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MANIFOLDS OF NEGATIVE CURVATURE

M. GROMOV

1. Statement of results

1.1. For a Riemannian manifold V we denote by c+(V) and c~(V) respec-
tively the upper and the lower bounds of the sectional curvature, by vol(F)
the volume, and by d(V) the diameter.

1.2. Let V be an ^-dimensional closed Riemannian manifold of negative
curvature and c~(V) > - 1 . If n > 8, then vol (V) > C(l + d{V)\ where the
constant C > 0 depends only on n.

Remark. This inequality is exact: For each n there exists an infinite sequence
Vi with d(Vi) —> oo, / —> oo, and with uniformly bounded ratio vol {Vi)jd{Vi).

Proof. Take a manifold V of constant negative curvature with infinite group
Hλ(V) (see [8]) and a sequence of its finite cyclic coverings.

For n = 4, 5, 6, 7 we shall prove here the following weaker result: vol (V)
> C(l + dι/3(V)). Notice that arguments from § 4 show that for n > 4 an n-
dimensional manifold V with — ε > c+(V) > c~(V) > — 1, ε > 0, satisfies:
vol (V) > C(l + d{V)) where C depends on n and ε.

1.3. Theorem 1.2 sharpens the Margulis-Heintze theorem (see [6], [4]) stat-
ing the inequality vol (V) > C = Cn. In this paper we prove the following gen-
eralization.

1.3A. Let X be a complete simply connected manifold of negative curvature
with c~(X) > — 1. Let Γ be a discrete group (possibly with torsion) of iso-
metries of V. Then vol(X/Γ) > C, where C > 0 depends only on dim(X).

This fact is still true for manifolds of nonpositive curvature with c~(X) >
— 1 and negative Ricci curvature (see [5]). In the homogeneous case this is the
Kazhdan-Margulis theorem (see [9]).

The finiteness theorems

1.4. Combining § 1.2 with Cheeger's results (see [1], [4]) we immediately
conclude:

For given n Φ 3 and C > 0 there exist only finitely many pairwise non-dif-
feomorphic closed ^-dimensional manifolds Fwith 0 > c+(V) > c~(V) > —1
and vol (V) < C.

1.5. Counter-example for n = 3. There exists an infinite sequence of 3-di-
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mensional manifolds with uniformly bounded negative curvature and uniformly
bounded volume but pairwise not isomorphic one-dimensional homology groups
{although with uniformly bounded Betti numbers).

1.6. The homotopy theoretic version of Theorem 1.4 was announced in [7]
by Margulis for all n. Although Margulis's statement is incorrect, his geometri-
cal ideas are extremely fruitful and widely used in this paper.

E. Heintze proved in [6] the homotopy type ίiniteness theorem with diameter
instead of volume. In fact the stronger result is true: For given n = 1, 2,
and C > 0 there exist only finitely many pairwise non-diffeomorphic closed n-
dimenisonal manifolds V with nonpositive curvature and with c~(V) > —1
and d(V) < C. (For the proof see [5]).

Without assumption c+(V) < 0 only the Betti numbers of V can be estimated
by curvature and diameter (see [3]).

Pinching

1.7. Another standard application of § 1.2 is the following:
For given n and C > 0, there exists an ε > 0 such that under one of the fol-

lowing two conditions a closed ^-dimensional manifold V admits a metric of
constant negative curvature:

1. vol(F) < C, n Φ 3, - 1 > c+(V) > c~(V) > -1 - ε, (for n = 3 it is
unknown).

2. \χ(V)\ < C,n is even, - 1 > c+(V) > c~(V) > - 1 - ε, where χ is the
Euler characteristic. (Compare with [4]).

Noncompact manifolds

1.8. Let V be a complete Riemannian manifold of negative curvature. If
c~(V) > — oo and vol (V) < oo, then V has finite topological type, i.e., V is
diffeomorphic to the interior of a compact manifold with boundary.

1.9. D. Kazhdan informed me recently that Margulis proved this fact for
manifolds of strictly negative curvature, i.e., with c+(V) < 0. In fact, Theorem
1.8 is still true for real analytic Riemannian manifolds of nonpositive curvature
(see [5]), but is not so for C°°-manifolds (see § 5.1). For the homogeneous case
see [9].

2. Groups of isometries

2.1 For an isometry γ: X-+ Xwe denote by <5r = δr(x), x e X the displace-
ment dist (x, γx), and for a group Γ of isometries of X we set δΓ = δΓ(x) =
m i n r e Γ δr9 where e e Γ is the identity element.

rΦe

An isometry γ is said to be semisimple if the function dr assumes its mini-
mum on X. If min^g^ δr(x) = 0, then a semisimple isometry is said to be ellip-
tic and hyperbolic otherwise.
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2.2. Let X be a complete simply connected manifold of negative curvature.
Then for an isometry γ the functions δr and δ2

r are geodesically convex, and δ2

is strictly convex outside of the set where δ2

γ assumes its minimum. (See [2]).

