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LINEARLY INDUCED VECTOR FIELDS
AND R2-ACTIONS ON SPHERES

GILDA DE LA ROCQUE PALIS

1. Introduction

We prove here results on the generic and structurally stable properties of li-
nearly induced vector fields and R’-actions on spheres. These actions are ob-
tained from linear actions on R™ which are naturally extended to the standard
sphere S™ via central projection. Similarly, one can use radial projection to get
quite a large number of vector fields and R*-actions on spheres which are struc-
turally stable or at least 2-stable.

In 1881 Poincaré [12] began the qualitative theory of polynomial vector fields
on the plane R’ looking at the central projection of their trajectories on the
sphere S? This work appears in other texts [3], [6], [11], [13] always in a form
similar to the original one. More recently Gonzalez [5] characterized the poly-
nomial vector fields on R? which are structurally stable in a neighborhood of
infinity. He also began the study of linearly induced vector fields on S°.

In §2 we consider linearly induced vector fields on the sphere S™. Let X(x)
= Ax be a linear vector field on R™. The central projection is the map which
associates to each point x = (x;, - - -, x,) of R* two points in S*, f(x) =
(xp -+, X, D/Ax and fi(x) = —(xy, - - -, Xp, 1)/dx where dx = (1 + xI +

.-+ 4 x2)¥2. The linearly induced vector fields Df(X) and Df;(X) extend
naturally to the whole S”, and one gets a vector field called the Poincaré vector
field #(X). Let z.(X) be its restriction to the equator S»! which is an invariant
set. The radial projection r: R* — 0 — S™7, z(x) = x/| x|, also induces a vector
field Dz(X) on the sphere S*.

Theorem 1. Let n(X), X(x) = Ax, be a Poincaré vector field on S™. Then
n(X) is a Morse-Smale vector field if and only if the eigenvalues of A have dis-
tinct (except for pairs of conjugate complex eigenvalues) nonzero real parts.

Let z(Z") be the set of Poincaré vector fields on S with the C"-topology,
r>1, and X C #(Z) the subset of structurally stable ones. In Theorem 2 we
prove that the Morse-Smale Poincaré vector fields on S™ form an open and
dense set in #(Z") which coincides with .

Similar results hold for linearly induced vector fields by radial projection, as
shown in Theorems 3 and 4.

Communicated by S. Smale, May 10, 1976.
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In the proof of Theorem 1 we exibit the phase diagrams of the Morse-Smale
vector fields on S™. It is not true in general that isomorphism between phase
diagrams implies topological equivalence. An example in .S? is given by Peixoto
[10]. In our context we have

Theorem S. Two Morse-Smale Poincaré vector fields on S™ are topologically
equivalent if and only if their phase diagrams are isomorphic.

Thus we obtain a complete classification up to a topological equivalence of
the Morse-Smale Poincaré vector fields on S™.

The work of Camacho [1], [2], introduced the study of actions of the group
R* X Z' on manifolds from the viewpoint of generic properties and structural
stability. In § 3 we study linearly induced R*-actions on spheres. Let p: R? —
Aut (R"*') be a linear action and - be the action +: GI(n + 1, R) — Dif (§"),
Y(Ax) = Ax||Ax| where A € Gl(n + 1, R) and x € S™. An action g of R* on S”
where g = o p is called a linearly induced action of R* on S™. If the action p
is generated by commuting linear vector fields X and Y in R**', then p is gener-
ated by Dz(X) and Dz(Y). Similarly one can use the central projection.

Theorem 6. Let p = o p be a linearly induced action of R* on S™ where
X(x) = Ax and Y(x) = Bx are generators of p. Then the compact orbits of p
are hyperbolic if and only if for some basis of R**!, A and B are represented as

(1) 4= dlag (219 ] 2n+1)9 B = dlag (219 ] Z7L+1) and (Zj - 21)(2l - Zz)
— (A; — )4, — 4;) # O for all distinct i, j, I,

SR 21;—1),

(i) 4 = diag ((g _5) PR z,H), B = diag ((%‘ _£>
B or B nonzero and
(@—2)B—@—2)B+0,
(@—=2)3 —2) — @—2)Q; —2) #0,
A =2 —24) — Ay — )& — 4) # 0

Dol

for all distinct i, j, 1.

