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MANIFOLDS OF NEGATIVE CURVATURE

M. GROMOV

1. Statement of results

1.1. For a Riemannian manifold ¥ we denote by ¢*(¥) and ¢~ (V) respec-
tively the upper and the lower bounds of the sectional curvature, by vol (V)
the volume, and by d(V) the diameter.

1.2. Let V be an n-dimensional closed Riemannian manifold of negative
curvature and ¢~ (V) > —1. If n > 8, then vol (V) > C(1 + d(V)), where the
constant C > 0 depends only on 7.

Remark. This inequality is exact: For each » there exists an infinite sequence
V, with d(V,) — oo, i — oo, and with uniformly bounded ratio vol (V,)/d(V,).

Proof. Take a manifold V of constant negative curvature with infinite group
H,(V) (see [8]) and a sequence of its finite cyclic coverings.

Forn =4, 5, 6, 7 we shall prove here the following weaker result: vol (V)
> C(1 + d"¥(V)). Notice that arguments from § 4 show that for » > 4 an n-
dimensional manifold V with —e > ¢*(V) > ¢~ (V) > —1, ¢ > 0, satisfies:
vol (V) > C(1 + d(V)) where C depends on 7 and e.

1.3. Theorem 1.2 sharpens the Margulis-Heintze theorem (see [6], [4]) stat-
ing the inequality vol (V) > C = C,,. In this paper we prove the following gen-
eralization.

1.3A. Let X be a complete simply connected manifold of negative curvature
with ¢7(X) > —1. Let " be a discrete group (possibly with torsion) of iso-
metries of V. Then vol (X/I") > C, where C > 0 depends only on dim (X).

This fact is still true for manifolds of nonpositive curvature with ¢~ (X) >
—1 and negative Ricci curvature (see [5]). In the homogeneous case this is the
Kazhdan-Margulis theorem (see [9]).

The finiteness theorems

1.4. Combining § 1.2 with Cheeger’s results (see [1], [4]) we immediately
conclude:

For given n # 3 and C > 0 there exist only finitely many pairwise non-dif-
feomorphic closed n-dimensional manifolds ¥ with 0 > ¢*(V) > ¢~ (V) > —1
and vol (V) < C.

1.5. Counter-example for » = 3. There exists an infinite sequence of 3-di-
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mensional manifolds with uniformly bounded negative curvature and uniformly
bounded volume but pairwise not isomorphic one-dimensional homology groups
(although with uniformly bounded Betti numbers).

1.6. The homotopy theoretic version of Theorem 1.4 was announced in [7]
by Margulis for all n. Although Margulis’s statement is incorrect, his geometri-
cal ideas are extremely fruitful and widely used in this paper.

E. Heintze proved in [6] the homotopy type finiteness theorem with diameter
instead of volume. In fact the stronger result is true: For givenn =1, 2, - - -
and C > 0 there exist only finitely many pairwise non-diffeomorphic closed n-
dimenisonal manifolds ¥ with nonpositive curvature and with ¢~ (V) > —1
and d(V) < C. (For the proof see [5]).

Without assumption ¢*(¥’) < 0 only the Betti numbers of ¥ can be estimated
by curvature and diameter (see [3]).

Pinching

1.7. Another standard application of § 1.2 is the following:

For given n and C > 0, there exists an ¢ > 0 such that under one of the fol-
lowing two conditions a closed n-dimensional manifold ¥ admits a metric of
constant negative curvature:

I. vol(")<Con#3, —1>c*t(V)>c(V)> —1 —¢ (forn=3itis
unknown).

2. x| < Cniseven, —1 > c*(V) > c (V) > —1 — ¢, where y is the
Euler characteristic. (Compare with [4]).

Noncompact manifolds

1.8. Let V be a complete Riemannian manifold of negative curvature. If
¢ (V) > — oo and vol (V) < oo, then V has finite topological type, i.e., V is
diffeomorphic to the interior of a compact manifold with boundary.

1.9. D. Kazhdan informed me recently that Margulis proved this fact for
manifolds of strictly negative curvature, i.e., with ¢*(¥) < 0. In fact, Theorem
1.8 is still true for real analytic Riemannian manifolds of nonpositive curvature
(see [5]), but is not so for C=-manifolds (see § 5.1). For the homogeneous case
see [9].

2. Groups of isometries

2.1 For an isometry y: X — X we denote by d, = 4,(x), x € X the displace-
ment dist (x, yx), and for a group I" of isometries of X we set d, = d,(x) =

min, » §,, where e € I” is the identity element.
r#e
An isometry y is said to be semisimple if the function ¢, assumes its mini-

mum on X. If min, ., §,(x) = 0, then a semisimple isometry is said to be ellip-
tic and hyperbolic otherwise.



