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INTRODUCTION

This paper is a continuation of parts I and II of the same title which ap-
peared in Acta Math. 136 (1976) 103-239, and its theme is the study of exten-
sions of transitive Lie algebras, their realization as Lie equations on manifolds
and their cohomology (linear and non-linear). We present a unified viewpoint
on the solvability and non-solvability of the integrability problem; the methods
used in the preceding parts of this paper to obtain solvability results are ex-
tended here to prove non-solvability. Our attention is mainly centered on
abelian extensions of transitive Lie algebras, whose importance is underscored
by the Jordan-Holder decomposition of Guillemin [12].

Consider the exact sequence of topological Lie algebras

where L, L" are transitive Lie algebras, and / is a closed abelian ideal of L.
Two questions arise, namely: how is this sequence realized by Lie equations on
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manifolds and how are the cohomologies (linear and non-linear) of the ideal /
of L and of the Lie algebras L and L" related? We attempt to resolve these
questions. In addition, we show that H\L, I) and Hι(L, I) are isomorphic as
cohomologies, and do not depend on the choice of the extension L of L" by /
but only on the structure on / of module over the Lie algebra L" determined
by the extension L. We obtain further results for such an exact sequence when
we impose further conditions on L", with no assumption on the closed ideal /:
if L" is elliptic, then H\L, I) = 0 if and only if H\L) = 0; moreover if L" is
finite-dimensional, we have an isomorphism of cohomology H\L, I) —> H\L).

The first example of non-solvability of the integrability problem was given by
Guillemin and Sternberg [15] and was later analyzed and generalized by Buck
[23]. Following ideas of Buck [23], we use our results described above to con-
struct a class of formally transitive Lie equations for which the integrability
problem is not solvable and which includes the examples of Buck. All these
examples correspond to abelian extensions of transitive Lie algebras and the
non-solvability of the integrability problem for these examples arises from the
local non-solvability of linear differential operators. An abelian ideal / of a tran-
sitive Lie algebra L is realized as a Lie equation determined by a linear over-
determined differential operator P invariant under a transitive Lie equation.
The linear or non-linear cohomology of the ideal / of L is isomorphic to the
Spencer cohomology of P, which provides the obstruction to local solvability
of P, and vanishes if and only if P is locally solvable. In particular, any invar-
iant differential operator on a Lie group provides us with such a Lie equation
and an abelian ideal in a transitive Lie algebra.

Following is a brief summary of the contents of the paper. The first section,
§ 14, is purely algebraic and is concerned with geometric modules over a tran-
sitive Lie algebra L, which are the L-modules that arise when one considers
abelian extensions of L. In fact, a linearly compact L-module is a geometric L-
module if and only if it satisfies the descending chain condition on closed L-
submodules. This class of L-modules was first considered as filtered L-modules
by Guillemin and Sternberg [29] they proved that a module of this kind can
be realized as a module of sections of a formal vector bundle. Our treatment,
on the other hand, leads to a quite different realization theorem. In § 15, a def-
inition is given of vector bundles associated to a Lie equation which generalizes
the notion of vector bundles associated to a principal bundle. If E is a vector
bundle associated to a formally integrable Lie equation Rk on a manifold X, sec-
tions of Rk operate as first-order linear differential operators on the sections of
E; these operations are used to construct on the space J^iE),, of formal sections
of E at x e X a structure of a module over the Lie algebra R^^oϊ formal solu-
tions of Rk at x. If Rk is formally transitive, J^(E)X is a geometric R^^-module,
and if Nt C Jt(E) is a formally integrable differential equation whose space of
sections is invariant under the action of the sections of the /-th prolongation
Rk+ι of Rk, the space of formal solutions N^tX of Nt at x is a closed geometric
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i^^-submodule of J^{E)X. We generalize (Theorem 15.1 and Corollary 15.1)
results of [10] concerning closed ideals of R^x to show that, whenever X is
simply connected, every closed 7^^-submodule of N^^ is the space of formal
solutions of a formally integrable differential equation on E of the same type
as NL. Our realization theorem (Theorem 19.3) asserts that every geometric mod-
ule over a real transitive Lie algebra is isomorphic to an ROOt^-module of the
type N^^. In § 16 the notion of the characteristic variety of a geometric module
is defined; in particular the characteristic variety is defined for a transitive Lie
algebra L o r a closed ideal / of L, since they are geometric L-modules under
the adjoint representation of L, and coincides with the characteristic variety
given by Guillemin [27] (see also [28]). The main result of this section is Theorem
16.3 which asserts that, for a short exact sequence of geometric modules over
a transitive Lie algebra, the characteristic variety of the middle term is the
union of the characteristic varieties of the two end terms. The essential work
of defining the characteristic variety of a geometric module and of proving
Theorem 16.3 is largely concentrated in Proposition 16.2. The notion of ellipticity
is defined for a geometric module and, as a consequence of Theorem 16.3, a
transitive Lie algebra L is elliptic if and only if a closed ideal I of L and the
transitive Lie algebra L/I are elliptic (Corollary 16.3). If L and / are realized as
Lie equations on a manifold (as in § 10), then the characteristic varieties of
these equations are completely determined by the characteristic varieties of L
and / respectively. These results together with those of § 10 will be used in a
future publication to give an independent proof based on the Newlander-
Nirenberg theorem and the local solvability of linear analytic elliptic equations
(Proposition 17.4) of the theorem of Malgrange [19] asserting that H\L, / ) = 0
for a closed elliptic ideal I of L (see Theorems 17.1 and 17.9).

In § 17, we first give various results on the cohomology of elliptic or analytic
Lie equations, which we use subsequently in our study of exact cohomology
sequences, both linear and non-linear. We obtain stronger results about these
sequences than those of [6] and of § 9, whenever conditions such as ellipticity
or finite type are imposed on one of the equations whose cohomology appears
in the sequences (Theorems 17.2, 17.5 and 17.6). As a consequence of our study
in § 9 of the non-linear cohomology sequences (9.5) and (9.11), we establish the
relation between lifting properties for solutions and information about the non-
linear cohomology of the equations which appear in these sequences (Theorems
17.3 and 17.4). We exploit this last fact to obtain our version (Corollary 17.1)
of the Kuranishi-Rodrigues theorem about lifting of solutions of analytic Lie
equations. Finally, we generalize some of our results on the non-linear coho-
mology sequences in Theorems 17.7 and 17.8 and give their consequences con-
cerning the cohomology of transitive Lie algebras and their closed ideals in
Theorem 17.10.

In § 18 we pursue our study of abelian Lie equations and their cohomology
which we started in § 11. If Rk is an integrable and formally integrable abelian
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Lie equation, its structure is described (at least locally) by Theorem 18.6 and
there is an isomorphism of cohomology H^R^ —> H\Rk) moreover, we show
how certain such equations arise from vector bundles associated to Lie equa-
tions and invariant differential equations. The first part of § 19 is devoted to
the construction of two classes of formally transitive and formally integrable
Lie equations for which the integrability problem is not always solvable. We
next use results of [10] to prove our realization theorem for geometric modules
over real transitive Lie algebras. This enables us to associate to a geometric
module E over a real transitive Lie algebra L a graded module H*(L, E) of
linear Spencer cohomology over the graded Lie algebra of linear Spencer co-
homology H*(L) of L. The remainder of the section is devoted to the study of
this cohomology. In particular, if is is a closed ideal of L, this cohomology
coincides with the one defined in [10] (Proposition 19.3). If L' is a transitive
Lie algebra which is an abelian extension of L by E defining the given structure
of L-module on E, then (Theorem 19.5) the cohomology H*(L\ E) of the closed
abelian ideal E of V is isomorphic to H*(L, E) and thus does not depend on
the choice of the extension. Finally, we derive the results mentioned above con-
cerning the linear and non-linear cohomologies of such extensions, under the
additional hypothesis that L is elliptic or finite-dimensional (Corollary 19.1). In
§ 20, we construct Lie equations which are counterexamples to the solvability
of the integrability problem and which belong to the classes of such equations
considered in § 19; we show how locally non-solvable invariant differential oper-
ators on Lie groups give rise to such Lie equations and that the example of
Guillemin and Sternberg [15] arises in this way.

Finally, we ought to point out to the reader that all differential equations
considered throughout this paper are assumed to be of order greater than or
equal to one.

CHAPTER III. GEOMETRIC MODULES AND LIE EQUATIONS

14. Geometric modules over Lie algebras

Consider a field K endowed with the discrete topology and linearly compact
topological vector spaces over K, i.e., those which are topological duals of
vector spaces over K endowed with the discrete topology. We shall require the
general facts about linearly compact topological vector spaces which are to be
found in [12, § 1] and the following properties of such spaces.

Proposition 14.1. Let E be a linearly compact topological vector space over
K, and F be a closed subspace of E.

(i) Let

• C Fk+ι C Fk C C F1

be a decreasing chain of closed subspaces of E with Π*°=i Fk = F. If U is an
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open subspace of E containing F, there is an integer kQ such that Fko c U.
(ii) There exists a closed subspace Ff of E such that E is the topologίcal di-

rect sum F ® F'.
The first part of the proposition is obtained by applying the corollary of [12,

Proposition 1.5] to E/F and its subspaces Fk/F, U/F. The second part is the
statement 12. (5) of [30, § 10].

Let L be a linearly compact Lie algebra over K, that is, a topological Lie al-
gebra over K whose underlying topological vector space is linearly compact. A
linearly compact L-module E is a topological L-module whose underlying top-
ological vector space (over K) is linearly compact and for which the mapping
L X E—> E determining the action of L on E is continuous. If A is a subspace
of £, let

DLA = {e e AI ξ e e A for all ξ e L) ,

and define inductively

D\A = DLA , D\A = D^D^A) , k > 1

set DΐA = nΐ=i*>U-
Proposition 14.2. (i) If E° is an open subspace of E, there exists an open

subalgebra L° of L such that

(ii) If E° is an open subspace of E, so is DLE°.
(iii) If A is a closed subspace of E, then D^A is a closed submodule of E and

every submodule of L which is contained in A is contained in D^A.
The proof of this proposition is similar to those proofs given in [12, § 2] and

will be omitted.
Let E° be an open subspace of E\ set Ek = E, Ek = Dk

LE\ for k > 1. Then
LEk C Ek~ι and by Proposition 14.2 (ii), Ek is open and Ek+ι c Ek for all k.
Let L° be an open subspace of L satisfying

(14.1) L°-E°C1E0.