Let «7(R?, S™) be the set of linearly induced actions of R? on S with the C”
(r > 1) topology.

Corollary. The set of linearly induced actions of R* on S™ having only hyper-
bolic compact orbits forms an open and nonempty set in /(R?, S™). This subset
is not dense in Z(R?, S™) for n > 3.

The following theorems characterize the £2-stability of these actions on S™
and the structural stability on S°.

Theorem 7. A linearly induced action of R® on S™ is Q-stable in <Z(R?, S™) if
and only if it has only hyperbolic compact orbits.

Theorem 8. A linearly induced action of R® on S° is structurally stable if and
only if all its compact orbits are hyperbolic.

Let y"(R?% S®) be the set of C7, r > 1, actions of R? on S°. From the C"-to-
pology on the space of C” vector fields on S° one can define in a natural way
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a Cr-topology on y"(R? S°) using generators of the actions. Then we have the
following theorem.

Theorem 9. A linearly induced R*-action on S* having only hyperbolic com-
pact orbits is structurally stable in y"(R?, S®).

It is an interesting open question if this last theorem is true for linearly in-
duced R’-actions on S™ when n > 4. Also one can pose similar questions for
actions of R*, k > 3.

The results which were announced in [7] and are presented here correspond
to the author’s doctoral thesis at the Institute forPure and Applied Mathematics
at Rio de Janeiro under the guidance of M. Peixoto. The author expresses her
gratitude to him, C. Camacho, J. Palis and to her colleagues at the Catholic
University of Rio de Janeiro for their constant support.

2. Linearly induced vector fields on spheres

Consider in R"*! the hyperplane R" = {y € R"*!|y,., = 1} and the sphere
S™ = {y e R*"|| y| = 1}. The central projection associates to each point x =
(xy, - -+, x,) of R* two points in S”, f(x) = (xy, - - -, X, 1)/dx and fi(x) =
—(xy, + v+, Xy, 1)/dx where dx = (1 + x} + - -+ +x%)% The points at infinity
in R™ are in a one-one correspondence with the points in the equator S*~! =
{yeS"|yp,1 =0} Let Uy, V,, p; and 4;, 1 < i < n + 1, be coordinate neigh-
borhoods and maps in S*:

U={peS"|y,>0}, i=1-,n+1,
V,={yeS"|y, <0}, i=1,.--,n4+1,
¢;: U, — R", () = -5V s Vus Vi s
Vi Vi R, () = o Vs s YV

where ¥, means that the ith coordinate y; is to be deleted.

Let X(x) = Ax be a vector field in R™ where 4 is an n X n constant real
matrix. By means of the central projection one gets the induced vector fields
Df(X) and Dfy(X) in the north and south hemispheres of S”. This field on S*
— 877! extends naturally to a field on the whole S”, which is denoted by z(X)
and called a Poincaré vector field. If X(x) = 4x where 4 = (a;,), 1l < i,j<n,
then the field z(X) is given in U, V;, i =1, - - -, n, by the following expressions:

(-5 (@pE) — x(as )X, - -+,
(@141, )F) — x(@ )X, - - -y —Xn(@;)(F)) »
where %; = (x,, - -+, 1, - - -,x,_,), 1 being the ith coordinate, 1 < r < i, i</

<'n, and (a;;)(%;) is the multiplication of the row matrix (a;;, - - -, a;,) by the
column matrix
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1
X

*xn——l

In U,,, and V,,,, n(X) is given by (337_; a;;x;, 271 @pjXj, ++ 5 2o her QnyXy)-

Note that the equator S™~! is an invariant set. Let #,,(X) be the restriction
of #(X) to S™~'. In particular if 4 = (a;;) is such that a;, = 0 for i + n and
a,; = 0 for j # n, then the (n — 1) X (n — 1) matrix B = (b;;), where b;; =
ay; for i + jand by, = a;; — s, is such that r,(X(x) = 4Ax) = a(Y(x) = Bx).
For X(x) = Ax a linear vector field in R™, the radial projection z: R* — 0 —
S™71, z(x) = x/| x|, also induces a vector field Dz(X) on the sphere S*~'. If n(X),
X(x) = Ax, is a Poincaré vector field on S”, then the linear vector field Y(x)
= Bx in R**', B = (64 8), is such that z(X) = Dz(Y). Also given a linearly
induced vector field Dz(Y) one has Dz(Y) = =_(Y).

