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METRIC RIGIDITY OF HOLOMORPHIC

MAPS TO KAHLER MANIFOLDS

MARK. L. GREEN

It is an interesting general question what differential-geometric invariants of
a smooth map from a diίferentiable manifold V to a Riemannian manifold M
are needed to determine the map up to congruence, i.e., up to composition
with an isometry of M, or up to local congruence. For hypersurfaces in Rn,
the first and second fundamental forms are sufficient, and for a generic hyper-
surface in Rn, n > 4, the first fundamental form alone is enough (see [3, Vol.
II, p. 45]). In higher codimensions, the first fundamental form can be insuf-
ficient for the rigidity even of a generic map.

In the complex-analytic analogue, where V is a complex manifold, M a
Kahler manifold with real-analytic Kahler metric, and the maps under consid-
eration are holomorphic, it will be true in arbitrary codimension that a generic
holomorphic map from V to M is determined up to local congruence by its
first fundamental form. Our interest in the question arose from considering the
special case of holomorphic curves in the Siegel upper half-plane suggested by
Griffiths in [2], but the result turns out to be general. The method is based on
Calabi [1].

The main theorem is
Theorem. A nondegenerαte holomorphic map from a connected complex mani-

fold V to a Kahler manifold M with real-analytic Kahler metric is determined up
to local congruence in M by its first fundamental form.

Several of the above terms require explanation. Two maps /, g from VtoM
are locally congruent if for every z 6 V, there is a local isometry F of M from a
neighborhood of/(z) to a neighborhood of g(z) such that g = Fofon a neigh-
borhood of z. If M is also connected, simply-connected, and complete, this is
the same for analytic maps as being congruent, as local isometries extend (see
[3, Vol. I, pp. 255-256]).

By the first fundamental form we mean the pullback of the metric.
The notion of nondegeneracy is more complicated. The proof of the theorem

will associate to each M a covering {Ua}a€A by open sets and on each Ua a
finite-dimensional family ^a of real-analytic hypersurfaces of Ua. A map

V > M will be said to be degenerate if f(V) Π Ua lies in a hyperfurface in
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&'a for some a e A for which/(F) Π £/α =£ 0. All other maps are nondegenerate.
Thus a generic holomorphic map from V to M is nondegenrate. In certain
cases, we can dispense with the covering {Ua} and simply call a map degenerate
if its image lies in a countable union of finite-dimensional families of global
real-analytic hypersurfaces on M, namely, if either

(1) M is a projective algebraic variety with a Hodge metric or
(2) M is a bounded domain in Cn with the Bergmann metric or
(3) H2(M, R) = Hι(M, Θ) = 0.
Before proceeding to the proof, we give some illustrative examples. Examples

1, 2, 3 are results of Calabi [1]; Example 4 is new and illustrates how complex
the degeneracy condition can be. For simplicity, in these examples we treat
only the case V = Δ, the unit disc.

Example 1. M — Cn with the Euclidian metric <( , ) . The theorem is true
with no degeneracy condition.

Proof. Following Lawson [4, p. 149], we show that i f / = (fl9 , / J , g =
(gi> •••>£») a r e t w o holomorphic maps, Δ -* Cn, and </,/> = <g,g>, then
there exists a unitary transformation U e U(n) so that g = Uof. This would
suffice, for if we only knew </',/ '> = <g',g'>, where/' - (/ί, ••,/£), etc.,
then g' = Uof, and integrating, g = Uf + b, so f and g are congruent if their
first fundamental forms agree.

Applying dί+jldzίdzj to the equation </,/> = <g, g} yields

<fu\fU)> = <g(ί\ g(j)> for all f,y > 0 ,

superscripts denoting coordinatewise derivatives. This implies there exists a
unitary transformation U € U(ή) so

g«>(0) = £/(/m(0)) for all / > 0 .

Hence the equation

g(z)= Uo(f(z))

holds identically in z as the power series agree.
Example 2. M= Pn with the Fubini-Study metric. The theorem is true with

no degeneracy condition.
Proof. Choose homogeneous liftings / = (/0, , / J , g = (g0, , gn) off

and g such that fθ9 9fn never all vanish simultaneously, nor do gQ, •••,&,.
Then/*ω = g*ω becomes

3d log </, /> = dd log <g, g> .

Thus

dd log ^ ^ = o ,
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SO

for some holomorphic function a. Replacing / = (/0, , / J by the equivalent
map (af09 afl9 , afn) and relabeling, we may assume a = 1. Thus

By the result used in Example 1, there is a £/ € C/(« + 1) so that g = U(f) holds
identically, and hence g and / differ by an isometry of Pn.

