METRIC RIGIDITY OF HOLOMORPHIC MAPS TO KÄHLER MANIFOLDS

MARK. L. GREEN

It is an interesting general question what differential-geometric invariants of a smooth map from a differentiable manifold V to a Riemannian manifold M are needed to determine the map up to congruence, i.e., up to composition with an isometry of M, or up to local congruence. For hypersurfaces in \mathbb{R}^n , the first and second fundamental forms are sufficient, and for a generic hypersurface in \mathbb{R}^n , $n \ge 4$, the first fundamental form alone is enough (see [3, Vol. II, p. 45]). In higher codimensions, the first fundamental form can be insufficient for the rigidity even of a generic map.

In the complex-analytic analogue, where V is a complex manifold, M a Kähler manifold with real-analytic Kähler metric, and the maps under consideration are holomorphic, it will be true in arbitrary codimension that a generic holomorphic map from V to M is determined up to local congruence by its first fundamental form. Our interest in the question arose from considering the special case of holomorphic curves in the Siegel upper half-plane suggested by Griffiths in [2], but the result turns out to be general. The method is based on Calabi [1].

The main theorem is

Theorem. A nondegenerate holomorphic map from a connected complex manifold V to a Kähler manifold M with real-analytic Kähler metric is determined up to local congruence in M by its first fundamental form.

Several of the above terms require explanation. Two maps f, g from V to M are *locally congruent* if for every $z \in V$, there is a local isometry F of M from a neighborhood of f(z) to a neighborhood of g(z) such that $g = F \circ f$ on a neighborhood of z. If M is also connected, simply-connected, and complete, this is the same for analytic maps as being congruent, as local isometries extend (see [3, Vol. I, pp. 255–256]).

By the first fundamental form we mean the pullback of the metric.

The notion of nondegeneracy is more complicated. The proof of the theorem will associate to each M a covering $\{U_{\alpha}\}_{\alpha \in A}$ by open sets and on each U_{α} a finite-dimensional family \mathscr{F}_{α} of real-analytic hypersurfaces of U_{α} . A map $V \xrightarrow{f} M$ will be said to be *degenerate* if $f(V) \cap U_{\alpha}$ lies in a hyperfurface in

Received October 18, 1976, and, in revised form, March 5, 1977.

 \mathscr{F}_{α} for some $\alpha \in A$ for which $f(V) \cap U_{\alpha} \neq \emptyset$. All other maps are *nondegenerate*. Thus a generic holomorphic map from V to M is nondegenrate. In certain cases, we can dispense with the covering $\{U_{\alpha}\}$ and simply call a map degenerate if its image lies in a countable union of finite-dimensional families of global real-analytic hypersurfaces on M, namely, if either

- (1) M is a projective algebraic variety with a Hodge metric or
- (2) M is a bounded domain in C^n with the Bergmann metric or
- (3) $H^{2}(M, \mathbf{R}) = H^{1}(M, \mathcal{O}) = 0.$

Before proceeding to the proof, we give some illustrative examples. Examples 1, 2, 3 are results of Calabi [1]; Example 4 is new and illustrates how complex the degeneracy condition can be. For simplicity, in these examples we treat only the case $V = \Delta$, the unit disc.

Example 1. $M = C^n$ with the Euclidian metric \langle , \rangle . The theorem is true with no degeneracy condition.

Proof. Following Lawson [4, p. 149], we show that if $f = (f_1, \dots, f_n)$, $g = (g_1, \dots, g_n)$ are two holomorphic maps, $\Delta \to \mathbb{C}^n$, and $\langle f, f \rangle \equiv \langle g, g \rangle$, then there exists a unitary transformation $U \in U(n)$ so that $g \equiv U \circ f$. This would suffice, for if we only knew $\langle f', f' \rangle = \langle g', g' \rangle$, where $f' = (f'_1, \dots, f'_n)$, etc., then $g' \equiv U \circ f'$, and integrating, g = Uf + b, so f and g are congruent if their first fundamental forms agree.