A vector field X on a compact manifold M without boundary is called Morse-
Smale if

(1) X has only a finite number of critical elements (singularities and closed
orbits) all of which are hyperbolic,

(2) the stable and unstable manifolds of the critical elements of X have
transversal intersections,

(3) the «a and w-limit sets of every trajectory of X are critical elements.

The phase diagram of a Morse-Smale vector field X is the set of critical ele-
ments of X partially ordered by the relation: A < B if and only if W*(4) N
W*(B) # @, where W*(4) and W*(B) are the stable and unstable manifolds of
the critical elements A and B. We recall that the index of a hyperbolic critical
element is the dimension of its stable manifold. Let D(X) and D(Y) be the
phase diagrams of the Morse-Smale vector fields X and Y. A map H: D(X) —
D(Y) is a diagram isomorphism if it is bijective, index and order-preserving.
For more detailed discussion of the above definitions we refer to [8] and [14].

Theorem 1. Let n(X), X(x) = Ax, be a Poincaré vector field on S™. Then
n(X) is a Morse-Smale vector field if and only if the eigenvalues of A have dis-
tinct (except for pairs of conjugate complex eigenvalues) nonzero real parts. In
this case, the number of closed orbits is the number of pairs of complex conjugate
eigenvalues of A, and there are 2k + 2 singularities where k is the number of
real eigenvalues of A.

Proof. We may assume the operator A given, in standard coordinates, by a
matrix in real canonical form. The theorem can be proved by induction on the
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dimension n. The coordinate neighborhoods and maps (U,, ¢;), (V;, ;) are the
ones defined previously in this section.

For n = 2, n(X) is very simple and the result can easily be checked by
looking at the expressions of the vector field #(X) in the coordinate neighbor-
hoods considered. If X(x) = Ax in R? is such that A4 is not diagonalizable, then
7(X) has a nonhyperbolic singularity and the phase portrait looks like Fig. A.

2<0

Fig. A

If A is diagonalizable, then it has one of the following two forms:

o (o) oG )

In the first case, #(X) has only a finite number of singularities if and only if 2,
and 1, are nonzero and distinct. Furthermore these are sufficient conditions for
7(X) to be a Morse-Smale vector field. In the second case, z(X) has only a finite
number of closed orbits if and only if « is nonzero. Again this suffices for the
Poincaré vector field z(X) to be Morse-Smale. The phase portrait and diagrams
for these cases are given in Fig. B and Fig. C.

Assume the truth of the theorem for dimension less than #, and let us con-
sider the case where the dimension is n > 2.

If X(x) = Ax in R"* is such that 4 is not diagonalizable, then #(X) has a
nonhyperbolic critical element. In fact, if 4 has a real eigenvalue, from the ex-
pressions of the associated Poincaré vector field #(X) we conclude that =(X)
has a singularity such that its linear part at this fixed point has zero as eigen-
value. In the case where 4 has a complex eigenvalue, there is a nonhyperbolic
closed orbit. To see this it is useful to consider the previously mentioned rela-
tion between vector fields linearly induced by central and radial projection. Let
Y be the linear vector field in R™*! such that Dz(Y) = #(X), and Z, the flow
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Fig. B

a<O0, B>0

T
’ / \
o, o,

Fig. C

determined by Dz(Y). One can check that D,Z, has 1 as eigenvalue with multi-
plicity greater than one, where < is the period of some closed orbit y and g a
point in 7. It then follows that y is nonhyperbolic.