Then it is easily verified that

(14.2) L° £ f c c £ f c , f o r £ > 0 .

According to the definition of Ek and (14.2), the finite-dimensional vector space
V — L/L° considered as an abelian Lie algebra has a natural representation on
the graded vector space gr E = ®£L_i Ek/Ek+ί and therefore also on the graded
vector space

(gr£)* = 0 (Ek/Ek+γ
k=-l
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Thus we may consider (gr E)* as a graded module over the universal envelop-
ing algebra of V, which is the symmetric algebra SV of V.

Proposition 14.3. If L° c L and E° c E are open sub spaces satisfying (14.1)
and V = L/L°, then the graded SV-module (gr E)* is finitely generated.

Proof It suffices to show that the mapping

V(g)(Ek-ι/Eψ -> (Ek/Ek+γ

defined by multiplication by V is surjective for k > 0, or therefore that the dual
mapping

(14.3) Ek/Ek+ι -> K* (x) (Ek-ι/Ek)

is injective for k > 0. Suppose that α belongs to the kernel of (14.3). Then if
e ζ. Ek is a representative of α, we see that Le a Ek and hence that e belongs
to Ek+ι and a = 0.

The Lie algebra cohomology

j

of K with values in the graded F-module gr E is naturally bigraded. Let

δ: /\3V*®grE-+ f\j+ιV* (x) gr E

be the coboundary operator defined by

< ^ Λ ••• Λ v » ) = Σ ί ( - l ) < + 1 * V < t f i Λ ••• Λ ^ Λ ••• ΛvJ+19θ>,

for ^ 6 / \ j K * ® gr £, i;^ , vj+1 e F, where z)̂  indicates that i;̂  is to be
omitted. Then

where Hjk(V, gr is) is the cohomology of the complex

/ \ ^ - 1 F * (g) Ek+ι/Ek+2 > / \ J T * (g) Ek/Ek+1 >/\ j + 1K* (x) Ek~ι/Ek .

The injectivity of (14.3) implies that

HOk(V,grE) = 0, for^> 0.

We observe that #>(K, gr E) is the dual of Torf F((gr E)*9 K) and from Prop-
osition 14.3 we deduce that it is a finite-dimensional vector space.

We consider the Lie algebra L as a linearly compact L-module via the ad-
joint representation of L. We set L'1 = L, Lk = Dk

LL\ for & > 1. If we require
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that the open subspace L° of L satisfy the stronger condition L° E C E°, it is
easily seen that

LjEk C Ej+k , for j , k > 0 .

Definition 14.1. An open subspace E° of E is said to be fundamental if it
contains no L-submodules of E except 0.

Let E° be a fundamental subspace of E. Then by Proposition 14.2 (iii),
C\k=-iEk = 0> a n ( * by Proposition 14.1 (i), {Ek}k>_λ is a fundamental system
of neighborhoods of 0. Let L° be an open subspace of L satisfying (14.1). If F
is a closed subspace of E, set

(14.4) g r F = © ( F Π P + Ek + ι)/Ek+ι

fc=-l

this is a graded subspace of gr E.
Lemma 14.1. Let E° be a fundamental subspace of E and L° an open sub-

space of L satisfying (14.1), and let V = L/L°. If Fl9 F2 are closed subspaces of
E with Fx c F2 and gr Fι = gr F2, then F1 = F2.

Proof We show by induction on k that

F2 C F, + Ek .

This is true for k = — 1 assume that it holds for an integer k > — 1. By our
hypothesis, the components of degree k of gr F1 and gr F2 are equal and hence

Fx Π Ek + Ek+ι = F2f] Ek + Ek+1

therefore we have

F2 C Ft + F2 Π Ek C F, + Ek + ι .

Since Fx is closed, we conclude that

F2 c Π (^ + Ek) = F, .
Λ = - l

The following result generalizes [12, Theorem 3.1] and its proof is the same
as the one of that theorem:

Theorem 14.1. Let E be a linearly compact L-module. Then the following prop-
erties of E are equivalent:

(i) E possesses a fundamental subspace
(ii) E satisfies the descending chain condition on closed L-submodules.
Proof (ii) => (i). Assume that (i) does not hold. Let {Ek}k>0 be a funda-

mental system of neighborhoods of 0 consisting of open subspaces of E. Then
the closed submodule Fk = D°lEk c Ek is non-zero. According to Proposition
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14.2 (iii), we obtain a descending chain of non-zero closed submodules of E

(14.5) E =) Fo ID F, D Z) Fk z> Fk + ί 3 .

satisfying ΠAΓ=O Fk = 0, since ΠΛΓ=O Ek = 0; thus (14.5) does not stabilize.
(i) => (ϋ). Let (14.5) be a descending chain of closed submodules of E. Let

EQ be a fundamental subspace of E. Consider the graded vector space gr Fk

given by (14.4) and the annihilator (gr Fk)
L of gr Fk in (grL1)*. Let L° be an

open subspace of L satisfying (14.1) and V = L/L°. Then grF f c is a F-sub-
module of gr E\ thus (gr Fk)

L is an SF-submodule of (gr £ ) * . By Proposition
14.3, {(gr Fjc)1} is an increasing sequence of submodules of a finitely generated
module gr E over the noetherian ring SV, and thus this sequence stabilizes.
Therefore so does the decreasing sequence {gr Fk} of graded subspaces of gr E.
By Lemma 14.1, the chain (14.5) stabilizes and so (ii) holds.

Definition 14.2. A linearly compact topological L-module E satisfying the
properties (i) and (ii) of Theorem 14.1 is called a geometric L-module.

From Theorem 14.1, we easily deduce
Proposition 14.4. Let F be a closed L-submodule of a linearly compact L-

module E. Then E is a geometric L-module if and only if F and E/F are geometric
L-modules.

If E° is a fundamental subspace of a geometric L-module E, then F° = F Π
E° is a fundamental subspace of F and

Fk = Dk

LF° = F Π Ek .

If L° is an open subspace of L satisfying (14.1), then L° F° c F°.
If φ: M —• L is a continuous epimorphism of linearly compact Lie algebras,

and E is a geometric L-module, then the M-module φ*E, which is equal to E
endowed with the structure of M-module given by

for all ξ € M, e e E, is a geometric Af-module.
Let / be a closed ideal of L. Then the adjoint action of L on / determines

the structure of a linearly compact L-module on L If / is abelian, this L-module
structure of / determines on / a structure of linearly compact L//-module. Con-
sider the linearly compact Lie algebra L as an L-module via the adjoint rep-
resentation of L; a fundamental subspace of L is obviously an open subspace
of L containing no ideals of L other than 0. We say that L is a transitive Lie
algebra if it is a geometric L-module. According to [12], such a transitive Lie
algebra L possesses a fundamental subalgebra L°; if we set L"1 = L, Lk = Dk

LL\
for k > 1, then n?=- i Lk = 0 and [L\ Lk] c Lj+k, for j , k > - 1 . Moreover

grL = © Lfc/Lfc+1

fcl
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is a graded Lie algebra; according to Proposition 14.4, a closed ideal / of L is
a geometric L-module, and, if P = / (Ί Lk for k > — 1, then

g r / = 0 /fc//fc + 1

is a graded ideal of L.
We now generalize to linearly compact Lie algebras some of the standard

results on extensions of Lie algebras (see [24]).
An extension M of the linearly compact Lie algebra L by E is an exact se-

quence of linearly compact Lie algebras over K

(14.6) 0 • E - ί-> M -^-> L > 0 ,

whose mappings are continuous. Two extensions M and M' of L by E are said
to be equivalent if there is a commutative diagram

where ψ is a continuous homomorphism of Lie algebras. If E is abelian, we
say that M is an abelian extension of L; then the adjoint action of M on its
ideal E defines by passage to the quotient a structure of linearly compact L-
module on E.

Proposition 14.4 implies
Proposition 14.5. Let M be the abelian extension (14.6) of the linearly com-

pact Lie algebra L by E. Then M is a transitive Lie algebra if and only if L is a
transitive Lie algebra and E is a geometric L-module.

Let E be a linearly compact L-module. Consider the continuous Lie algebra
cohomology

H*(L, E) = ® H&L, E)
3

of L with values in E defined in terms of continuous cochains with values in E.
We shall establish a correspondence between the abelian extensions of L by E
defining the given structure of L-module on E and H2

C(L, E).
If M is the abelian extension (14.6) of L by E, by Proposition 14.1 (ii) there

exists a continuous linear mapping σ: L —• M such that φ o σ = id then

(14.7) a(ξ, η) = [*(£), σ(V)] - σ([ξ, η\) ,

for ξ, η € L, belongs to E\ thus a is a continuous 2-cochain on L with values
in E, which, by Jacobi's identity, is easily seen to be a cocycle. The cohomology
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class of a depends only on the extension M.
Conversely, a continuous 2-cocycle a OVLL with values in E defines a struc-

ture of Lie algebra M on the linearly compact topological vector space E X L
by setting

(14.8) [(*, f), (fη)} = (ξ f - η e + a(ξ, η\ [ξ, η\) ,

for e,fe E, ξ, η e L. We define the exact sequence (14.6) by setting i(e) = (e, 0),
φ(e, ξ) = ξ, for e e E, ξ e L. Clearly is is an abelian ideal of M, and /, φ are
continuous Lie algebra homomorphisms, so that M is an abelian extension of
L defining the given L-module structure on E. The mapping σ:L-^M, sending
ξ into (0, ξ), is continuous and satisfies φ o σ = id. Furthermore,

]) = (α(f, η), 0) ,

for ξ, Ύ] e L, so a is a cocycle defined by the extension M.
An extension M of L by E is inessential if there exists a closed subalgebra Z/

of M such that M is the topological direct sum of L' and E. An extension
(14.6) is inessential if and only if there exists a continuous Lie algebra homo-
morphism σ'.L^M such that φ o a — id; then the cocycle a defined by (14.7)
vanishes. Finally, if a is the zero 2-cocycle on L, (14.8) gives us the semi-direct
product of L and E9 which is an inessential extension of L.