Applying $\partial^{i+j}/\partial z^i \partial \bar{z}^j$ to the equation $\langle f, f \rangle \equiv \langle g, g \rangle$ yields

$$\langle f^{(i)}, f^{(j)} \rangle = \langle g^{(i)}, g^{(j)} \rangle$$
 for all $i, j \ge 0$,

superscripts denoting coordinatewise derivatives. This implies there exists a unitary transformation $U \in U(n)$ so

$$g^{(i)}(0) = U(f^{(i)}(0))$$
 for all $i \ge 0$.

Hence the equation

$$g(z) = U \circ (f(z))$$

holds identically in z as the power series agree.

Example 2. $M = P_n$ with the Fubini-Study metric. The theorem is true with no degeneracy condition.

Proof. Choose homogeneous liftings $\tilde{f} = (f_0, \dots, f_n)$, $\tilde{g} = (g_0, \dots, g_n)$ of f and g such that f_0, \dots, f_n never all vanish simultaneously, nor do g_0, \dots, g_n . Then $f^*\omega = g^*\omega$ becomes

$$\partial \bar{\partial} \log \langle \tilde{f}, \tilde{f}
angle = \partial \bar{\partial} \log \langle \tilde{g}, \tilde{g}
angle \,.$$

Thus

$$\partial ar{\partial} \log rac{\langle ilde{f}, ilde{f}
angle}{\langle ilde{g}, ilde{g}
angle} = 0$$
 ,

so

$$rac{\langle ilde{f}, ilde{f}
angle}{\langle ilde{m{g}}, ilde{m{g}}
angle} = |lpha|^2$$

for some holomorphic function α . Replacing $\tilde{f} = (f_0, \dots, f_n)$ by the equivalent map $(\alpha f_0, \alpha f_1, \dots, \alpha f_n)$ and relabeling, we may assume $\alpha = 1$. Thus

$$\langle \tilde{f}, \tilde{f} \rangle = \langle \tilde{g}, \tilde{g} \rangle$$
.

By the result used in Example 1, there is a $U \in U(n + 1)$ so that $\tilde{g} = U(\tilde{f})$ holds identically, and hence g and f differ by an isometry of P_n .

Example 3. $M = \Delta$ with the Poincaré metric. The theorem holds with no degeneracy condition.

Proof. We may assume f(0) = g(0) = 0 without loss of generality. The condition $f^*\omega = g^*\omega$ is

$$\partial \overline{\partial} \log \left(1 - |f|^2\right) = \partial \overline{\partial} \log \left(1 - |g|^2\right),$$

so

$$\partial ar{\partial} \log rac{1-|f|^2}{1-|g|^2}=0 \ ,$$

and hence

$$\frac{1-|f|^2}{1-|g|^2} = |\alpha|^2$$

for some holomorphic function α . Writing a power series for the left-hand side in terms of z and \bar{z} , we see that the leading term after the initial 1 is divisible by $z\bar{z}$. The right-hand side looks like $(1 + a_k z^k + \cdots)(1 + \bar{a}_k \bar{z}^k + \cdots) =$ $1 + 2 \operatorname{Re}(a_k z^k) + \text{higher order terms}$. The leading terms after 1 can thus never be equal, leading to a contradiction unless both sides are identically 1. So

$$\frac{1-|f|^2}{1-|g|^2}=1,$$

or $|f|^2 = |g|^2$ which implies that $g = e^{i\theta} f$ for some constant θ . Hence f and g differ by an isometry of Δ .

Example 4. $M = \Delta \times \Delta$ with the product Poincaré metric. The theorem holds, but there is a nontrivial degeneracy condition.