If A is diagonalizable we have to consider two possibilities:

(I) A has a real eigenvalue.

— di & —p X P Ay —Pm

Let A = diag (( ) i), (/32 i), ---,<[Bm £m>,21, ---,Zk), where

pi#0fori=1,---,mand k > 1. The vector field x(X) is given by the fol-

lowing expressions:
in Uy_y, Voo, 1 << m:
(e (ay — a; + ﬁixzi-l) — Pixy, X181 + X, — et + /sixzi-l) ’
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<y Xpgosfio1 T Xop-a;_1 — a; + ‘Bixzi—l)a ‘Bz(l + x3-1)
Xoi(ots o — 0 + ﬁixzi—l) — BisiXais)s * s

x2m+j_1(Zj — + ,Bixzi—l)’ ] x‘n(‘Bixli-—l - aj)) >
where 1 < j < k;

ill U2m+j, V2m+j3 1 S] -é k:
(i, — Zj) — Bixs Bixy + X0, — Rj)a <o, BuXomor Xom(Otm, — 45) »
Xom 1(Ay — A7), = s Xomyg1(Aj1 — ), -, —XpA5) 3

n Un+l, Vn+1:

(ax; — Bixss -+ -, BrXom—1 + AmXoms AXomp1s ** %5 ApXn) -

Notice that in the coordinate neighborhoods Ui, Vi, - - -, Uy, Vi, the vector
field z(X) has no singularities.

Suppose 7(X) is a Morse-Smale vector field. Then z(X) has only a finite
number of singularities, in which case we have that 1; # 4; for all i # j and
A; # 0 for every j. Let O,, O, be the singularities on the neighborhoods U,,.,,
V.., and P;, Q; the ones on the neighborhoods U,y j, Vam. ;. The linear part
of #(X) at P; and Q; is given by

diag (((051 ;121') (a:—flzj))’ e,

. ((am[; Y (e fg.mxj)>’ =2 ”") '

The hyperbolicity of the singularities implies that ; # 4, for all i, j; 2, # 4;
forall i # j; 2; #+ 0 and «; = O for every j.
We now consider the closed orbits of x(X). For that take the linear vector

field Y = Bx in R**!, B = (*g 8), where Dr(Y) = z(X) and the flow Z, de-

termined by Dz(Y). In this way we can see that the trajectories by p;, =
©, ---,1,.--,0) e S* C R"*"!, where 1 is the (2i)th coordinate, are closed or-
bits of period ¢; = 27/8;, i=1, - - -, m. The fact that these are hyperbolic criti-
cal elements implies the following inequalities: «; # «; for all i # j; 4; # a;
for all 7, j and «; # O for every i. This is because D ,, Z_, is given by

(**)  diag (e“l‘““’i(cos Prr;  —sin /9171), v, e, et e-am) ,

sin Bz, cos Bz,

where 1 is the (2 — 1)th diagonal element. Therefore if 7(X) is a Morse-Smale
vector field the eigenvalues of 4 have nonzero distinct real parts.
Next we prove that these are sufficient conditions for z(X) to be Morse-
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Smale. We now assume that 4 has eigenvalues with distinct nonzero real parts.
Let us consider the linear vector field W(x) = Cx in R**! where

C = diag (((“1 ;12’6) (al_—ﬂlzk))’ e ey — zk)) .

As previously mentioned we have that z_(X) = n(W). By induction hypothesis,
7.(X), a vector field in the equator S™!, is a Morse-Smale vector field, and
has m closed orbits and 2k singularities, and the « and w-limit sets of its trajec-
tories are critical elements. Observe that z(X) in S — S*! consists of two
copies of the linear system X(x) = Ax. We conclude that outside equator S”~!
there are only two more singularities, and the geometrical behaviour of the
trajectories can be completely analysed. It follows that x(X) has m closed orbits
and 2k + 2 singularities, all hyperbolic as we can see in the expressions (*)
and (**). Also the & and w-limit sets of its trajectories are the critical elements.

