ii) Let I be a closed ideal of a transitive Lie algebra L; then L is elliptic if
and only if I and L|I are elliptic.

Let E be a vector bundle over X, and N, C J,(E) be a formally integrable
differential equation. Let x ¢ X, and M, be the graded ST ,-module (15.36). Let
F y, C ST, be the annihilator ideal of M,; if K’ is R or C, the variety
¥ (M,, K') of T* ® K’ defined by the ideal .7, is called the characteristic
variety over K’ of the differential equation N, at x € X and is denoted by
7Ny, K').

The following description of the characteristic variety of N, is a consequence
of [3, Proposition 6.3]:
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Proposition 16.4. If K’ = R or C, the characteristic variety ¥",(N,, K') is
equal to the set of @ € TF @ K’ satisfying

@ RERK)NN (h,,®K)=0,
where the intersection is taken in (S'T¥ ® E,) ® K'.

Definition 16.2. We say that N, is elliptic if 7" (N, R) = O for all x e X.

Now let R, C J(T) be a formally transitive and formally integrable Lie
equation, and let P, be a formally integrable finite form of R,, whose m-th
prolongation we denote by P, . .. Assume that the vector bundle E is associated
to R,, and let N, C J,(E) be a formally integrable differential equation such
that

Rk+L'NL+1 - Nz .

From Lemma 15.4 and Proposition 16.4, we obtain

Lemma 16.3. If X is connected and a, b € X, there exists F e P,, with source F
= a, target F = b, such that, if K’ = R or C, the image of ¥ ,(N,, K') under
the isomorphism

Vo For* ) R®id: T QK - TFQ K’

is equal to V" (N, K').
Theorem 16.4. (i) If x e X and K’ = R or C, then the image of ¥" (N,, K')
under the injective mapping

o ' Qid: T QK — R, Q K’
is equal to 7"(R., ,, N.. ., K').

(i) If X is connected and a, b € X, there exists ¢ € Q.(a, b) such that §(R., )
= R.. , and the image of V"(R.. ,, N.. ,, K') under the isomorphism ¢* ®id: R* ,
® K" — R% , ® K’ is equal to ¥"(R.. 4, N.. ., K’), with K’ = R or C.

(i) If X is connected and x € X, then N, is elliptic if and only if N., , is an
elliptic R., ,-module.

Proof. (1) Let xe X; we identify T, with the quotient R., ,/R% , via the
exact sequence (15.39), and we consider the graded T,-modules gr N, , and

@0 lm, as defined in § 15. From the isomorphism (15.40) of graded ST,-
modules, we obtain

P (Rosy Ny K') = (i o %! ®id)<V<éé nx ’)) .
m=0

By Lemma 16.1, we have

VAN K = (D oK) = (D W K)
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and from these equalities we obtain the desired equality among characteristic
varieties.

(ii) Ifa, be X, let F be an element of P,, with source F = q, target F = b,
satisfying the condition of Lemma 16.3. Since P, is formally integrable, we can
choose ¢ € Q..(a) such that x,,¢ ¢ P, for all m > k, and z,¢ = F. Then §(R.. .)
= R, , and the diagram

#*
* *
Roo,b Roo,a

3k &

F
(D) 255 J(T)s

is commutative; the result is now an immediate consequence of the property of

F.
(iii) This assertion follows directly from the definitions, (i) and (ii).
Assertion (ii) of Theorem 16.4 can also be derived from Proposition 15.1. In
fact, let ¢ € Q..(a, b), and : J (E), — J.(E), be an isomorphism satisfying
the conditions of Proposition 15.1. Then + induces an isomorphism

(gry)*: (gr N., o)* — (gr N, ,)*
such that
(gr v*(p-u) = (v omgov)(p)-(gr v)*@),

for all p e ST,, u e (gr N.. ,)*. From this identity, we deduce that the image of’
%R..;, N..,, K') under the isomorphism

(Fompor N ®id: TF ® K — T* @K’

is equal to 7"Y(R.. ,, N...., K’), and hence that (ii) holds.
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