Proof. Let $f = (f_1, f_2)$, $g = (g_1, g_2)$, and without loss of generality we may take $f_1(0) = f_2(0) = g_1(0) = g_2(0) = 0$. The condition $f^*\omega = g^*\omega$ is

$$egin{aligned} &\partial ar{\partial} \log \left(1 - |f_1|^2
ight) + \partial ar{\partial} \log \left(1 - |f_2|^2
ight) \ &= \partial ar{\partial} \log \left(1 - |g_1|^2
ight) + \partial ar{\partial} \log \left(1 - |g_2|^2
ight), \end{aligned}$$

so

282

$$\frac{(1-|f_1|^2)(1-|f_2|^2)}{(1-|g_1|^2)(1-|g_2|^2)} = |\alpha|^2$$

for some holomorphic function α . By the same power-series argument as in the previous example, we see $\alpha \equiv 1$. Thus

$$(1 - |f_1|^2)(1 - |f_2|^2) = (1 - |g_1|^2)(1 - |g_2|^2)$$
,

which simplifies to

$$|f_1|^2 + |f_2|^2 + |g_1g_2|^2 = |g_1|^2 + |g_2|^2 + |f_1f_2|^2$$
.

By previous results, there thus exists $U \in U(3)$ such that

$$egin{pmatrix} f_1 \ f_2 \ g_1 g_2 \end{pmatrix} = U egin{pmatrix} g_1 \ g_2 \ f_1 f_2 \end{pmatrix}.$$

If $U = (a_{ij})$, we have

Thus

$$a_{11}g_1 + a_{12}g_2 = f_1 - a_{13}f_1f_2$$
,
 $a_{21}g_1 + a_{22}g_2 = f_2 - a_{23}f_1f_2$.

If the matrix

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

is nonsingular, by solving for g_1 and g_2 and substituting in the third equation we obtain a polynomial equation in f_1 and f_2 of degree ≤ 4 . This equation may be seen to be trivial only in case U has one of the two forms

$$\begin{pmatrix} e^{i\theta_1} & 0 & 0 \\ 0 & e^{i\theta_2} & 0 \\ 0 & 0 & e^{-i(\theta_1+\theta_2)} \end{pmatrix}, \qquad \begin{pmatrix} 0 & e^{i\theta_1} & 0 \\ e^{i\theta_2} & 0 & 0 \\ 0 & 0 & e^{-i(\theta_1+\theta_2)} \end{pmatrix},$$

which imply f and g differ by an isometry of $\Delta \times \Delta$. If the matrix

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

is singular, we obtain a nontrivial polynomial relation among f_1 , f_2 of degree ≤ 2 .

Conversely, if f_1 , f_2 satisfy a relation arising in this way, there will be a $g = (g_1, g_2)$ so $g^*\omega = f^*\omega$ but not differing from f by an isometry of $\Delta \times \Delta$. We thus need the assumption that $f(\Delta)$ does not lie in a member of our finite-dimensional family of hypersurfaces to assure rigidity.

Our interest in this example arose as follows. We may equivalently view $\Delta \times \Delta$ as $\mathscr{H} \times \mathscr{H}$, where \mathscr{H} is the upper half-plane. It lies inside the Siegel upper half-space \mathscr{H}_2 of genus 2 as diagonal matrices in \mathscr{H} , and the metric is the restriction of the invariant metric on \mathscr{H}_2 considered by Siegel. It is not hard to show, as a consequence of Example 4, that the theorem requires a nontrivial degeneracy condition in order to hold for \mathscr{H}_2 with this metric. Thus, while the only differential invariant of a generic holomorphic family of abelian varietries parametrized by a complex manifold will be the pullback of the invariant metric on \mathscr{H}_g by virtue of the main theorem, this example shows that there do exist cases where this is not enough to determine the family up to isometries of \mathscr{H}_g . See [2] for a discussion of this question.

Example 5. An example similar to the foregoing was suggested by the referee, to whom the author wishes to express his thanks. Consider $M = P_1 \times P_2$ with the product of the Fubini-Study metrics

$$\omega = i\partial\partial \log \left[(1 + |x|^2)(1 + |y_1|^2 + |y_2|^2) \right].$$

We may embed C (or P_1) by

$$f(z) = (x; y_1, y_2) = (z; z^2, z^4),$$

$$g(z) = (x; y_1, y_2) = (z^3; z, z^2).$$

In $H^2(M, Z) \simeq Z^2$, the cohomology classes are

$$[f(\mathbf{P}_1)] = (1, 4), \qquad [g(\mathbf{P}_1)] = (3, 2).$$

Thus there can be no biholomorphic map F of M to itself so that $g = F \circ f$ on topological grounds. They are isometric since

$$f^*\omega = g^*\omega = i\partial\bar{\partial}\log\left(1 + |z|^2 + |z|^4 + |z|^6 + |z|^8 + |z|^{10}\right).$$