Thus we obtain
Theorem 14.2. Let E be a linearly compact L-module. To each abelian exten-

sion of L by E, defining the given structure of L-module on E, corresponds a co-
homology class in H2

C(L, E) this correspondence determines a bίjective mapping
between the equivalence classes of such extensions and H2

C(L, E). The inessential
extensions form a single class and correspond to the zero element of H2

C(L, E).
Let L be a transitive Lie algebra, and L° a fundamental subalgebra of L. We

say that a closed ideal I of L is defined by a foliation in (L, L°) if the only ideal
Γ of L satisfying

/ C Γ c / + V

is 1 itself.
Let M be the abelian extension (14.6) of a transitive Lie algebra L by a geo-

metric L-module E and α : L - > M b e a continuous linear mapping such that
φ o a = id. Let a be the continuous 2-cocycle on L with values in E defined by
(14.7). Let E° be a fundamental subspace of E, and L° be a fundamental sub-
algebra of L satisfying (14.1) and

a(L° X L°) c E° .

We remark that, given σ and E°, there always exists a fundamental subalgebra
L° of L satisfying these conditions. Then M° = E° + σ(L°) is an open subal-
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gebra of M. If / C M° is an ideal of M, its image in L under φ is contained in
L° and so vanishes thus / is contained in E° and is equal to 0, since E° is
fundamental. Therefore M° is a fundamental subalgebra of M satisfying φ(M°)
= L\ By [10, Proposition 10.2] we have:

Proposition 14.6. The open subalgebra M° of the transitive Lie algebra M is
fundamental. The closed abelίan ideal E of M is defined by a foliation in (M, M°).

15. Vector bundles associated to Lie equations

Let Rk C Jk(T) be a formally integrable Lie equation, and £ b e a vector
bundle over X. We shall identify JQ(E) with E. The following definition gen-
eralizes the definition of vector bundles associated to Jk(T) given in [9, § 3].

Definition 15.1. We say that E is associated to Rk if, for all f <E Γ(X, Rk\
we have a linear differential operator

(15.1)

satisfying the conditions:

( i ) | |
(ii)
(iϋ) js?([f, ψ
(iv) js?(f)/j = /JS?(DJ + (I •/>,

for all I, η e Γ(X, Λ t ),/e Γ(ΛΓ, Θx\ sz$.
A section 5 of E determines a diffeomorphism γs of £ sending e e £ x into

e + s{x), where x e l , and a vertical vector field

on ^ If ef = ,s(x), then /is(e) is equal to the image (d/dt)(e + te')Lo of <?r under
the isomorphism

μe:Ex-+Ve(E).

A s s u m e t h a t E is a s s o c i a t e d t o R k a n d let e e EX9 w i t h x e l C o n s i d e r t h e
m a p p i n g

(15.2) σe:RkrX-+Te(E),

defined by

(15.3) σeξ(x) = ^ ^ o l W -

where | and s are sections of i£fc and E over a neighborhood of x satisfying
s(χ) = e. We now verify that the right-hand side of (15.3) depends only on ξ(x)
and e. According to conditions (i), (ii) and (iv) of Definition 15.1, we see that
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depends only on ξ(x) a.ndj\(s)(x); moreover, if s' is a section of E
over a neighborhood of x satisfying s'(x) = e and u is the element of (T*®E)X

given by the exact sequence (1.1) satisfying

εu = j\(s' - s)(x) ,

then (iv) implies that

(f > ' ) ( ) ( ^ ( f » ( ) £ ( ) A u .

By [4, Proposition 5.3] and the remarks following [4, Proposition 5.6], we
see that

s*πQξ(x) = s*πoξ(x) + μJ^Qξ(x) A u) .

From these last two relations, it follows that (15.3) is well-defined. The diagram

K* - ^ UE)

is commutative. If f is a section of Rk over X, the vector field σ(|) on E de-
fined by

σ(l)(e) = σMx)) ,

for e ζ. Ex, x e X, is projectable onto πQξ. Using condition (iii) of Definition
15.1, it is easily seen that

(15.4) σ([ξ9τjϊ) = [σ(ξ)9σm>

for I, ηz Γ(X, Rk). Moreover, if f e Γ(X, Rk) and s e Γ(ΛT, ^ ) , then &(ξ)s is
the unique section of E such that

(15.5) γ

(15.6) lσ(ϊ), μ.] = μ*&.

Indeed, let e e Ex, with x e X, and s' be a section of £ over a neighborhood of
x satisfying s'(x) = <?. Then

^ o j ' = .y + j 7 , γs*μe{e') = μe + S(X){e') ,

for e' ς. Eτ\ therefore we have
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= (s + s%πQξ(x) - ^ + s U )

= σ(ξ)(e + s(x)) + μe + s

giving us formula (15.5). Equation (15.6) is a direct consequence of (15.5).
Assume that Rk is formally transitive, and that E is associated to Rk. An Rk-

connection ω: J0(T) —• Rk induces a connection V in E by setting

F ^ = Sf(ώ(ξ))s , for £ e ^ , j e <? ,

where ώ: T-+ Rk is equal to v~ι o ω o y. If the curvature of ω vanishes, then so
does the curvature of the covariant derivative V (see [9, Proposition 3.3]).

Let Pk be a finite form of Rk and a e X. Assume that the projection of Pfc(α)
onto X sending F <= Pfc(α) into the target of F is surjective; this condition always
holds if X is connected. Then Pk(a) is a principal bundle over X whose group
is the set Pk(a, a) of F e Pk with source F = target F = a. If φ is a section of
i\(α) over an open subset (/ of X, define ώ: Γ —> i?fc on £/ by

(15.7) ώ(ξ) = φ*(g) φ(xYι , for f € Γ,, x € C/ .

Then ω = i oώo^- 1 is an i?fc-connection on U whose curvature vanishes (see
[9, p. 71]).

Let EQ be a finite-dimensional Pk(a, β)-module, and let E be the vector bundle

E = Pk(a) χPk{a>a) Eo

associated to Pk(a). Denote by

w:Pk(a) X E0->E

the canonical projection.

For H z Pk, with x1 = source H and x2 = target H, we have a mapping

τ(H):Pk(a)xl-^Pk(a)X2,

sending Finto HF, and an isomorphism

σ(H):EXl-+Ex%9

sending tϋ(F, e) into w(H- F, e), where F e Pfc(α), e e £ 0 . If Hf € Pfc, with source H'
= x2 and target JF/"' = x3, then

(15.8) σ(H'-H) = σ(Hf)σ(H)

as mappings from EX1 to ̂ 3 . These mappings τ(H) determine isomorphisms

τF:Rk,x-+TF(Pk(a)),

where F € Pfc(β) and x = target F, and the mappings σ(H) determine a mapping
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(15.9) σe:RktX->Te(E),

where e e EX9 x e X. Then, if F e Pk(a), e0 e E09 with x = target F and
, e0), we easily see that the diagram

commutes. If f is a section of Rk over Jf, then the vector field τ( |) on .Pfc(α)
defined by

for Fz Pk(a), with x = target/7, is Pk(a, β)-invariant we have a vector field
σ(ξ) on E defined by

σ(l)(e) = σe(l(x)) ,

for e e Ex, x e X. Then τ is a morphism of Lie algebras from Γ(X, Rk) to the
algebra of projectable vector fields on Pk(a), and so is a from Γ(X, Rk) to the
algebra of projectable vector fields on E.

Let φ be a section of /% over an open set U d X, and assume that πoφ is a
diffeomorphism of ί/ onto an open subset U/ of X; then the mappings (T(0(X)),
with x e U, give us an isomorphism of vector bundles

over πQφ. If ξ e RkfX, with xeC/, there is a curve //, in Pk(x) such that ^ 0 =
Ik(x) and dHJdt\t=0 = | . By (2.5), we see that

Using this last relation and (15.8), for e e .E7,,., we derive the equality

(15.10) tf(0*σe(|) = D

where ^x = σ(φ)e.
We identify £Ό with £ α by means of the isomorphism Eo —>• £*α sending e0

into w(Ik(a), e0). If G e Pk(a, a), under this identification, the automorphism of
EQ determined by G and the Pk(a, α)-module structure of Eo is the same as σ(G);
moreover

tΰ(F, e0) = σ(F)e0 ,
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for FePk(a), eoεEQ.
To a section s of E over X corresponds the F0-valued function s on Pk(a)

defined by

s(F) = σ(F)-χx)

or

tΰ(F, s(F)) = s(x) ,

for F e Pk(a), with x = target F. It is easily seen that s is equivariant in the
sense that

(15.11) S(F-G) = G ^ F ) ,

for F e Pfc(α), G € Pfc(«, α). Conversely, if/ is an F0-valued function on Pfe(α)
satisfying

(15.12) / (F. G) = G'ιf(F) , for F€ Pk(a), G e Pfc(α, α) ,

there exists a unique section s of F such that s = f.
If I is a section of Rk and s is a section of F over X, the function / = τ(ξ)s

on Pfc(β) satisfies (15.12), since τ(|) is a right-invariant vector field on Pk(ά);
we define ££(ξ)s to be the section of E corresponding to /. We thus obtain op-
erators (15.1) which satisfy the conditions of Definition 15.1 and so E is associ-
ated to Rk. Let Ft be a curve in Pk(x)9 with Fo = Ik(x) and dFJdt\t=0 = | (x);
set xt = target Ft. Then for Fe Pk(a), with target F = x, we have by (15.8)

(τ(ξ) s)(F) = (ξ(x).F) S = -l

where we consider σ(Ft)~1s(xt) as an element of Ex; hence

(15.13) l ί l
at

If ^ = s(x), then we have
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dt
- -d~σ(Ft)-s(x)

at

- σe(ξ(x))

ί = 0

it follows from (15.13) and (15.3) that the mapping (15.9) coincides with the
mapping (15.2) defined in terms of the structure of associated bundle to Rk on
E.

Let φ be a section of Pk over an open set U a X, and assume that πoφ is a
diίfeomorphism of U onto an open subset U' of X. If s is a section of E over
U, let s' be the section σ(φ) o s o (πoφ)~ι of E over {/'; then it is easily verified
that

(15.14) rs>°σ(φ) = σ(φ)oγs,

and hence that

(15.15) σ(φ)*μ. = μs, .

Let φ be a section of /^(a) over U a X; let ω be the 7?fe-connection deter-
mined by (15.7), and V be the connection induced by ω in E whose curvature
vanishes. If s is a section of E over £/ and ξ z Tx, x z U, then

ί V = a(Φ(x), (τ(ώ(ξ)) s)(φ(x))) =

If e0 € £Ό, the section s of £ over U defined by

s(χ) = w(φ(x\ e0) = σ(φ(x))e0 , for x e U,

corresponds to the £Ό-valued function s on Pfc(α) satisfying (15.11) and

s(φ(x)) = e0 , for x e C/

if ξ € Γ,., x e C/, we therefore have ^^(f).? = 0 and F ^ = 0.
The vector bundle Λ i ( Ό *s associated to Jk(T) by (1.14). From the above

construction, we now obtain another interpretation of the action of Jk(T) on
Λ_i(^). Consider the finite form Qk of Jk(T). By (2.1), Λ.^ΓJα i s a β f c(

β

?