Example 3. M = Δ with the Poincare metric. The theorem holds with no
degeneracy condition.

Proof. We may assume /(0) = g(0) = 0 without loss of generality. The con-
dition / * ω = g*ω is

a a l o g ( l - i / i 2 ) - a a l o g ( i -

so

and hence

i - l / P _

for some holomorphic function a. Writing a power series for the left-hand side
in terms of z and z, we see that the leading term after the initial 1 is divisible
by zz. The right-hand side looks like (1 + akz

k + • • • ) ( ! + άkz
k + •) =

1 + 2 Re (akz
k) + higher order terms. The leading terms after 1 can thus never

be equal, leading to a contradiction unless both sides are identically 1. So

i - l / T _ i

i - \gf

or I/ | 2 = |g|2 which implies that g = eίθf for some constant θ. Hence / and g
differ by an isometry of Δ.

Example 4. M = Δ X Δ with the product Poincare metric. The theorem
holds, but there is a nontrivial degeneracy condition.

Proof. Let / = (/i,/2), g = (gl9 g2), and without loss of generality we may
take/XO) =/ 2(0) = gx(0) = g2(0) = 0. The condition f*ω = g*ω is

a a l o g ( l - i Λ i 2 ) + a a l o g ( i - | / 2 | 2 )

= 3d log (1 — |gi|2) + 3d log (1 — |g2 |
2) ,
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SO

(l - 1/iFXl - l/2|
2) _

for some holomorphic function a. By the same power-series argument as in
the previous example, we see a Ξ 1. Thus

which simplifies to

I/1I2 + l/2|
2 + \g&\2 = \gi\2 + \g*\2

By previous results, there thus exists U e U(3) such that

If U = (ciij), we have

/ 2 = 02igi

Thus

= / 2 — #23/1/2

If the matrix

is nonsingular, by solving for gx and g2 and substituting in the third equation
we obtain a polynomial equation in/ x and/ 2 of degree < 4 . This equation may
be seen to be trivial only in case U has one of the two forms

eiθl 0 0
eiβ*

0

e x

0

0

0
0

e

which imply/and g differ by an isometry of J x J . If the matrix
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\a21 aj^ 2 2 '

is singular, we obtain a nontrivial polynomial relation among fl9f2 of degree

Conversely, if fl9 f2 satisfy a relation arising in this way, there will be a g =
(gi> £2) so g*ω = f*ω but not differing from / by an isometry of Δ X Δ. We
thus need the assumption that f(Δ) does not lie in a member of our finite-di-
mensional family of hypersurfaces to assure rigidity.

Our interest in this example arose as follows. We may equivalently view
Δ X Δ as 2/f X $P9 where $f is the upper half-plane. It lies inside the Siegel up-
per half-space 3tf 2 of genus 2 as diagonal matrices in 3rif9 and the metric is the
restriction of the invariant metric on J?2 considered by Siegel. It is not hard to
show, as a consequence of Example 4, that the theorem requires a nontrivial
degeneracy condition in order to hold for J^ 2 with this metric. Thus, while the
only differential invariant of a generic holomorphic family of abelian varietries
parametrized by a complex manifold will be the pullback of the invariant metric
on tfg by virtue of the main theorem, this example shows that there do exist
cases where this is not enough to determine the family up to isometries of tf g.
See [2] for a discussion of this question.

Έxample 5. An example similar to the foregoing was suggested by the re-
feree, to whom the author wishes to express his thanks. Consider M = PλχP2

with the product of the Fubini-Study metrics

ω = /331og[(l + |x|2)(l + | > Ί | 2 + |j>2|
2)] .

We may embed C (or Pτ) by

g(z) = (x;yl9y2) = (z3;z,z2) .

In H%M, Z) ^ Z2, the cohomology classes are

= (3, 2) .

Thus there can be no biholomorphic map F of M to itself so that g = Fo f on
topological grounds. They are isometric since

f*ω = g*ω = /33log(l + |z|2 + \zf + \zf + \zf + |z|10) .