MANIFOLDS OF NEGATIVE CURVATURE 225

2.2. Let X be a complete simply connected manifold of negative curvature.
Then for an isometry y the functions §, and ¢ are geodesically convex, and &
is strictly convex outside of the set where 42 assumes its minimum. (See [2]).

2.3. If X is as above and y is hyperbolic, then there exists a unique geodesic
A invariant under y, and 4§, assumes its minimum on A. This is obvious and
well known.

2.4. We say that a group I" is almost nilpotent if it possesses a nilpotent
subgroup of finite index.

2.5. Let X be as in §2.2, and I" an almost nilpotent group of isometries
without elliptic elements. Let y € /" be an hyperbolic isometry, and 2 a geodesic
invariant under y. Then 2 is invariant under /', and /" is an infinite cyclic group.

Proof. This follows immediately from § 2.3.

2.6. Let X be a complete simply connected manifold of negative curvature,
and I" an almost nilpotent group of isometries. Then there exists a smooth non-
egative convex function ¢: X — R which is strictly convex at any point x ¢ X
where there is no (non-identical) element from /" whose displacement assumes
its minimum.

Proof. Take a nilpotent subgroup N C I' of finite index and any (non-
identity) element y from its center. There are only finitely many isometries
71>+ *» 7 conjugate to y (in I'). Take ¢ = X3}, J;..

2.7. Corollary. If X and I' are as above, then the function 6, does not as-
sumes its maximum; if I' has no semisimple elements, then 6 has no critical
points (in the sense to be explained below).

2.8. Generally our function f(x) = d,(x) is not smooth, but near each point
x € X it can be represented as the minimum of smooth functions f;, - - -, f,. A
point x is said to be noncritical if there exist a tangent vector ¢ at x such that
{t,dfiy >0,i=1,---,k,and x is said to be critical otherwise.

3. The groups generated by small isometries

3.1. For a group /', isometrically acting on X, we denote by I",(v), ¢ > 0,
v € V, the subgroup generated by all y € I” with §,(v) < e.

3.2. The Margulis lemma. Let V' be a complete Riemannian manifold with-
out closed geodesics of length less than 1 and with 1 > ¢*(X) > ¢~ (X) > —1.
Let I" be a discrete group of isometries of X. Then there exists a number ¢ =
¢, > 0 depending only on n = dim X such that for any point x ¢ X the group
I’ (v) is almost nilpotent.

For the proof and discussion see [4]. Notice that in [4] this lemma is presented
in a different form, but the proof given there serves our present needs as well.

3.3. Proof of Theorem 1.3A. If vol (X/I") < oo, then the function §, as-
sumes its maximum, say, at a point x € X. If §,(x) > ¢ = ¢,, where ¢, is as
above, the proof is finished. If §,(x) < ¢, then the group I",(x) is almost nilpo-
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tent, and the functions 6 and &, are equal in a neighborhood of x; but this
contradicts § 2.7.

3.4. Let X be a complete simply connected n-dimensional manifold of ne-
gative curvature with ¢~(X) > —1, and I” a discrete group of isometries with-
out elliptic elements. Let, 7,, - - -, 74, - - - € I be hyperbolic isometries, and let
ry,.---,I',--- C I be (uniquely defined) maximal cyclic subgroups contain-
ing, 7, - -+, 74, - - - correspondingly. Denote the sets (§,,)7'[0, ¢] by 4; C X.

If the groups I"; are pairwise not conjugate in /", and the number ¢ is chosen
equal to ¢ = ¢, from § 3.2, then for i + j and any y e /', the interection 4; N
rA; is empty; if the intersection 4; N yA; is not empty, then y € [';.

Proof. Take x e A,. If y(x) € 4;, j + i, then the group I',(x) can not be
cyclic because there are y’ € I'; with §,(v) < e and ¢ € I'; with 6,.(7(v)) < ¢
and so ¢/, y7'7"'y € I".(x). On the other hand, it follows from §3.2 and §2.5
that I”,(x) is infinite cyclic; so the contradiction proves the first statement and
an analogous argument proves the second.

3.5. Corollary. Let X, I’ and I'; be as above. If vol (X/I') < oo and
Miney 6p, < 36 = %e,, i = 1,2, -+ - (e, is again from § 3.2), then the number
of the subgroups I, is finite.

Proof. The volumes of the sets B, = A,;/I" are bounded away from zero,
the projections B, — X/I" are, according to § 3.4, injective and their images do
not intersect; therefore the number of B; and ['; is finite.