 β >
module and so we have the vector bundle

associated to βfe(#). The mapping

(15.16) β f c(£i) XQk(a>a) J

sending Φ ( F , 37) into F(^), where Fe Qk(a), η € Λ-i(Όα ? is an isomorphism of
vector bundles when we identify the fiber at a of the first vector bundle with
/ fc_1(Γ)α, this mapping restricted to the fibers at a is the identity mapping of
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Λ-i(Όα We now identify these two vector bundles by means of the isomor-
phism (15.16). Then for He Qk, with λ̂  = source H, x2 = target //, the map-
ping

is equal to the usual action of Hon Jk-γ(T)Xχ given by (2.1). Let f e Γ(X, Jk(T))9

x e X, and let Ft be a curve in Qk(x), with Fo = 7fc(x) and dFt/dt\t=Q = | (x) ;
set xt = target F t . If η e Γ(Z, Jk.x{T)\ then according to the formula (7.1) of
[9], the bracket (1.14) is given by

(15.17) m£)i?)(*) = 4 F7\v(^))\ -
at iί=o

Therefore by (15.13), when we identify the two vector bundles under consider-
ation using (15.16), for f e Γ(X, Jk(T)), the two operators if(f) on Jk_<ίjT),
the first given by (1.14) and the second, obtained by considering Jk^x(T) as a
vector bundle associated to Qk(a), are equal. Thus, if φ is a section of βfe(tf)
over U (Z X and ω is the /fc(Γ)-connection determined by (15.7), for η0 €
Λ-i(Όα ? the section 27 of Jk.x{T) over t/ defined by

9(x) = φ(x)(η0) , for xe U ,

is horizontal with respect to the covariant derivative induced by ω in Jk_ί(T).
Assume that the finite form Pk of Rk is formally integrable and denote by

Pk + ι the /-th prolongation of Pk. Let Jt(Pk) C Q(i,fe) be the bundle of jets of
order / of sections of &k. We have the mapping

(15.18) Pk + ι Xx UE) -• Jt{E)

sending (H, u) into

where 0 is a section of Pk over a neighborhood t/ of x e X, such that πoφ is a
diffeomorphism of U onto an open neighborhood of x' — target φ(x) and
Jι(Φ)(x) — λiϊϊ, and where s is a section of E over £/ satisfying jΊ(s)(x) = u. By
(15.8), if H' e Pk + ι, with source H' = x\ then

{HfH)u = H'.(H-u) .

Thus Jt(E)a is a Pk + i(a, tf)-module, and we consider the vector bundle

Pk + ι(a) χP f c + ι ( α,α )

associated to Pk + ι(a). The mapping
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(15.19) Pk + ι(a) XPk+ι(a,a) Jt(E)a - UE)

sending &(F, ύ) into Fu, where Fς. Pk^ι(a), u e Jι(E)a, is an isomorphism of
vector bundles when we identify the fiber at a of the first vector bundle with
Jι(E)a, this mapping restricted to the fibers at a is the identity mapping of
Jt(E)a. We now identify these two vector bundles by means of the isomorphism
(15.19). Then for H e Pk + ι, with x1 = source //, x2 = target H, the mapping

σiHYUE^-^UE)^

is determined by (15.18) and sends u into H- u. Thus Jt(E) is associated to Rk + ι.

The diagram

k + l + m XχJl + m\£) >Jl + m\h)

(15.20) |(i<Um) \λm

Y Y

-+ Jm(λ(E))

is easily seen to commute, where the top horizontal arrow is given by (15.18)
with / replaced by / + m and the bottom horizontal arrow is the mapping
(15.18) corresponding to the vector bundle Jt(E) associated to Pk + ι with / re-
placed by m.

Let Nt d Jt(E) be a differential equation such that

(15.21) P^ NtClN^

Then NUa is a Pk + t(a, α)-invariant subspace of Jι(E)a and the mapping (15.19)
restricts to give us an isomorphism of vector bundles

We thus obtain a one-to-one correspondence between the sub-bundles Nt of
Jt(E) satisfying (15.21) and the Pk + t{a, fl)-invariant subspaces Nlta of Jι(E)a.
From the commutativity of (15.20), we deduce that

P . N c~ N

for all m > 0, and hence that Nι + m is a vector bundle associated to Rk + ι + m and

foral l f e ^ f c + z + m.
We no longer assume that Rk is formally transitive. Let E be a vector bundle

associated to Rk; we then define an operation of Rk + ι on Jι + ι(E). In the case
that k = 1, Rk = Jλ(T) and E = J0(T), and the operations (15.1) are given by
(1.14), this operation reduces to (1.11) and is related to (1.14) by (1.15). Let
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(15.22) Rk®J1(E)^E

be the morphism of vector bundles sending ξ (g) u e (Rk (g) JX{E))X, with x e X,
into

ξ u = (&(ξ)πou- f A Dι/)(x),

where | 6 ^ fc)Λ;, w' € Λ(ίf).r satisfy yf (x) = f, u'(x) = u. According to conditions
(i), (ii), (iv) of Definition 15.1 and (1.4), this mapping is well-defined and
satisfies

(15.23) ξ ε(u) = ε(v-ιξ A u) ,

for all ξ ζ. Rk, u e Γ* (x) E. Conversely, given a mapping (15.22) sending ξ®u
into ξ u satisfying (15.23), then if f <= Γ(X, Rk) with ξ = vξ, by setting

(15.24) &(ξ)u = f ^ + l A D M ' ,

for u' e /i(<^) with πou' — w, we obtain well-defined dίfΓerential operators (15.1)
satisfying conditions (i), (ii) and (iv) of Definition 15.1.

For / > 0, we have a mapping

(15.25) Ru + ι ® J

sending ξ (x) u into ξ u, namely the composition

Rk + ι (X) Jι + 1(E) - ^ ® ^ > Jt(Rte)

where the mapping ^ sends jΊ(ξ)(x) ®JΊ + 1(S)(X) into ̂ (^(ξ)s)(x), with f € ̂ fctJ.,
I = ir1^, 5Έ (f x, x e X. By (15.24), the mapping (15.25) gives rise to a mapping

sending ξ ® u into ξ u = f M7, where w7 e Jί + ι(E) satisfies TΓ̂W7 = u. It is easily
seen that

(15.26) ξ-ε(u) = e(v-1ξπδu)

holds for all ξ e Rk + ι, u e Sι + 1T* (g) E and that

(15.27) [ξ,η] πι + iU = πk + ιξ (η-u) - πte + ιη (ξ u) ,

for ξ, η € Rk + ι + l9 ueJι+2(E), by using the commutativity of (1.37). If f e
£ f e + z), we define

to be the differential operator sending u into the element i?(f)w given by
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(15.24), where uf e Jι + ί(£) satisfies πtu
f = u and ξ = vξ. From (15.26), we see

that J^(f) is well-defined and that these operators satisfy conditions (i), (ii) and
(iv) of Definition 15.1; from (15.27) it follows that they also satisfy condition
(iii) and thus Jt(E) is associated to Rk+ι. Moreover, we have

πt{ξ'u) = (πk + ιξ)>πι + 1u ,

for all ξ e Rk + ι + m, u <= Jι + m + 1(E), and

for all I e @k + ι + m, u e Jι + m(S). Since (Rk + ι) + m = Rk + ι + m and Jt(E) is associated
to Rk + ι, the above shows that the vector bundle Jm(Jt{E)) is associated to
Rk + ι + m. If I G Γ(X, Rk + ι + m ) , the diagram

(15-28)

is easily seen to commute.
If F is another vector bundle over X, let

D: Jt

be the differential operator satisfying

<£, D(u (X) v)} = <£, Z)i/> (x) τ r m _ ^ + π^λu ® (ξ,

forf g ^,ueJt{S\v e Jm{^)\ by (1.4), this operator is well-defined. For/> 1,

the commutativity of the left-hand square of the diagram

(15.29) D

follows from [26, Proposition 1.4]. If | € ^fcfiC, j e #x9 with x e l and f = vξ,

then

= 0 .

Moreover if M e / z ( ^ f e ) ® /z + 1(«f),/e ^ z , then by (1.4) we have
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ι-i&ι-i ® πt)u

from which we infer the commutativity of the right-hand square of (15.29) and
hence of the whole diagram. The compositions of the horizontal arrows of dia-
gram (15.29) are the mappings induced by (15.25). We define the morphism of
vector bundles

(15.30) (Λ'Γ* <g> Rk + ι) <g> (Λ j ^* ® JiΛE)) -* Aί+jT* <g> Jt{E)

sending v ® w into v w by setting

for a € /^T*, β e /\JT*9 ξ € i?fc + z and M <Ξ /Z + 1 ( £ ) . For / > 1, if u € Λ

^k + ι, v e Λ j ^ * ® Λ + i(^), then we have

(15.31) 2)(ι/.V) = φ W ) τr^ + (-m** + ι-iU)'Dv .

In fact, because of (1.4) it suffices to verify this formula for / =_/ = 0, and in this
case it follows from the commutativity of (15.29). We now verify the formula

(15.32) J (̂τrfc + Mv'u) = mϊ)v)'U + V^(l)« ,

for I e %k + ι + l9 ηz&k + ι, ue Jι + 1(£). Indeed, if η' e &k + ι + u u e Jι+2(£) satisfy
π* + tη' = η, KιΛ = « and f = v|, by (15.24), (15.27), (15.31) and (1.15) we
have

= πk + ιξ- W I/O + I A

- [f,9i « + V'(ξ W) + (I A Λ?0 « + V'(l A Di/0

In the case k = 1, Rk = JX(T) and £" = J0(T), and the operations (15.1) are
given by (1.14), the mapping (15.30) coincides with the bracket (1.19) and
formula (15.31) with (1.25); moreover, (15.32) follows from the Jacobi identity
for Λ^oo(^)*®/oo(^).

If E is the vector bundle associated to Pk considered at the beginning of this
section, then the structure of vector bundle associated to Rk + ι on Jt(E) deter-
mined by (15.19) coincides with the one obtained by the above discussion from
the structure of vector bundle associated to Rk on E given by (15.13).