Example 6. Let M = G(2, 4), the Grassmannian of lines in P_3 , embedded as a quadric Q in P_5 by Plücker coordinates. We take the metric ω induced from the Fubini-Study metric on P_5 . If $\Delta \xrightarrow{f} Q$, $\Delta \xrightarrow{g} Q$ are two holomorphic maps with $f^*\omega = g^*\omega$, then by the theorem for profective spaces, there is an isometry U of P_5 such that $f = U \circ g$. If U(Q) = Q, then U is an isometry

MARK L. GREEN

of G(2, 4), and they all arise in this way. If not, then $f(\Delta) \subset Q \cap U(Q)$, a hypersurface of G(2, 4). Thus $f^*\omega = g^*\omega$ implies that f and g differ by an isometry of G(2, 4), unless $f(\Delta)$ lies in the finite-dimensional family of hypersurfaces $Q \cap U(Q)$, $U \in U(n + 1)$, $U(Q) \neq Q$. If $f(\Delta)$ does lie in $Q \cap U(Q)$, $U \in U(n + 1)$, $U(Q) \neq Q$, then as long as f lies in no proper algebraic subvariety of $Q \cap U(Q)$, $g = U \circ f$ is not congruent to f by an isometry of G(2, 4), but $g^*\omega = f^*\omega$.

For a general projective algebraic variety $M \longrightarrow P_N$ with the metric induced from the Fubini-Study metric by the embedding, we have that a holomorphic map $V \xrightarrow{f} M$ is determined up to congruence by an isometry of M unless $f(V) \subset M \cap U(M), U \in U(N + 1), U(M) \neq M$.

With this as motivation, we proceed to the proof of the main theorem. This is surprisingly elementary, once we employ an ingenious idea due to Calabi [1], the diastasis function.

If ω is the (1, 1)-form representing a Kähler metric on M, locally there is a real valued function Φ such that $\omega = i\partial \bar{\partial} \Phi$. This can be done globally if $H^2(M, \mathbb{R}) = H^1(M, \mathcal{O}) = 0$, or if ω is the Bergmann metric on M. If the metric is real-analytic, then Φ has a power series in $z_1, \dots, z_n, \bar{z}_1, \dots, \bar{z}_n$,

$$\varPhi(z, \bar{z}) = \sum b_{I,\bar{J}} z^I \bar{z}^J$$

written here in multi-index notation. We can then define

$$\Phi(z, \overline{w}) = \sum b_{I,J} z^I \overline{w}^J$$

as a function of two variables. The *diastasis function* D(z, w) is defined by

$$D(z,w) = \Phi(z,\bar{z}) + \Phi(w,\bar{w}) - \Phi(z,\bar{w}) - \Phi(w,\bar{z}),$$

which is symmetric, real-valued, and D(z, z) = 0 for all z. Although there is some ambiguity in the choice of Φ , this drops out when we define D, which depends only on the metric.

Two properties of the diastasis we will need are:

(1) if $\rho(z, w)$ is the distance function on *M* for the given metric, then for *w* near *z*, $D(z, w) = \rho(z, w)^2 + O(\rho(z, w)^4)$,

(2) if $M_1 \subset M_2$ and if the metric on M_1 comes from the metric on M_2 by restriction, then the same is true of their diastases.

Let K be a compact subset of M such that the diastasis is defined everywhere on $K \times K$. An N-tuple $(p_1, \dots, p_N) \in K^N$ will be said to have property P if the map $K \to \mathbb{R}^N$, $p \to (D(p, p_1), \dots, D(p, p_N))$ is injective.