Έxample 6. Let M = G(2, 4), the Grassmannian of lines in P3, embedded
as a quadric Q in P5 by Plucker coordinates. We take the metric ω induced

/ i

from the Fubini-Study metric on P6. If Δ • Q, Δ > Q are two holomor-
phic maps with/*ω = g*ω, then by the theorem for profective spaces, there is
an isometry U of Pδ such that / = Uog. If U(Q) = Q, then U is an isometry
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of (7(2, 4), and they all arise in this way. If not, then/(J) C g ί l U(Q), a hy-
persurface of G(2, 4). Thus f*ω = g*ω implies that / and g differ by an iso-
metry of G(2, 4), unless /(J) lies in the finite-dimensional family of hypersur-
faces Q Π U(Q), U e U(n + 1), U(Q) Φ Q. Iff{Δ) does lie in Q Π U(Q), U e
U(n + 1), U(Q) Φ Q, then as long as / lies in no proper algebraic subvariety
of Q Π U(Q)9 g = Uofis not congruent to / by an isometry of G(2, 4), but
g*ω =f*ω.

For a general projective algebraic variety Mc=—>PN with the metric induced
from the Fubini-Study metric by the embedding, we have that a holomorphic

/
map V > M is determined up to congruence by an isometry of M unless
f(V) C M Π U(M), U e U(N + 1), U(M) φ M.

With this as motivation, we proceed to the proof of the main theorem. This
is surprisingly elementary, once we employ an ingenious idea due to Calabi [1],
the diastasis function.

If ω is the (1, l)-form representing a Kahler metric on M, locally there is a
real valued function Φ such that ω = iddΦ. This can be done globally if
H2(M, R) = H\M, Θ) = 0, or if ω is the Bergmann metric on M. If the metric
is real-analytic, then Φ has a power series in zl9 , zn9 zί9 , Zw?

Φ(z, Z)=Σ bjjz1^

written here in multi-index notation. We can then define

Φ(z, w)=Σ bi)Jz
IwJ

as a function of two variables. The diastasis function D(z, w) is defined by

Z>(z, w) = Φ(z, z) + ΦO, w) — Φ(z, w) — Φ(w, z) ,

which is symmetric, real-valued, and D(z, z) = 0 for all z. Although there is
some ambiguity in the choice of Φ, this drops out when we define D, which
depends only on the metric.

Two properties of the diastasis we will need are :
(1) if p(z, w) is the distance function on M for the given metric, then for w

near z, D(z, w) = p(z, w)2 + 0(p(z, w)%
(2) if Mx C M2 and if the metric on Mλ comes from the metric on M2 by

restriction, then the same is true of their diastases.
Let K be a compact subset of M such that the diastasis is defined everywhere

on K X K. An TV-tuple (pl9 9pN) e KN will be said to have property P if the
map K->RN,p-> (D(p9 p,)9 , D(p, pN)) is injective.

(N)Lemma 1. For N sufficiently large, a generic point of the image of KN -^Ry2\

(Pi, " -, PN) —• WPi> Pj))> 1 <i<j' < N, has the property that every preίmage
has property P. Here "generic" means the complement of a lower-dimensional
real-analytic subvariety.
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Proof. Let EPiq = {s εK\D(p,s) = D(q, s)}, and E*q denote its TV-fold
Cartesian product. Then an TV-tuple has property P «-* it lies in KN —

p,q- Let n = άimc M. As D = p2 up to 0(p*)9 the dimension of the
(N\

image of Λ^ —> i?V 2 y is at least 2nN — dim 0(2w), which is what we get for the

Euclidean metric on R2n. The image of UP,q(zκ Ep,q has real dimension <

N(2n — 1) + 4/i = 2TV« + 4Λ — TV. So for TV > An + dim 0(2Λ), the points in

the image of KN having a preimage for which property P fails are contained in

a real-analytic hypersurface of the image.

Lemma 2. Given compact sets Klt K2 in M such that the diastasis is defined

on Kx X Kλ and K2 X K2, for TV sufficiently large, for a generic (pl9 , ? )̂ e K±

and any (ql9 , qN) <= Kξ such that D(pi9 p3) = D{qt, q3) for all 1 <i<j < TV,

then there exists a unique local isometry F of M defined on Kx so qt = F(pt) for

all i = 1, , TV. Here generic means outside a lower-dimensional real-analytic

subvariety of Kf.

Proof Consider the maps K? -^+ R^2\ Kξ - ^ R^ defined as in Lem-
ma 1. If a generic point of the image of Fλ{K±) does not lie in F2{K2) for TV
sufficiently large, there is nothing to prove. If it does, then we may choose
(P> ' '' 9 PN) S O its image satisfies the conclusion of Lemma 1 for both maps.