Sometimes, we shall encounter the situation where E is associated to ί?fc and
there is an integer / > 0 such that the mapping (15.25) factors through
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πk <g) id: Rk + ι <g) Jι + 1(E) -• Rk ® Jt + ί(E), giving rise to a mapping

Then the mapping (15.25), with / replaced by / + m, factors through πk + m ® id
and gives us a mapping

Thus for I e ,Γ(Z, Rk + m), we obtain a differential operator

and Jι + m(E) is associated to i?fc + m.
The vector bundle £ * is also associated to Rk if we set

for I e Γ(Jf, ^ f c ) , ί g ( f , α s / * . If F i s another vector bundle associated to Rk9

the vector bundle E (x) F is associated to j ^ if we set

^(l)(« ® /) = m)e ®f+e® J?(ξ)f,

for I € Γ(Z, Rk), e e $,/€ J^. The /-th symmetric product SιE of £" considered
as a sub-bundle of ®ιE is stable under the operations J£?(f), for | e ^
and so is also associated to Rk.

Since J0(T) is associated to Λ(Γ) and

for I e Γ(X, J^T)), ζ e Γ(JT, /0(Γ)) and x e JT, where ζ = v~ιζ and

V € ^ » w e s e e

(15.33)

for α € Γ(Jr, / 0 ( Ό * ) . Let

5: Sι + ιJ0(T)* -> J0(Γ)* (g) ^Z

be the mapping 0 * " ! (x) v*-1) o ̂  o v* then

(15.34)

for all w<=S'
The bundle / 0 ( Ό is associated to Rk if we define
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for I € Γ(X, Rk\ η e J*(&Ύ thus the vector bundle SιJ0(T)* (x) E is associated
to i£fc by the above constructions.

Lemma 15.1. Let E be a vector bundle associated to Rk. If ξ e Γ(X, Rk + ί),
the diagram

εo(v*(g)id)

se{ξ)

/. We proceed by induction on /. First, we verify the lemma for / = 1

it suffices to show that

(15.35) SfilWdf® s) - ε(df® ^(πkξ)s + v*3e(πj )v*-ιdf® s) ,

if s € Γ(X, E) and/is a function on X. We set

u - Ufs) - Ms) .

Then

T Γ ^ = e(df® s ) , Du= -

If x e X and λ^vξix) = ^(^(Λ:) with -η ^ ^tk>x, and if we set 57 = i;"1^, we have

^TΓJIW = j\(πQή)(x) and

A

x)

s)(x) ,

which gives us (15.35) at x 6 Z by (15.33). Now suppose that the lemma holds
for an / > 1. Since λx\ Jί + 1(E) -+ J^J^E)) is injective, from the commutativity
of (15.28) with m = 1 and of the diagram

Sι + 1T* (g) E —δ—> Γ* (x) SιT* (g) ̂  -^®i> Γ* (
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of [3, § 3], and from the formula (15.34), the lemma for / + 1 follows easily.
Lemma 15.2. Assume that X is connected and that Rk is formally transitive.

Let E be a vector bundle associated to Rk, and let Nt C J^E) be a differential
equation such that

Then Nι + m is a vector bundle for all m > 0, and Nm = nmNt is a sub-bundle of
JJfi) for 0 < m < I — 1. Moreover, if πt: Nι + ί^> Nt is surjective, then Nm + 1
c (Nm)+l9for 0 < m < / — 1 the sub-bundle F = π0Nι is associated to Rk and

Proof First let ω be an i?fc + z + m-connection on a simply connected open
subset of X whose curvature vanishes. Since Nt is associated to Rk+ι, the
bundles Jί + m(E), Jm{Jt(E)), Jm(Nt) are associated to Rk + ι + m and we consider
the covariant derivatives induced by ω in these vector bundles. Since X is con-
nected and diagram (15.28) commutes, applying [9, Proposition 3.2] to the in-
jective mappings λm:Jι + m(E) -* Jm{Jι{E)) and Jm(Nt) -• Jm{Jt(E)\ we see that
Nι + m is a sub-bundle of Jι + m(E). Next, let ωr be an 7?fc + rconnection on a simply
connected open subset of X whose curvature vanishes. The bundles Nt and
Jm(E)9 with m < /, are associated to ^ f c + z, and we consider the covariant de-
rivatives induced by ω' in these vector bundles. Since X is connected, applying
[9, Proposition 3.2] to πm: Nt -> Jm(E), we deduce that Nm is a sub-bundle of
Jm(E). ϊfπι:Nι + 1-^Nι is surjective and u e J^m + 1, with 0 < m < / — 1, then
/)« e ^ * <g> ^ m ; hence 7Vm + 1 c (Nm)+ί and ^ c /,(F).

Remark. If X is an analytic manifold, Rk is an analytic formally transitive
Lie equation, and E is an analytic vector bundle associated to Rk, then a differ-
ential equation Nt a Jt(E) satisfying the hypothesis of Lemma 15.2 is analytic.

The following lemma is easily verified (see Lemma 1.5):
Lemma 15.3. Let E be a vector bundle associated to Rk and let Nt C Jt(E)

be a formally integrable differential equation. Then the following assertions are
equivalent:

(a) JδfφΛ^ c Jίu for all f e %k+ι;^
(b) JS?(£Vrl + m C ^ ι + m,farallξz<%k + ι + m and all m > 0;
(c) Rk + rNι + 1dNι;

(d) Rk + l + m.Nl + m + 1(ZNl + mJorallm>0.
For xeX, according [10, §9] and (1.25), the bracket (1.19) determines a

structure of graded Lie algebra on the Spencer cohomology H*(Rk)x. If condi-
tion (d) of the above lemma holds, by (15.31) and (15.27) the mapping (15.30)
determines on H*(7VZ);E a structure of graded module over the graded Lie algebra
H*(Rk)x; in particular, we see that, if ξ e Sol (Rk) and s <= Sol (Nt), then
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£P(jk(ξ))s is an element of Sol (Nt). Therefore, if Rk c Rk is a formally inte-
grable Lie equation satisfying

we obtain structures of graded Lie algebra and of graded 7/*(^fc)J.-module on
H*(Rk)x, for x e l ; the mapping

induced by the inclusion Rk C Rk, is a morphism of graded Lie algebras which
intertwines H*(Rk)x and H*(Rk)x in the sense that

e(a) β = [a,β\, c(γ-a) = [γ, t(pt)] ,

for a, β e H*(Rί)X9 γ e H*(Rk)x (see [10]).
Let Nt c Jt(E) be a formally integrable differential equation and x e X. We

consider N^^ as the linearly compact topological vector space lim Nι + rϊltX over
R, where Nι + m>x is endowed with the discrete topology. The kernel N™,x of the
projection πm\ N^^ -> Jm(E)x is an open subspace of iV^, and by Proposi-
tion 14.1 (i), {N™^x} is a fundamental system of neighborhoods of 0. In particu-
lar, J^(E)X is a linearly compact topological vector space and N^^ is a closed
subspace of/«,(£),.. We set TVr,* - Λ ^ for m < 0 and # m = τrm(7Vz) for m < /,
and let hm be the sub-bundle of SmT* ® E with possibly varying fiber such
that the sequence

0 — > hm -U Nm ^ N^ - ^ 0

is exact. From the equality πmN™~x

ι = ε(hm>x), we obtain a surjective mapping

C - I . - T Γ A/"771"1 —> /Z

which sends w <= NZ^1 into the unique element v of hm>x satisfying ε(v) — πmιι,
and whose kernel is N™iX. This mapping therefore induces an isomorphism

ψ: N^INZ^ -> hm,x , for m > 0 .

For m > /, the mappings

sending f (x) w into f A dw, gives us a natural representation of Tx regarded as
an abelian Lie algebra on the graded vector space
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Therefore we may consider the graded vector space

(15.36) M x = 0 h*tX

as a graded module over the symmetric algebra STX of Tx in fact, this struc-
ture of ST^-module on Mx is the one obtained according to [5, Lemma 1] from
the mappings δ: hm+ί —• Γ* (x) hm and the complexes (1.8).

If we consider the Lie equation Rk c Jk(T), then R^ x endowed with the to-
pology defined above is a linearly compact Lie algebra over R. Assume that E
is associated to Rk and that

By Lemma 15.3, Nt is associated to Rk + ι and the mappings (15.25) endow
and N^^ with structures of modules over ./£«,,*. We see that

,,*.

Rm,xJ™(E)x c JZ~\E)X , for m > 1 ,

and by (15.26) that

RϋtX.J2(E)x C JZ(E)X , for m > 0 .

Therefore J00(E)X is a linearly compact 7L ^-module and Λ ^ is a closed R^^-
submodule of J^{E)X.

Assume moreover that Rk is formally transitive. Then R^^ is a transitive Lie
algebra and by (15.26)

for m > 1; by Proposition 14.2 (iii), Ji(E)x and 7Vi?r are fundamental sub-
spaces of JOO(E)X and TV^ respectively. Thus J^(E)X is a geometric R^^-module,
and iV^^ is a closed geometric i^^^-submodule of J^(E)X. In § 19, we shall
show that every geometric module over a real transitive Lie algebra is isomor-
phic to a geometric module of the type N^^.

From Lemma 15.2, it follows that

δ(hm + 1) c Γ* (x) Λm , for all m > 0 .

For m > 0, the mappings

(15.37) T®hm + 1^hm ,

sending f (x) w into f A <5w, give us a representation of the abelian Lie algebra

Tx on the graded vector space

θ K,x,
w = 0
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which thus becomes a graded 7>submodule of ©~ = 0 SmT* (x) Ex. Formula

(15.26) implies that the diagram

*«,,<

(15.38) v-i πo®ε-i.πm \e-^πm_1

is commutative, where the top horizontal arrow is given by the R^ ^-module
structure of N^x, and the bottom horizontal arrow is the mapping (15.37) with
m replaced by m — 1. Now RiiX is a fundamental subalgebra of 7L,x, and Nt^
is a fundamental subspace of N^^ satisfying

we identify Tx with the quotient R^JRi^ via the exact sequence

(15.39) o > Rl,x > R^ v~l'π\ τx > 0 .