Lemma 1. For N sufficiently large, a generic point of the image of $K^N \to \mathbb{R}^{\binom{N}{2}}$, $(p_1, \dots, p_N) \to (D(p_i, p_j)), 1 \le i \le j \le N$, has the property that every preimage has property P. Here "generic" means the complement of a lower-dimensional real-analytic subvariety.

284

Proof. Let $E_{p,q} = \{s \in K \mid D(p, s) = D(q, s)\}$, and $E_{p,q}^N$ denote its N-fold Cartesian product. Then an N-tuple has property $P \leftrightarrow$ it lies in $K^N - \bigcup_{p,q \in K} E_{p,q}^N$. Let $n = \dim_C M$. As $D \equiv \rho^2$ up to $O(\rho^4)$, the dimension of the image of $K^N \to \mathbb{R}^{\binom{N}{2}}$ is at least $2nN - \dim O(2n)$, which is what we get for the Euclidean metric on \mathbb{R}^{2n} . The image of $\bigcup_{p,q \in K} E_{p,q}^N$ has real dimension $\leq N(2n-1) + 4n = 2Nn + 4n - N$. So for $N \geq 4n + \dim O(2n)$, the points in the image of K^N having a preimage for which property P fails are contained in a real-analytic hypersurface of the image.

Lemma 2. Given compact sets K_1 , K_2 in M such that the diastasis is defined on $K_1 \times K_1$ and $K_2 \times K_2$, for N sufficiently large, for a generic $(p_1, \dots, p_N) \in K_1^N$ and any $(q_1, \dots, q_N) \in K_2^N$ such that $D(p_i, p_j) = D(q_i, q_j)$ for all $1 \le i \le j \le N$, then there exists a unique local isometry F of M defined on K_1 so $q_i = F(p_i)$ for all $i = 1, \dots, N$. Here generic means outside a lower-dimensional real-analytic subvariety of K_1^N .

Proof. Consider the maps $K_1^N \xrightarrow{F_1} \mathbf{R}^{\binom{N}{2}}, K_2^N \xrightarrow{F_2} \mathbf{R}^{\binom{N}{2}}$ defined as in Lemma 1. If a generic point of the image of $F_1(K_1^N)$ does not lie in $F_2(K_2^N)$ for N sufficiently large, there is nothing to prove. If it does, then we may choose (p, \dots, p_N) so its image satisfies the conclusion of Lemma 1 for both maps.

Let $S(p_1, \dots, p_N) = \{(q_1, \dots, q_N) \in K_2^N | D(p_i, p_j) = D(q_i, q_j) \text{ for all } 1 \le i \le j \le N\}$ $j \leq N$. For any $p \in K_1$, there is at most one $q \in K_2$ so that $D(p, p_i) = D(q, q_i)$ for all $i = 1, \dots, N$. Therefore, if we take $S(p_1, \dots, p_N, p_{N+1})$, the projection $K_2^{N+1} \rightarrow K_2^N$ induces an inclusion in $S(p_1, \dots, p_N)$. Now by compactness, $S(p_1, \dots, p_N)$ contains at most a finite number of irreducible components besides the one containing the images of (p_1, \dots, p_N) under local isometries of M. We can cut away all extraneous matter by the following procedure. Assume $(q_1, \dots, q_N) \in S(p_1, \dots, p_N)$ but there is no local isometry F as in the statement of the lemma. If we can find $p_{N+1} \in K_1$ so that there is no $q_{N+1} \in K_2$ with $D(q_{N+1}, q_i) = D(p_{N+1}, p_i)$ for all $i = 1, \dots, N$, then there is no element of $S(p_1, \dots, p_{N+1})$ with q_1, \dots, q_N as its first N entries. Otherwise, for all $p_{N+1} \in$ K_1 there exists a unique $q_{N+1} \in K_2$ with $D(q_{N+1}, q_i) = D(p_{N+1}, p_i), i = 1, \dots, N$ (uniqueness is by Lemma 1). Define $K_1 \xrightarrow{F} K_2$ by letting $F(p_{N+1})$ equal this unique q_{N+1} . If $D(F(p_{N+1}), F(p_{N+2})) = D(p_{N+1}, p_{N+2})$ for all $p_{N+1}, p_{N+2} \in K_1$, then F is a local isometry. If not, then by adjoining such a p_{N+1}, p_{N+2} , we get no element of $S(p_1, \dots, p_{N+2})$ with first N entries q_1, \dots, q_N . So by suitably increasing N, we eventually reduce $S(p_1, \dots, p_N)$ to {images of (p_1, \dots, p_N) under isometries of $M \} \cap K_2$. Given such a (p_1, \dots, p_N) , the isometry is unique as for all p, $D(F(p), q_i) = D(p, p_i), i + 1, \dots, N$; so by Lemma 1, |F(p)| is uniquely determined.