2.3. If X is as above and γ is hyperbolic, then there exists a unique geodesic
λ invariant under γ, and δr assumes its minimum on λ. This is obvious and
well known.

2.4. We say that a group Γ is almost nilpotent if it possesses a nilpotent
subgroup of finite index.

2.5. Let X be as in § 2.2, and Γ an almost nilpotent group of isometries
without elliptic elements. Let γ <= Γ be an hyperbolic isometry, and λ a geodesic
invariant under γ. Then λ is invariant under Γ, and Γ is an infinite cyclic group.

Proof. This follows immediately from § 2.3.
2.6. Let I b e a complete simply connected manifold of negative curvature,

and Γ an almost nilpotent group of isometries. Then there exists a smooth non-
egative convex function φ\ X-+ R which is strictly convex at any point x e X
where there is no (non-identical) element from Γ whose displacement assumes
its minimum.

Proof. Take a nilpotent subgroup N C Γ of finite index and any (non-
identity) element γ from its center. There are only finitely many isometries
γl9 , γk conjugate to γ (in Γ). Take φ= Σti δ2

r..

2.7. Corollary. If X and Γ are as above, then the function δΓ does not as-
sumes its maximum', if Γ has no semisimple elements, then δΓ has no critical
points (in the sense to be explained below).

2.8. Generally our function/(x) = δΓ(x) is not smooth, but near each point
x e X it can be represented as the minimum of smooth functions fl9 ,fk. A
point x is said to be noncritical if there exist a tangent vector t at x such that
ζt, dfy > 0, i = 1, , k, and x is said to be critical otherwise.

3. The groups generated by small isometries

3.1. For a group Γ, isometrically acting on X, we denote by Γe(v), ε > 0,
v <ε V, the subgroup generated by all γ € Γ with δγ(v) < ε.

3.2. The Margulis lemma. Let V be a complete Riemannian manifold with-
out closed geodesies of length less than 1 and with 1 > c+(X) > c~(X) > — 1.
Let Γ be a discrete group of isometries of X. Then there exists a number ε =
εn > 0 depending only on n = dim X such that for any point x e X the group
Γε(v) is almost nilpotent.

For the proof and discussion see [4]. Notice that in [4] this lemma is presented
in a different form, but the proof given there serves our present needs as well.

3.3. Proof of Theorem 1.3A. If vol (X/Γ) < oo, then the function dΓ as-
sumes its maximum, say, at a point x <= X. If δΓ(x) > ε = εn, where εn is as
above, the proof is finished. If δΓ(x) < ε, then the group Γε(x) is almost nilpo-
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tent, and the functions δΓ and δΓε are equal in a neighborhood of x; but this
contradicts § 2.7.

3.4. Let I b e a complete simply connected ^-dimensional manifold of ne-
gative curvature with c~{X) > — 1, and Γ a discrete group of isometries with-
out elliptic elements. Let, γlf ,γif ζ Γ b e hyperbolic isometries, and let
Γu , Γif c Γ b e (uniquely defined) maximal cyclic subgroups contain-
ing, γlf , γif correspondingly. Denote the sets (δΓί)~ι[0, ε] by At C X.

If the groups /\ are pairwise not conjugate in Γ, and the number ε is chosen
equal to ε = εn from § 3.2, then for i Φ j and any γ e Γ, the interection At Π
γAj is empty; if the intersection At Π γAt is not empty, then γ e rt.

Proof. Take x e At. If γ(x) e Ajf j Φ i, then the group Γ£x) can not be
cyclic because there are γ' € Γt with δf(y) < ε and γ" € Γ 3 with δr»(γ(v)) < ε
and so γ't γ~ιγ"γ e Γ£x). On the other hand, it follows from § 3.2 and § 2.5
that Γε(x) is infinite cyclic so the contradiction proves the first statement and
an analogous argument proves the second.

3.5. Corollary. Let X, Γ and Γt be as above. If vol (X/Γ) < oo and
min^g^ δΓi < \ε = \εn, i = 1, 2, (εn is again from § 3.2), then the number
of the subgroups Γι is finite.

Proof The volumes of the sets Bt = AJΓ are bounded away from zero,
the projections Bi —> X/Γ are, according to § 3.4, injective and their images do
not intersect; therefore the number of Bt and Γt is finite.