According to § 14, the graded vector space

has the structure of a Γ^-module. The commutativity of (15.38) implies that
the mapping

ψ'.&N^-* φ hmtX

is an isomorphism of 7^-modules. The dual mapping

(15.40) ψ*: 0/**,,-+(grΛL,,)*
m = 0

is therefore an isomorphism of graded S7>modules. The natural structure of
STx-module on 0 ~ = o ^*,* is the same as the one obtained according to [5,
Lemma 1] from the mappings δ: hm + 1 -> Γ* (g) hm. Set hm = 0 for m < 0; the
diagram

z/Λ^1) > Aj τΐ ® (NXέ/NZ,,) • Λ j + 1 Γ ί

I id(g)ψ I id(g)ψ I id(g)ψ

f\3~ι T* ®hm+1 x > t\3T*(g)hmx > /\s+1 Γ* (x) hm_γ x
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is easily seen to be commutative, where the mappings δ of the top row are the
coboundary operators for the Lie algebra cohomology

δ: Λ T* ® gr N^τ - > Λ ^ * ® gr #-, .

considered in § 14. If H%J denotes the cohomology of the bottom row of this
diagram, the mapping ψ induces an isomorphism

for all j , m > 0, and hence an isomorphism of graded vector spaces

We consider the formally transitive Lie equation Rk and let Rm = πmRk for
m < k. Let gm be the sub-bundle of SmJQ(T)* (x) /0(Γ) with possibly varying
fiber such that the sequence

0 > gm > Rm ^ > Rm^ > 0

is exact. Since [R%, Rξ] c R™+p, for all m, p > — 1, the graded vector space

is a graded Lie algebra. The natural isomorphism

gr^oo,*-> © 9n,x ,

sending the class of u ζ R™~J- in R™-χ/R™iX into πmu e gm,x, gives us a structure

of graded Lie algebra on ® ^ = 0 9m,x such that

\.9m,χ ) 9p,x\ ^ 9m + p-ί,x '

If 7?fc C Rk is a formally integrable Lie equation satisfying

then 7?̂  is associated to Rk + ί and R^^ is a closed ideal of the transitive Lie
algebra R^^, for x ζ X; moreover gr R^x is a graded ideal of gr ^oo,̂ .

Assume that the finite form Pk of the formally transitive Lie equation Rk is
formally integrable, and denote by Pk + ι its /-th prolongation. Let hι be the sub-
bundle 0*- 1 (g) id)A£ of SιJ0(T)* (8) JE1 with possibly varying fiber.
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Lemma 15.4. If X is connected and a,beX, there exists F £ Pk, with source F
— a, target F — b, and an isomorphism φ: Ea —> Eb such that

Proof. Let φ be a section of Pk + ι(a) over a simply connected neighborhood
U of a e X, and ω be the Rk + rconnection on U determined by (15.7) whose
curvature vanishes. Consider the covariant derivatives V on U with vanishing
curvatures which are induced by ω in the vector bundles J0(T)*, E, Nt and
Jt_λ{E) associated to Rk + i. By [9, Proposition 3.1], the covariant derivatives V
give us unique isomorphisms

for all x € X, such that the sections x >-» θx{ά) of J 0 ( Ό * a n d x •-• ψx(e) of £
over U, with # e /0(7")ί, e 6 £"α, are horizontal with respect to F. In fact, by
the construction of ω and V given above, we have θx — πλφ(x)~ι, for x e t/. By
Lemma 15.2, we have the exact sequence

0

of vector bundles over X; by [9, Proposition 3.2] and Lemma 15.1, we see that
ht is stable under the covariant derivative in SιJQ(T)* (x) E on U induced by
the covariant derivatives V in J0(T)* and E. Thus by [9, Proposition 3.2], we
have

The desired result therefore holds, for b 6 U, with F = πkφ(b) since X is con-
nected, it holds for all a.beX.

We continue to assume that the Lie equation Rk is formally transitive, that
E is associated to Rk and that

For x e l , let Z^ denote the transitive Lie algebra which is the semi-direct prod-
uct of R^^ and /0O(£') : r; then Lx is the abelian extension

of R^iX. By Proposition 14.6, we see that

LI = Jl(E)x X Ri,x

is a fundamental subalgebra of Lx and that the closed ideal JOQ(E)X of L x is de-
fined by a foliation in (Lx, L°); it is easily verified that
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US = DlxUx = JZ(E)X x RkJ™ ,

for m > 1. We may identify LJL™ with /mCE% X Rk + m,x. Let F^ be the abelian
Lie algebra LJL°X and L~λ = L^. Then TV^ C JJE)X is a closed abelian ideal
of Z^ and

N^x f) L™ = N™,x , for m > -1

moreover gr JV^ is a F^-submodule of the graded F^-module

According to Proposition 14.3 and [6, Proposition 1], there is an integer /0 > /
such that

H^(VX9 gc Lx) = 0 9

(15.41) H^iV,, gr NMtX) = 0 ,

for / = 1 , 2 and all m > /0, x e X
Proposition 15.1. Assume that X is connected and that Rk is formally transi-

tive. Let E be a vector bundle associated to Rk, and let Nt C Jt(E) be a differ-
ential equation such that

If a, b € X, there exist φ £ Qm(a, b) and an isomorphism ψ: JOD(E)a —> Joo{E)b of
topological vector spaces such that

E)a) = J%E\ , form>0,

φ(R^a) = R^b , ψ(N^a) = N^b

and the diagram

Λ., β ®/>(£). *JJE)a

(15.42) U U

commutes, where the horizontal arrows are given by the R^^-module structure
of JJJΪ)^ with x = a or b.

Proof Let m>l and ω an 7?fc + m+2-connection whose curvature vanishes on
a simply connected neighborhood U of a ς. X. The vector bundles Jm + j(E),
Rk + m + j are associated to Rk + m+2, for 7 = 0, 1, and so we may consider the co-
variant derivatives V with vanishing curvature induced by ω in these vector
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bundles and Rk + m® Jm + ι{E). By [9, Proposition 3.1], we obtain isomorphisms

ψ m + j , x ' ^ k + m + j , a > ^ k + m + j , x 5

Ψm + j.x- Jm + j(E)a - * Jm + j(E)x ,

for all χζ.U and / = 0, 1, such that

and the sections x ^ φm+jtX(ξ) of Rk + m + j and x ^ ψm + j,x(u) ofJm+j(E) over
U, with ξ e Rk + m + j,a, u e Jm + j(E)a, are horizontal with respect to F. By (15.32),
we may apply [9, Proposition 3.2] to the mapping (15.25) with / replaced by m
and these covariant derivatives to deduce that the diagram

(15.43) \φm,x®Ψm + l,x \ψm,x
Y Ύ

Rk + m,x <8> Jn + i(E)x • Jm{E)x

is commutative, where the horizontal arrows are given by (15.25). Moreover,
by [9, Proposition 5.4], we have

(15.44) [φm + Uξl φn + UvΆ = ΦmΛlξ, rj\) ,

for all ξ,η€ ^fc + m + i,α By Lemma 15.3, the bundles Nm + j9 for / = 0, 1, are
stable under the covariant derivatives F; therefore by [9, Proposition 3.2],

(15.45) ψ m + j , x ( N m + j , a ) = N m + jfX ,

for7 = 0, 1 and x e U. For./ = 0, 1, let

m + j,x ^al-^a ~ > ^xl^x

be the isomorphism ψm+jfX X φm + j,x', from the commutativity of (15.43) and
(15.44), we infer that

for ξ,η € LjL™+\ where the brackets are the ones induced by the brackets on
Lx and La. Now take m to be equal to the integer /„ > / considered above. By
the results of Guillemin and Sternberg [13], for x e U there exists an isomor-
phism Φx: La-+ Lx of transitive Lie algebras such that ΦX(L™) = L™, for all
m > 0, and such that the mapping LJLι

a° —• Lx/Lι

x° induced by Φx is equal to
ΦlQX. If ψx is the restriction of Φx to J^iE)^ then
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by the equality (15.45) with m = l0 and/ = 0. Hence the ideals tyJ
JJE)X and ψxW»,α) + N^x of Lx satisfy

JJE)X C ΨAJ^EX) + JΛE)X C JM(E)X + V« ,

N^,x C ψx(N^J + N^x C N^ + Li° .

Since (15.41) holds for all m > /0, by [10, Proposition 10.1] we know that Λ ^
is defined by a foliation in (Lx, Lι

x°). As JOO(E)X is also defined by a foliation in
(Lx, Lι

x% we see that

ψx(UE)a) C J»(E)X , ψx(N^a) C ^ ^ .

The same argument applied to Φ'1 gives us the equalities

and thus

Let φx: /?„,„->/{„,, be the isomorphism of transitive Lie algebras which makes
the diagram

0 0

JJE)a ^ > JJE),

0 0

commute. Since La and Lx are abelian extensions of R^^ and i?^^, the diagram
(15.42) commutes with b = x, φ = φx and ψ = ψx. Moreover φjβΐ) = R™ for
m> k, and the mapping RlQίa -> Rlo^x induced by φx is equal to φlθyX. There-
fore φx(R£) = Λ? for m > 0, and by the results of Guillemin and Sternberg
[13] there is an element of QJa9 x) which induces the isomorphism φx. Thus
the conclusions of the proposition hold for all b € U; since X is connected,
they also hold for all b e X.
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We still suppose that the Lie equation Rk is formally transitive, and that E
is associated to Rk. Using the method of proof of Lemma 15.2 and the formulas
(15.24) and (15.32), the proofs of [10, Lemma 10.4 and Theorem 10.1] can be
suitably modified in order to obtain the following generalizations of results of
[10, §10]:

Lemma 15.5. Let E be a vector bundle associated to a formally transitive Lie
equation Rk, and W a subspace of Ex9 with x e X, such that R°k,x' W C W. Then
there exists a sub-bundle F of E over a neighborhood U of x such that Fx = W
and

C & , for all I 6 ιk\U

If F is a closed Λ^-submodule of JJβ)x9 with x e l , we set Fι = F (Ί
JιJβ)x\ then RLiX'F° c F° and we can identify

g r F = © Fι/Fι+1

ί = - l

with a Γx-submodule of gr JJβ)x.
Theorem 15.1. Assume that X is simply connected, and that Rk is formally

transitive and formally integrable. Let E be a vector bundle associated to Rk9 and
F a closed R^x-submodule of JJJL)X, with x € X.

( i ) For all m > 1, there exists a unique differential equation Nm C Jm(E)
such that

Nm,x = πmF,

C ^ r m , foral!ξe3lk + ι .