Let S(pl9 •• ,pN) = {(ql9 , qN) 6 Kξ\D(Pί,Pj) = D(qi9 q,) for all 1 < i <
j < TV}. For any p e Kλ, there is at most one q e K2 so that D(p,pί) = D(q, q^}
for all i = 1, , TV. Therefore, if we take S(pu ,pN,pN+ι), the projection
Kξ+1 —> Kξ induces an inclusion in S(pl9 -- 9pN). Now by compactness,
% 1 } -,pN) contains at most a finite number of irreducible components be-
sides the one containing the images of (pl9 , pN) under local isometries of M.
We can cut away all extraneous matter by the following procedure. Assume
(#i> * * 9 (IN) e S(P\9 ' ' ΊPN) but there is no local isometry F as in the statement
of the lemma. If we can find pN+1€ Kλ so that there is no qN+1 e K2 with
D((1N+i9 qd = D(PN+i9Pi) f° r all / = 1, , TV, then there is no element of
S(Pi, , PN+I) with ql9 - , qN as its first TV entries. Otherwise, for all pN+ί e
Kλ there exists a unique qN+1 e K2 with D(qN+l9 qt) = D(pN+1,pi), i = 1, . , TV

(uniqueness is by Lemma 1). Define Kx > K2 by letting F(pN+ί) equal this

unique qN+ι. If D(F(pN+1), F(pN+2)) = D(pN+upN+2) for all pN+l9pN+2e Kl9

then F is a local isometry. If not, then by adjoining such a pN+ι9pN+2, we get

no element of S(pl9 ',pN+2) with first TV entries ql9 , qN. So by suitably

increasing TV, we eventually reduce S(pl9 , pN) to {images of (pl9 , pN)

under isometries of M) Π K2}. Given such a (pl9 ,pN), the isometry is unique

as for all /?, D(F(p), qt) = D(p,pi), i + I, — 9N; so by Lemma 1, [F(p) is

uniquely determined.

/ g
We may now prove the theorem. Let V > M9 V > M be two holomor-

phic maps with/*ω = g*ω. Then D(f(p),f(q)) = D(g(p),g(q)) for all p, q e V,
whenever D is defined. We may assume, by shrinking V9 that f(V) C Kl9 g(V)
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C K29 where Kλ and K2 are compact and D is defined on Kλ x Kλ and K2 X K2.
If we can pick zl9 , zN e V, and N as in Lemma 2, so that/foX ,f(zN)
is generic in the sense of both Lemmas 1 and 2, then as D(f(zί),f(zj)) =
D(g(zi), g(zj)) for all 1 < / < j < N, by Lemma 2 there is a unique local iso-
metry F of M so g(zτ) = F(f(zύ) for all z = 1, , TV. If for an open set of
ZN+I £ Kf(zi), - ,/(ZN+I) is generic in the sense of Lemma 2, then g(zN+1) =
F(f(zN+ί)) on an open subset of V and we are done. The only source of trouble
is i f form = iVor iV+ 1, we have R(f(zλ\ - , / (zJ) = 0 for zl9 > ,zmeV,
where R is a real-analytic function on Kλ containing the nongeneric (in the
sense of Lemma 2) m-tuples of Kλ. Now fixing zl9 , zm_1? we get a relation
R(au , am_1,f(z)) = 0, which either gives a hypersurface containing/(V) or
else we obtain a real-analytic relation Rλ{f{z^), -9f(zm_1)) = 0 for all z1? ,
Zm-\ e V> which says that (f(zλ), ,/(zm_!)) is an (m — l)-tuple making R
vanish identically in last variable. In the latter case, by fixing zl9 , zm_2, we
either get a hypersurface containing/(F) or a relation R2(f(z1), ,f(zm_2)) = 0
for all z1? , zm_2 € F. Eventually this will lead to Rm-λ{f{z^) = 0 for all zx

e V, hence a hypersurface containing/(F), if we do not get one beforehand.
All the hypersurfaces which come up this way, starting from R (which depended
only on M and the metric and not on / ) , belong to a finite-dimensional family,
since V is finite-dimensional and hence so are the possible values of /(z j , ,

f(zm~i) which we fix in the intermediate stages. This completes the proof.

In case the diastasis D is globally defined, we can exhaust M by compact
sets Kλ C K2 C , and the degeneracy conditions become a countable union
of real-analytic hypersurfaces.

The author is grateful to Phillip Griffiths, whose paper [2] suggested this
problem. Conversations with Robert Greene were very helpful.
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