3.6. Proof of Theorem 1.8. Consider the universal covering p: X —> V with
the group Γ = π^V) acting on X. From § 3.5 it follows that there exists a
positive number ε/ such that for any x e X the group ΓΛ>(x) has no hyperbolic
elements, and applying § 3.2 and § 2.7 we conclude that outside of the set
Xo = O^Γ^O, ε"} C X, ε" = min (ε', ε) and ε = εn from § 3.2 it follows that
the function δΓ has no critical points. This function is jΓ-invariant and so de-
fines a positive function / on V without critical points outside of the set/'^O, ε"]
C V, ε" > 0. Since vol (V) < oo we have/(V) —> 0 as v —> oo, and the appli-
cation of the Morse theory finishes the proof. (The function f(v) is not smooth,
but the Morse theory is obviously applicable for the functions described in § 2.8.)

4. The volume of the tuhe

4.1. Let λ be a geodesic segment of length / in a manifold X, and let θ e
[0, /] be the natural parameter in λ. Let / = J(θ) be a Jacobi field normal to λ
with </(0), 77(0)> = 0. Set f(θ) = \\J(Θ)\\ and g(θ) = \\J'(Θ)\\. Notice that

f'(0) < g(θ).
If 0 > c+(X) > c'(X) > - 1 , /(0) < 1, / > 1, then/(/) > /(0) + C/(min(g(0),

g3(0))), where C > 0 depends only on dim X.
Proof The curvature is nonpositive, s o ^ > 0,/" > 0 and (f1)" > 2g2.
Curvature is bounded and so g/ < Kf where K is the norm of the curvature

operator. Using the last inequality we have
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\g{θ) - g(0)| < K \ f{τ)dτ < Kθf(ff)
Jo

Kβ(f(0) + Θg{θ)) ,

2g* we obtain for θ < min ((1, /„ = - ^ L Λ :f2iθ) > /2(0) +

and for θ < 1 we have g(0) > g ^ — θ. Integrating the inequality (f2)" >
1 + K

LΛ J/}°1.2 and
-f- AJ

using the convexity o f / w e have/(/) >/(0) + Qlθ){f(θ) - / ( 0 ) ) . Combining
the last two inequalities and substituting θ by min(l, /0) we get the needed
estimate.

4.2. Let X be a complet simply connected manifold of negative curvature
with c~(X) > — 1. Consider two points xl9 x2 e X with dist (xl9 x2) — m and the
geodesic μ joining xλ and x2. Let tx and t2 be unit tangent vectors at xλ and x2

normal to μ, and let a be the angle between tx and the vector t2

f at x1? which is
parallel to t2 along μ. Consider two geodesic segments λ19 λ2 of lengths ll9 l2

starting from xl9 x2 in the directions tl9 t2. Denote by y19 y2 the second ends of
these segments.

nr
If/i > 1, then dist (j^19 ̂ 2) > m + Clx— , where C > 0 depends only

1 + m2

on dim X.
This follows from the previous lemma by arguments of the standard com-

parison type (see [2]).
4.3. Let g be an isometry of the standard unit sphere Sn~2. Then it is obvi-

ous that for every N = 1, 2, there exist points sl9 - - -,sN e Sn~2 with the
following property: for any k = , — 1, 0, 1, , ά\st(sug

ksj) > CN'yd

9

where ί Φ j , i, j = 1, , N, d = n - 2 - rank (SO(n - 1)) = n - 2 -

ent ί j , and C > 0 depends only on n.

4.4. Let I b e a manifold as in § 4.2, μ C X a geodesic, and let γ: X —> X
be a hyperbolic isometry keeping μ invariant. Denote by Γ the group generated
by γ, and denote by Aε C X9 0 < ε < 1 the set ̂ [ 0 , ε].

Let n = dim X, and let d 4̂ε be the boundary of Aε. If dist (μ, dAε) > 2ε, and
there is a point y e Aε with / = dist (y, μ) > 3, then vol (A2ε/Γ) > ClPnεn

y

where C > 0 depends on n, Pn = 1 for rc > 8, Pw = f for π = 6, 7, and Pw =
•i- for Λ = 4, 5.

Proof. Take the projection x € μ from jμ to μ, and denote by Sn~2 the sphere
of all unit tangent vectors at x normal to μ. The holonomy along μ together
with γ defines the isometry g of Sn~2. Take points sl9 , sN € Sn~2 as in § 4.3
with N = ent (F71) and the geodesic rays λl9 , λN starting at x in directions
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sl9 , sN. Take points yt e λt Π d̂ 4g, and suppose without loss of generality
that y — yv If for all / dist (yi9 μ) > \l, then applying § 4.2 and § 4.3 we have
dist (yi9 γlcyj) > β, i φ j, k = , — 1, 0, 1, , and β > 0 depends only on
/2. Thus the lemma is proved.

If there is yt with dist (yi9 μ) < \l and n > 3, then obviously vol (A2JΓ) >
Clεn which suits us as well.