(ii) For m > 1, we have

(iii) There is an integer I > 1 such that Hm~ul(Tx9 gr F) = Ofor all m > /.
If I is such an integer, NL is formally integrable and Nι + m is the m-th prolongation
of Nt. Moreover τrm(ΛQ = Nmfor m < /, and

Corollary 15.1. Assume that X is simply connected, and Rk is a formally
transitive and formally integrable Lie equation. Let E be a vector bundle associ-
ated to Rk, and F a closed R^ x-submodule ofJJfi)x, with x e X. There exist an
integer / > 0 and a unique formally integrable differential equation Nt C Jt(E)
such that

(15.46) nl)^ι Cjrit forξe
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These last results imply that, if X is simply connected and x e X, the mapping
between the set of differential equations Nt C Jt(E) in E satisfying (15.46) and
the set of closed 7^^-submodules of JOO(E)X, which assigns to NL the submodule
N^^ of Jca(E)x, is surjective; moreover, two such equations correspond to the
same submodule of JOO(E)X if and only if one of these equations is a prolonga-
tion of the other.

16. Characteristic varieties of geometric modules

Let L be a linearly compact Lie algebra over the field K, and E a linearly
compact L-module. Let L° a L, E° c E be open subspaces satisfying L°-E°
C E°. lfEk = Dk

LE° for k > 1, then according to Proposition 14.3,

(16.1) (g r£)* = © (Ek/Ek+ψ ,
k = -l

where E~ι = E, is a finitely generated graded module over the symmetric al-
gebra SV of V = L/L°. If M is an SF-module, we denote by J> M the annihi-
lator ideal of M; if K' is an extension field of K, we denote by f (M, AΌ the
subvariety of K* ® A r defined by the ideal J> M. We write

The natural projection mapping L —> F gives us a dual injective mapping
F*® A'7 -• L* (x) A', where L* is the topological dual of L. We denote by
y ( L , ^, A'OLO^O the image of τT°(L, £", AOLO,^ in L* ® A7. If £ is finite-di-
mensional, then °Γ(L, E, Kf)L^EQ — 0.

The proof of the following lemma is left to the reader.
Lemma 16.1. Let

0 _> M1 -> M -> M" -> 0

Z?̂  β/2 ^xαcί sequence of SV-modules. Then

^ M' ' ^ M" K— ^ M K— ^ M' l *s M"

and, if Kr is an extension field of K,

r{M, K') = i^(M\ K') U Ϋ"(M", K') .

Proposition 16.1. Let φ\L^»L" be a continuous epimorphism of linearly
compact Lie algebras, and E a geometric Lf'-module. If L° c L, L//o C L" are
open subspaces, and E° a fundamental subspace of E such that

φ(L°) C Lm , L"°.E° C E\
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then E° is a fundamental subspace of φ*E satisfying L° E° c E°; moreover, if Kr

is an extension field of K, we have

(16.2) (0* (x) id)(ir(L", E, K%fQtEo) = r(L, φ*E, K')LQ,EQ ,

where φ* (x) id: L"* ® K' -^ L* ® K' is the injective mapping induced by φ.
Proof Since

L° E° c L"° E° c £ ° ,

the first part of the proposition is obvious. Let V= L/L° and JV= L"jLm\ the
mapping ^ induces a surjective mapping p: V-+ W. Since the diagram

i K' τ w > L*®K'

is commutative, to prove (16.2) it suffices to verify that

(16.3) (p* <g> iάXrXL", E, K%,Q,Eΰ) = r\L9 E9 K')L^EQ .

We have

Ek = D>CLEO = DkL/Eo ^ for /c > 1 .

Then (16.1) is a graded module over SKand SW\ moreover, if p: SF—• SW
is the natural projection,

p a = p{p) a ,

for all pe SV, ae (gr E)*. Thus if J" C SW is the annihilator ideal of the
SPF-module (gr E)*9 the annihilator ideal of the SK-module (gr E)* is equal to
p~\J")\ now (16.3) is an immediate consequence of this fact.

The proof of the following proposition should be compared with that of [6,
Theorem 1].

Proposition 16.2. Let

0 > Ef - ^ E — U E" > 0

be an exact sequence of linearly compact L-modules, whose mappings are con-
tinuous. Let V c L, E'° C E\ E° c E, Em C E" be open subspaces such that

^ * ^ f/77/0\ J/77A Γ^ Ί70

C E'° , L° E° C E° , L° Έ"Q C

= 0(^0 Π E° , ψ(£°) C £ / /
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Assume that E" is a geometric L-module, and that E"° is a fundamental subspace

of E". lfKr is an extension field of K, then

r rp ΊζΓ\ ^ ( T Ff K.fΛ I J

Proof. For k > 0, set

Efk = Dk

LE/0 , Ek = Dk

LE°, E"k = Dk

LEm ,

E — T? j? ~ * — /T* E — E

Then

0(£'fc) = 0(£') n £ f c , ψ(Ek) c ^ / / f c

if we write F f c = ψ " 1 ^ 7 7 * ) , we have

LFk+ι c F f c , L°Fk C F fc ,

Ek a Fk, Fk+ι c F f c ,

and since E"° is a fundamental subspace,

k

Let ^ be a fixed integer; since the open subspace Ek + φ(Ef) of .E is a neigh-
borhood of φ(E'), by Proposition 14.1 (i) there exists an integer m such that

F™dEk + φ{Ef) ,

and hence

Consider the mapping

E'/lc/E"k+1 >Fk/(Ek + JF
fc+1)

sending the class of e" e Erfk into the class of an element e e Fk satisfying ψ(e)
= e" and the exact sequence

0 > (Fk+ι Π Ek)jEk+ι > Ek/Ek+1

( 1 6 6 ) Ψ

—!-> E//k/E/n+1 > F fc/(^ fc + i^fc+1) > 0 .

whose mapping ψ is induced by ψ: Ek -> ^ / / f c. For / > 0, we set
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the sequence

(16.7) 0 - > gίι+1) -* gk

l) - > h(

k

l) -• h$ϊ? -• 0 ,

whose mappings are induced by inclusions, is easily seen to be exact. The vector
space V = L/L° considered as an abelian Lie algebra has natural representa-
tions on the graded vector spaces

9{l) = Θ 9ίl), Λ(l) = Θ Ψ .
k k

If we set

where h{l){— l)k = hk

ιlu we obtain from (16.6) and (16.7) the exact sequences of

K-modules

(16.8) 0 > g(0) > gr E - ^ gr E" > hm{-1) > 0 ,

(16.9) 0 - > g { l + 1) -+ g ( l ) - > h i l ) -+ h ( l + l ) ( - 1 ) -• 0 ,

for / > 0. The mapping φ induces injective mappings of F-modules

(16.10) φ .gcE'^g™, for/>0,

(16.11) φ:gvE'^gvE

such that the diagrams

gτE'

gω

commute, for all /, m > 0.
We next verify certain properties of these K-modules.
Lemma 16.2. Let / > 0; the following assertions are equivalent:
( i ) the mapping (16.10) is an isomorphism of V-modules',
( i i ) for all m > 0, the mapping
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φ:gvEf -+ga + m)

is an isomorphism of V-modules
(iii) for all m > 0, the mapping

gU + m) _^ g(l)

is an isomorphism of V-modules;
(iv) for all k, we have

(16.13) Fk+ί + 1 Π Ek c Ek + ι + 0(£")

( v ) for all ky we have

(16.14) Fk+ι a Ek + φ(E')

(vi) hw = 0;

(vii) for all m > 0, we have ha + m) = 0.
Proof (i) => (ii) and (ii) => (iii) follow from the commutativity of (16.12).

Next, we remark that (iii) is equivalent to

pk + l + l p | pk (— J7k + \ _|_ pk + l + m + 1

for all k and m, and hence also by (16.5) to

Fk + ι + i n £k a f^ (E + Fk + ι + m + ι) = Ek + ι + φ{Ef) ,
ra = 0

for all /:, that is to (iv). We now show that (iv) implies (16.14) for all k > 0 by
induction on k. First, the inclusion (16.13) with k = — 1 is the same as (16.14)
with k = 0; if (16.14) holds for some k > 0, we deduce from (iv) that

Clearly, (v) implies that the mapping (16.10) is surjective and hence that it is
an isomorphism, showing that the assertions (i)-(v) are equivalent. Now h(l) = 0
if and only if

pk + l + ί /— I?k + 1 I fk + l + 2

for all k\ by (16.5), this last condition is equivalent to

Fk + ι + ι c Π (Ek + ι + Fk + ι + m) = Ek + ι + φ(E') ,
m = l

for all k, that is to (v). The equivalence of (vi) and (vii) follows from the exact-
ness of the sequence (16.7) or the equivalence of (v) and (vi), concluding the
proof of the lemma.
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We now return to the proof of the proposition. For / > 0, we write

= λ«>*

= © M(

k

l) , N{1) = © Nίl) , Nw(- 1) = © N™(- 1) ,
A
©

A;

where N{

k

l)(— 1) = ̂ - i The abelian Lie algebra V has natural representations
on the graded vector spaces Ma\ N(l), N(l)(— 1); we may consider these vector
spaces as graded modules over the symmetric algebra SV of V. The sequences
(16.8) and (16.9) give the exact sequences of SF-modules

(16.15) 0 > 7V(0)(-1) • (gr E")* - ^ (gr E)* > M(0) > 0 ,

(16.16) 0 -> N'ι + 1)(-1) -• N{1) -+ Ma) -> M(l+l) -> 0 ,

and (16.10) and (16.11) the epimorphisms of SF-modules

(16.17) φ*:Mw^(grEγ 9

for / > 0. Let Qa) be the kernel of the epimorphism of SF-modules (gr E)*
Ma\ We obtain the ascending chain of >SK-submodules of (gr E)*

c ρ(̂ υ c . . . c

by Proposition 14.3, (gr £ ) * is finitely generated and so this chain stabilizes.
Hence there exists an integer /0 > 0 such that Q(lo) = g^+ m> for all m > 0.
The mappings

are isomorphisms for all m > 0 and thus assertion (iii) of Lemma 16.2 holds
with / = /0. Therefore h{lo+m) = 0 and Nilo+m) = 0 for all m > 0, and (16.17)
is an isomorphism for all / > /„. By Lemma 16.1, since

(-ι\ κf) =
from the exact sequence (16.15) we deduce

(16.18) y((gr £ ) * , A Ό c -r(M ( 0 ) , A:O U

(16.19) -T(7V(0), AO C τT((gr E'O*, AO C τT((gr ^ ) * , AO U

and from (16.16) that

(16.20) 1T{M{l\ Kf) c ^ ( M α + 1 ) , A7) U ̂ ( ^ ( I ) , ^ 0

+ι\ Kf) C ^(7Vα), K') C -T(NU + 1\ Kf) U
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for all / > 0. We obtain by induction on /