3.6. Proof of Theorem 1.8. Consider the universal covering p: X — V with
the group I' = n,(V) acting on X. From § 3.5 it follows that there exists a
positive number ¢’ such that for any x € X the group 7"..(x) has no hyperbolic
elements, and applying § 3.2 and §2.7 we conclude that outside of the set
X, = (6,)7'0,¢”] C X, ¢” = min (¢, ¢) and ¢ = ¢, from § 3.2 it follows that
the function 6, has no critical points. This function is /'-invariant and so de-
fines a positive function f on ¥ without critical points outside of the set f~'[0, ¢”’]
C V, ¢’ > 0. Since vol (V) < o we have f(v) — 0 as v — oo, and the appli-
cation of the Morse theory finishes the proof. (The function f(v) is not smooth,
but the Morse theory is obviously applicable for the functions described in § 2.8.)

4. The volume of the tube

4.1. Let 2 be a geodesic segment of length / in a manifold X, and let § ¢
[0, I] be the natural parameter in 4. Let J = J(6) be a Jacobi field normal to 2
with {J(0), J'(0)> = 0. Set f(6) = ||[J(6)|| and g(@) = ||J'(6)|. Notice that
f©6) < 2.

If0>c*(X)>c (X)) > —1, f(0) < 1, I > 1, then f(I) > f(0) + Cl(min(g(0),
£%(0))), where C > 0 depends only on dim X.

Proof. The curvature is nonpositive, so f* > 0, f”/ > 0 and (/%" > 2g°

Curvature is bounded and so g’ < Kf, where K is the norm of the curvature
operator. Using the last inequality we have
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150) — 8O < K [ fe)d= < Kof(®)

= k(0 + [ /@) < Ko(7©) + £/ 0)
< KO(0) + 020) ,

and for § < 1 we have g(d) > l—g—f—O)—K — 0. Integrating the inequality (f?)"” >

2 : : _ g ) 2 2 6°g*(0)
2¢* we obtain for § < min ((1, b=5500) SO 270 + EO
using the convexity of f we have f(/) > f(0) + (//9)(f(6) — f(0)). Combining
the last two inequalities and substituting 6 by min (1, ;) we get the needed
estimate.

4.2. Let X be a complet simply connected manifold of negative curvature
with ¢~ (X) > —1. Consider two points x;, x, € X with dist (x,, x,) = m and the
geodesic p joining x, and x,. Let #, and ¢, be unit tangent vectors at x, and x,
normal to y, and let « be the angle between #, and the vector #,” at x,, which is
parallel to #, along p. Consider two geodesic segments 2,, 2, of lengths /, /,
starting from x,, x, in the directions ¢, 7,. Denote by y,, y, the second ends of
these segments.

3
If [, > 1, then dist (y,, y,) > m + CII%Z—, where C > 0 depends only
m

on dim X.

This follows from the previous lemma by arguments of the standard com-
parison type (see [2]).

4.3. Let g be an isometry of the standard unit sphere S 2, Then it is obvi-
ous that for every N = 1, 2, - - . there exist points sy, - - -, sy € S*~% with the
following property: for any k = ---, —1,0, 1, - - -, dist (s, g¥s;) > CN~V4,
where i+ j, i, j=1,---,N, d =n—2 —rank(SO(n — 1)) =n — 2 —

ent (n ; 1), and C > 0 depends only on n.

4.4. Let X be a manifold asin §4.2, p C X a geodesic, and let y: X — X
be a hyperbolic isometry keeping x invariant. Denote by /" the group generated
by 7, and denote by 4, C X, 0 < ¢ < 1 the set 670, ¢].

Let n = dim X, and let 04, be the boundary of 4,. If dist (¢, 64,) > 2¢, and
there is a point y e 4, with / = dist (y, #) > 3, then vol (4,,/]") > CiFre",
where C > 0 depends onn, P, = 1 forn > 8, P, =Zforn=26,7,and P, =
i+ forn=4,5.

Proof. Take the projection x € p from y to g, and denote by S”~? the sphere
of all unit tangent vectors at x normal to x. The holonomy along g together
with y defines the isometry g of S™~2. Take points s, - -+, sy € S*?asin § 4.3
with N = ent (/") and the geodesic rays 2,, - - -, Ay starting at x in directions
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S, + + -, Sy. Take points y; € 2; N 94,, and suppose without loss of generality
that y = y,. If for all i dist (y;, ) > %/, then applying § 4.2 and § 4.3 we have
dist (y;, r*y) > B, i #j,k=---,—1,0,1, .-+, and 8 > 0 depends only on
n. Thus the lemma is proved.

If there is y; with dist (y;, ¢) < %/ and n > 3, then obviously vol (4,,/I") >
Cle™ which suits us as well.