4.5. Proof of Theorem 1.2. Consider the universal covering p: X —» K, and
take isometries γ19 -,γi9 - - representing the conjugacy classes of isometries
corresponding to all simple closed geodesies in X of length < \εn9 where εn is
from § 3.2. Take the sets At = δr][0, εn], where Γt is the group generated by
Yi. According to § 3.4 the projections AJΓi -^ V are injective, and their images
Tt C V do not intersect (compare with § 3.5).

Take now two points vl9 v2 e V with dist (vl9 v2) = d(V), and join them by
the shortest geodesic segment v. Consider the union T of all Tt intersecting v
and the επ-neighborhood U of v. It follows from § 4.4 that the set T (J U pro-
vides enough volume to finish the proof.

5. Examples

C°°-manifolds of monpositive curvature

5.1. Start with a compact C°°-surface Vί9 ί = 1,2, with the following
properties:

a. Vί is diίfeomorphic to the torus with two holes.
b. v o l ^ ^ l O O .

c 0>c+{Vt)>c-(V%)> - 1 .
d. Boundary of Vt consists of two geodesies S and -̂+2 of lengths 1/2* and

l/2*+2.
e. Near the boundary each manifold Vt is flat (its curvature is zero).
Denote the product Si+1 X Vi by Wi9 where Si+1 denotes the circle of length

l/2ί+1. Boundary of Wt consists of two tori B\ = S\ x Sί+1 and B'{ = Si+1 X
S"+2. Each manifold B" is canonically isometric to B'i+l9 and by identifying all
pairs of isometrical tori we obtain the manifold Wf with boundary B[. The
double W of Wf is complete C°°-manifold with finite volume, bounded non-
positive curvature but infinitely generated group H^W).

5.2. The previous construction provides many other examples of C°°-mani-
folds of nonpositive curvature but without real analytic metrics of nonpositive
curvature. The simplest one is the boundary of V X V9 where V is a compact
surface of positive genus with one hole and with the same geometry at the
boundary as manifolds Vi from § 5.1.

Three-dimensional manifolds

5.3. Horns. We denote by /\3 the 3-dimensional hyperbolic space with cur-
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vature — 1. Consider a horosphere S C /\3 and the (convex) horoball B bound-
ed by S.

A horn is, by definition, the quotient H = B/Γ where Γ is a discrete group
of isometries isomorphic to Z 0 Z. Boundary of H is the flat torus S/Γ.

5.4. Tubes. Consider a geodesic μ C /\3 and the set ,4(7) C /\3 consisting
of all points a e /\3 with dist (β, μ) < I A tube is, by definition, the quotient
i?(/) == A(l)/Γ where Γ is an infinite cyclic group generated by a hyperbolic
isometry γ keeping μ invariant. The boundary dB(l) of the tube B(l) is isometric
to a flat torus, and vol (£(/)) < 100 vol (dB(l)).

5.5. Consider a tube B(l) and a horn H, and let /: d # -» d£(/) be an iso-
metry. Using the normal geodesic coordinates we can canonically extend / to a
map / : Uε -> B(l) where U, d H, e < I, is the ε-neighborhood of dH. Denote
by g(J) the metric in Uε induced by /, and denote by g0 the original metric in Uε.

It is obvious that if ε is kept fixed and / —» oo, then the metric g(J) C°°-con-
verges to gQ.

5.6. Let T be a flat torus, and let h <= H^T) be an indivisible element. Then
there exist a tube B{1) and an isometrical imbedding /: T —> B(l) which maps
Γ isometrically onto the boondary of B(l), and the kernel of the induced homo-
morphism I*: H^T) -> H^BQ)) is generated by Λ. If Λ̂  e Hλ(T) is the sequence
of indivisible elements and hj —> oo, then for the corresponding tubes B(l3) we
also have /y —> oo.

Proof. Every tube is determined by three parameters: / and two parameters
of the isometry γ (shift and rotation), and choosing these parameters in an
obvious fashion we construct the needed tubes.

5.7. Take now a complete noncompact orientable 3-dimensional manifold
V of curvature — 1 . One can find in V a compact 3-dimensional submanifold
Vo with the boundary consisting of k flat tori Tl9 , Tk and with the comple-
ment K\Int VQ consisting of k horns bounded by these tori. According to § 5.6
we can find for every Tt a tube with the boundary isometric to Ti9 and attach-
ing these tubes to Vo we obtain a closed manifold with corners at Tt. Moreover
Lemma 5.6 shows that by this construction we can obtain infinitely many mani-
folds with different one-dimensional homologies. On the other hand, using § 5.5
we can smooth the corners providing our closed manifolds with metrics of uni-
formly bounded negative curvature. That gives the sequence Vi of the manifolds
promised in § 1.5. In fact, the above construction gives the manifolds Vt with
— 1 > c+(FV) > c-(Vi) > - 1 - εi9 where ε*-> 0, as / -> oo.
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