(16.22) y((gr E)*, K') c r{M«\ Kf) U ^((gr £")*, AT') ,

for all / > 0; indeed, the inclusion (16.22) for / = 0 is (16.18) and, if (16.22)
holds for / > 0, then by (16.20), (16.21) and (16.19) we have

c y(Λ/"+1), K') u ^ ( # ( Z ) , AT7) U ^ ((gr£77)*, A:7)

C ^ ( M ( Z + 1), A7) U ^ ( N ( 0 ) , A:7) U

c y ( M ( Z + 1 ) , AT7) U

For / = /0, the inclusion (16.22) becomes

(16.23) τT((gr £)* , AΓO C τT((gr ^ 0 * , ^ ) U

On the other hand, since (gr is')* is a quotient of (gr E)*9 we have

(16.24) τT((gr ^ 0 * , AΓO C

and, since M(l) is a quotient of (gr E)*,

(16.25) iT(M ( ί ), K') c

We obtain by induction on /

(16.26) y((gr ^ / 7 ) * , AT7) <Z ̂ ((gr ^ ) * , AT7) U ^(Na\ K')

indeed, the inclusion (16.26) for / = 0 is given by (16.19) and, if (16.26) holds

for / > 0, then by (16.21) and (16.25) we have

'γ, K') c τT((gr E)*9 K') U rT(Na + 1\ K') U ^ ( M α ) , A:7)

c y^((gr^)*, A:7) U

For / = /0, the inclusion (16.26) becomes

(16.27) τΓ((gr £ " ) * , AΓO C

From (16.23), (16.24) and (16.27), we obtain the equality

0 * . AΓO U

which is the desired result.
We now deduce from Propositions 16.1 and 16.2 the following generalization

of Theorem 1 of the appendix of [27] and of [28, Theorem 9.1]:
Theorem 16.1. Let E be a geometric L-module; let L°, L'° be open subspaces

of L and E°, E/o fundamental subspaces of E such that
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L°Έ° C E° , L'°Έ/0 c E'° .

If Kf is an extension field of K, then

, E, K')LQ,EQ = rT(L, E9 K%Q>E

Proof First assume that E° = E'° and L° a Z/°; then apply Proposition
16.1 with L = L", Z/° = L"° and 0 the identity mapping of L to deduce the
result in this case. Next, if E° C E'° and L° = Lf\ by Proposition 16.2, with
E = E" and ψ the identity mapping of is, we see that the theorem holds under
these assumptions. If L° c L/o and .E0 C ^ / 0 , we derive the equality

from the previous cases. The general case now follows from the above; indeed^
we have

, E, K')LOr[L,o,EoΓ{EΌ = ^(L, E, K')L,0^E,Q .

We therefore write

T(L, E, K') = r(L, E, K')L0,E0

and call this subset of L* (x) Kf the characteristic variety of the geometric L-
module E over the extension field Kr of K. If L is a transitive Lie algebra,
which we consider as an L-module via the adjoint representation of L, we write
T(L9 Kf) = τT(L, L, î O

We have the following generalization of Theorem 2 of the appendix of [27]
and Proposition 9.3 of [28]:

Theorem 16.2. A geometric L-module E is finite-dimensional if and only if
iT{L, E, K') = 0 for all extension fields K; of K.

Proposition 16.1 can now be reformulated as
Proposition 16.3. Let φ: L-> L" be a continuous epimorphism of linearly

compact Lie algebras, and E a geometric L"-module. If Kr is an extension field
ofK, then

r{L9 φ*E, K') = (φ* <g> id)0T(£", E, K*)) ,

where (φ* (x) id): L"* ® Kr -> L* ® i^; w ίAe infective mapping induced by φ.
The main result of this section is
Theorem 16.3. Let

0 > Ef —-> ^ — % E" > 0

Z?̂  an exact sequence of geometric L-modules, whose mappings are continuous.
If Kf is an extension field of K, then

, E, K') = ir{L, E', K') U rT(L9 Eh\ K1) .
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Proof. Let L° be an open subspace of L, and E° c E, E"° c £ " funda-
mental subspaces such that L°-E° c £° and L° £ 7 7 0 c £ 7 7 0 . Replace £° by £°
(Ί -ψ " 1 ^ " 0 ) , and let E'° be the subspace of E' such that φ(E/0) = φ(E') Π £°;

we thus have constructed fundamental subspaces E/o c £ 7 , L 0 C £, £ / / 0 C is"
such that (16.4) holds. We then apply Proposition 16.2 to obtain the result.

We now deduce the following generalization of [28, Proposition 9.2] :
Corollary 16.1. Let φ: L—> L" be an epίmorphίsm of transitive Lie algebras,

and IczL, I" C L" be closed ideals of L and L" such that φ(ί) = I". Let Γ be
the closed ideal of L which is the kernel of φ: I->I". Then, if K' is an extension

field of K,

"T{L, I, K') = T(L, /', K') U (0* <g> id)(^(L / /, Γ\ K')) ,

where 0* (x) id: L"* (x) K' ^ L* (g) K! is the injective mapping induced by φ.
Proof The sequence

0 > Γ >I-?-+ φ*I" > 0

of geometric L-modules is exact, and so Theorem 16.3 together with Proposi-
tion 16.3 gives us the desired equality.

The following result is a special case of the above corollary or of [28, Prop-
osition 9.2]:

Corollary 16.2. Let φ: L—> L" be an epimorphίsm of transitive Lie algebras,
and let J be the kernel of φ. If K' is an extension field of K,

r{L, κf) = r{L, /, κr) u (φ* & id)er(L", *0) >

where φ* (x) id: Z/7* (x) Kf - • L* (g) K' is the mapping induced by φ.

Definition 16.1. We say that a geometric L-module E is elliptic if i^(L, E, K)
= 0. A closed ideal of a transitive Lie algebra L is elliptic if it is elliptic con-
sidered as an L-module.

Corollary 16.3. (i) Let φ'.L^L" be an epimorphίsm of transitive Lie al-
gebras, and I CZ L, I" C Z/7 be closed ideals of L and L" such that φ(I) = I".
Let Γ be the kernel of φ: /—> /". Then I is elliptic if and only if Γ and I" are
elliptic.

(ii) Let I be a closed ideal of a transitive Lie algebra L; then L is elliptic if
and only if I and L/I are elliptic.

Let £ b e a vector bundle over X, and Nt a Jt(E) be a formally integrable
differential equation. Let x € X, and Mx be the graded S7>module (15.36). Let
JUχ C STX be the annihilator ideal of Mx; if Kr is R or C, the variety
•rΓ(Mx, K') of Γ* (x) Kf defined by the ideal JMχ is called the characteristic
variety over Kf of the differential equation Nι a t x e l and is denoted by

The following description of the characteristic variety of Nt is a consequence
of [3, Proposition 6.3]:
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Proposition 16.4. If K' = R or C, the characteristic variety Ψ*'x(Nl9 K
f) is

equal to the set ofazT*(g)K' satisfying

(a1 <g> (Ex <g> Kf)) Π (hUx ® K') = 0 ,

where the intersection is taken in (SιT* (x) Ex) (x) K\

Definition 16.2. We say that Nt is elliptic if rTx(Nl9 R) = 0 for all x e X.
Now let Rk C Jk(T) be a formally transitive and formally integrable Lie

equation, and let Pk be a formally integrable finite form of Rk, whose m-th
prolongation we denote by Pk + m. Assume that the vector bundle E is associated
to Rk, and let NL C Jt(E) be a formally integrable differential equation such
that

From Lemma 15.4 and Proposition 16.4, we obtain
Lemma 16.3. If X is connected and a,b e X, there exists F e Pk, with source F

— «, target F = b, such that, if Kr = R or C, the image of Ψ*h{Nu K') under
the isomorphism

(y* o πJFo ί,*-1) (x) id: Γ* ® Kf -> Γ* ® K'

is equal to rra(Nl9 K').
Theorem 16.4. (i) If x e X and Kf = R or C, then the image ofTx{Nu K')

under the ίnjectίve mapping

π* o v * - 1 ® id: Γ* (x) Kf -> R%,x (x) K!

is equal to ^(R^, N^, K').

(ii) IfX is connected and a,b e X, there exists φ <= QJμ, b) such that
= R^^ and the image ofir{R00^ JV^, K') under the isomorphism 0*(x)id: i?ί j δ

(x) K! -> R*ia (x) K' is equal to i^(R^a, N«,,a, K'\ with K' = R or C.
(iii) If X is connected and x e X, then Nt is elliptic if and only if N^^ is an

elliptic R^^module.
Proof (i) Let x e l ; we identify Tx with the quotient R^JRl^ via the

exact sequence (15.39), and we consider the graded 7>modules gr JV^ and
®Z=ohm,x, as defined in § 15. From the isomorphism (15.40) of graded STX-
modules, we obtain

r(R^X9 N^X91?) = (π* o , * - ® i

By Lemma 16.1, we have

rx(Nl9 K') = -rί® hix,κ) = W© htx,κ'),
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and from these equalities we obtain the desired equality among characteristic
varieties.

(ii) If a, b e X, let F be an element of Pk9 with source F = a, target F = b,
satisfying the condition of Lemma 16.3. Since Pk is formally integrable, we can
choose φ <= QJμ) such that πmφ <= Pm9 for all m > k, and πkφ = F. Then
= R^ b and the diagram

is commutative; the result is now an immediate consequence of the property of
F.

(iii) This assertion follows directly from the definitions, (i) and (ii).
Assertion (ii) of Theorem 16.4 can also be derived from Proposition 15.1. In

fact, let φz Qoo(a,b), and ψ: Jca(E)a -> Joo(E)b be an isomorphism satisfying
the conditions of Proposition 15.1. Then ψ induces an isomorphism

such that

(gr ψ)*(p u) = (v-1oπ1φo v)(p) (gr ψ)*(κ) ,

for all /7 e STa, u e (gr TV^J*. From this identity, we deduce that the image of

yj(K0O>6, ^00,6, K') under the isomorphism

(y* o πλφ o v*-1) (x) id: T* Θ Kf -+ Γα* (x) K'

is equal to i^KR^a, N^^, Kf), and hence that (ii) holds.
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