4.5. Proof of Theorem 1.2. Consider the universal covering p: X — V, and
take isometries 7,, - - -, 7;, - - - representing the conjugacy classes of isometries
corresponding to all simple closed geodesics in X of length < 1¢,, where ¢, is
from § 3.2. Take the sets 4; = 671[0, ¢,], where I'; is the group generated by
7:- According to § 3.4 the projections 4,/I"; — V are injective, and their images
T, C V do not intersect (compare with § 3.5).

Take now two points v,, v, € V with dist (v,, v,) = d(V), and join them by
the shortest geodesic segment v. Consider the union 7 of all 7, intersecting v
and the ¢,-neighborhood U of v. It follows from § 4.4 that the set T'U U pro-
vides enough volume to finish the proof.

5. Examples
C=-manifolds of monpositive curvature

5.1. Start with a compact C~-surface V;, i = 1,2, - - - with the following
properties:

a. V, is diffeomorphic to the torus with two holes.

b. vol (V) < 100.

c. 0>c*(V)=c (V)= —1L

d. Boundary of ¥V, consists of two geodesics S; and S7,, of lengths 1/2¢ and
12+,

e. Near the boundary each manifold ¥; is flat (its curvature is zero).

Denote the product S;,; X V; by W,, where S, denotes the circle of length
1/2¢+, Boundary of W, consists of two tori B; = S; X S;,; and B = S,,; X
S?.,. Each manifold B/’ is canonically isometric to Bj,,, and by identifying all
pairs of isometrical tori we obtain the manifold W’ with boundary Bj. The
double W of W’is complete C~-manifold with finite volume, bounded non-
positive curvature but infinitely generated group H,(W).

5.2. The previous construction provides many other examples of C~-mani-
folds of nonpositive curvature but without real analytic metrics of nonpositive
curvature. The simplest one is the boundary of V' X V, where V is a compact
surface of positive genus with one hole and with the same geometry at the
boundary as manifolds ¥ from § 5.1.

Three-dimensional manifolds

5.3. Horns. We denote by /\* the 3-dimensional hyperbolic space with cur-
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vature — 1. Consider a horosphere S C /\* and the (convex) horoball B bound-
ed by S.

A horn is, by definition, the quotient H = B/I" where [’ is a discrete group
of isometries isomorphic to Z @ Z. Boundary of H is the flat torus S/I".

5.4. Tubes. Consider a geodesic ¢ C /\® and the set A(/) C /\° consisting
of all points @ ¢ A*® with dist (e, ) < /. A tube is, by definition, the quotient
B(l) = A(])/I" where I" is an infinite cyclic group generated by a hyperbolic
isometry y keeping p invariant. The boundary dB(/) of the tube B(/) is isometric
to a flat torus, and vol (B(/)) <100 vol (6B(!)).

5.5. Consider a tube B(/) and a horn H, and let I: dH — 0B(/) be an iso-
metry. Using the normal geodesic coordinates we can canonically extend / to a
map J: U, — B(l) where U, C H, ¢ < [, is the e-neighborhood of dH. Denote
by g(J) the metric in U, induced by J, and denote by g, the original metric in U..

It is obvious that if ¢ is kept fixed and / — oo, then the metric g(J) C=-con-
verges to g,.

5.6. Let T be a flat torus, and let 4 ¢ H,(T) be an indivisible element. Then
there exist a tube B(/) and an isometrical imbedding I: T — B(/) which maps
T isometrically onto the boondary of B(/), and the kernel of the induced homo-
morphism 7. : H(T)— Hy(B(])) is generated by A. If h; ¢ H,(T) is the sequence
of indivisible elements and 4#; — oo, then for the corresponding tubes B(/;) we
also have [; — oo.

Proof. Every tube is determined by three parameters: / and two parameters
of the isometry y (shift and rotation), and choosing these parameters in an
obvious fashion we construct the needed tubes.

5.7. Take now a complete noncompact orientable 3-dimensional manifold
V of curvature —1. One can find in ¥ a compact 3-dimensional submanifold
V, with the boundary consisting of k flat tori T3, - - -, T, and with the comple-
ment V\Int ¥ consisting of k horns bounded by these tori. According to § 5.6
we can find for every T; a tube with the boundary isometric to T}, and attach-
ing these tubes to ¥, we obtain a closed manifold with corners at 7,. Moreover
Lemma 5.6 shows that by this construction we can obtain infinitely many mani-
folds with different one-dimensional homologies. On the other hand, using § 5.5
we can smooth the corners providing our closed manifolds with metrics of uni-
formly bounded negative curvature. That gives the sequence ¥, of the manifolds
promised in § 1.5. In fact, the above construction gives the manifolds ¥V, with
—1>ct(V) > c (V) > —1 — ¢4, whereg; — 0, as i — oo,
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