We may now prove the theorem. Let $V \xrightarrow{f} M$, $V \xrightarrow{g} M$ be two holomorphic maps with $f^*\omega = g^*\omega$. Then D(f(p), f(q)) = D(g(p), g(q)) for all $p, q \in V$, whenever D is defined. We may assume, by shrinking V, that $f(V) \subset K_1$, g(V)

 $\subset K_2$, where K_1 and K_2 are compact and D is defined on $K_1 \times K_1$ and $K_2 \times K_2$. If we can pick $z_1, \dots, z_N \in V$, and N as in Lemma 2, so that $f(z_1), \dots, f(z_N)$ is generic in the sense of both Lemmas 1 and 2, then as $D(f(z_i), f(z_i)) =$ $D(g(z_i), g(z_j))$ for all $1 \le i \le j \le N$, by Lemma 2 there is a unique local isometry F of M so $g(z_i) = F(f(z_i))$ for all $i = 1, \dots, N$. If for an open set of $z_{N+1} \in V, f(z_1), \dots, f(z_{N+1})$ is generic in the sense of Lemma 2, then $g(z_{N+1}) =$ $F(f(z_{N+1}))$ on an open subset of V and we are done. The only source of trouble is if for m = N or N + 1, we have $R(f(z_1), \dots, f(z_m)) = 0$ for $z_1, \dots, z_m \in V$, where R is a real-analytic function on K_1 containing the nongeneric (in the sense of Lemma 2) *m*-tuples of K_1 . Now fixing z_1, \dots, z_{m-1} , we get a relation $R(a_1, \dots, a_{m-1}, f(z)) = 0$, which either gives a hypersurface containing f(V) or else we obtain a real-analytic relation $R_1(f(z_1), \dots, f(z_{m-1})) = 0$ for all $z_1, \dots, f(z_{m-1})$ $z_{m-1} \in V$, which says that $(f(z_1), \dots, f(z_{m-1}))$ is an (m-1)-tuple making R vanish identically in last variable. In the latter case, by fixing z_1, \dots, z_{m-2} , we either get a hypersurface containing f(V) or a relation $R_2(f(z_1), \dots, f(z_{m-2})) = 0$ for all $z_1, \dots, z_{m-2} \in V$. Eventually this will lead to $R_{m-1}(f(z_1)) = 0$ for all z_1 $\in V$, hence a hypersurface containing f(V), if we do not get one beforehand. All the hypersurfaces which come up this way, starting from R (which depended only on M and the metric and not on f), belong to a finite-dimensional family, since V is finite-dimensional and hence so are the possible values of $f(z_1), \dots, f(z_n)$ $f(z_{m-1})$ which we fix in the intermediate stages. This completes the proof.

In case the diastasis D is globally defined, we can exhaust M by compact sets $K_1 \subset K_2 \subset \cdots$, and the degeneracy conditions become a countable union of real-analytic hypersurfaces.

The author is grateful to Phillip Griffiths, whose paper [2] suggested this problem. Conversations with Robert Greene were very helpful.

References

- [1] E. Calabi, Isometric imbedding of complex manifolds, Ann. Math. 58 (1953) 1-23.
- P. Griffiths, On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974) 775-814.
- [3] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
- [4] H. B. Lawson, Lectures on minimal submanifolds, Notes, Inst. for Pure-Appl. Math., Rio de Janeiro, Brazil.

UNIVERSITY OF CALIFORNIA, LOS ANGELES