It remains to show that the stable and unstable manifolds of the critical ele-
ments have transversal intersections. For simplicity let us call o, <u, < ... <
u, <0 <uwyp < .- <uy,,, the ordered set of real parts of the eigenvalues
of 4, and Oy, 0,, 2,, - - -, ., ., the critical elements of z(X). Interpret the no-
tation as follows: if u; = A; for some i, then 2, consists of two singularities,
and if u, = «; for some j, then 2, is a closed orbit. If u; < u; then W*(2;) N
W(,;) # @ in S*~'. This can be verified by looking at the special cases for
lower dimensions. For r.(X), a Morse-Smale vector field on S”7!, by induc-
tion hypothesis we then have that W*(2,) is transversal to W*(2;) in $*~. Sup-
pose p € W(2,) N W*(R,), the invariant manifolds now on S and determined
by n(X). If p € S*~! then j > i, for otherwise p would be a nonwandering point.
Note that for j > i, the tangent space T,W*(2,) or T,W*(2;) contains the nor-
mal direction to S”! by p. This implies that the manifolds W*(2,) and W*(£2,)
are in general position. On the other hand if p ¢ S*~* we must have u; > 0 and
u; < 0. Also the phase portrait for z(X) outside S”~" is completely known. The
transversality is then easily checked. The same procedure can be applied to
show that if p e W(0,) N W*(2,), then 1 < j < r and the manifolds intersect
transversally. We conclude that z(X) is a Morse-Smale vector field, and this
completes the proof. The phase diagram of z(X) has the following configuration:
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2,
!

2,
S\
0, 0,
N v

!

Qm&k

(II) A has only complex eigenvalues.

Let
= a((y ) (i H),

where p; # 0 for every i. We can write the expressions of z(X) in the coordinate
neighborhoods Uj, -« -, Uyn, Vam, U,.1, V,.1 as it was done in case (I). From
these expressions it is clear that z(X) has only two singularities O, and O,.

Suppose n(X) is a Morse-Smale vector field. Then it has only a finite number
of closed orbits so that «; # 0 for every i. Consider, as before, the linear vector
field Y = Bx in R"*!, where B = (g 8) and Dz(Y) = =(X), and the flow Z,
determined by Dz(Y). In this way we can see that the trajectories by p, =
©,---,1,---,0)e S* C R*"!, where 1 is the (2/)th coordinate, are closed or-
bits of period ¢; = 2x/B;, i = 1, - - -, m. Since D,, Z_, is given by

*%) diag (1, e‘“l“aw"(cos Bir;  —sen /31”), e, e”’m) ;
sen Bz, cos Bi7;

the hyperbolicity of these closed orbits implies that «; = O for every i and «;
# a; for all i  j. Hence, if z(X) is a Morse-Smale vector field, the eigenvalues
of A have nonzero distinct real parts.

Next, to prove sufficiency, let us suppose that the eigenvalues of 4 are such
that ; O for every 7 and «; # «; for all i = j. Assume o, <, < - - - < .
The singularities O, and O, are hyperbolic, and from the expression (***) it fol-
lows that #(X) has m hyperbolic closed orbits 7, - - -, 7,. We now examine the
limit sets of the trajectories of n(X). For trajectories in S™ — S”! the limit sets
are completely known since #(X) on this region consists of two copies of X(x)
= Ax. To investigate other trajectories, let p be a point in the equator S™~'.
In what follows, if M is a subspace of R™, M will mean the continuous exten-
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sion of its central projection to the equator S™~'. Let D, = {(xy, X,, « - -, Xy) €
R"™| x,_, = x, = 0}. By induction hypothesis if p € D,, the limit sets of the traj-
ectories through p are critical elements. If neither p ¢ D, nor p € 7, we have to
examine further. Consider the subspace D, = {(x;, - -+, x,) e R*|x; = + -+ =
Xn_, = 0}. Now let ¥ be a neighborhood of 1, V C W*(yn). Observe that if
an, < 0, Vis a neighborhood in S™~. Next choose 6 such that

(i) if W, = {x e R™|the slope of x with D, is < 6}, then p ¢ w,,

(i) if W, = {x ¢ R"|the slope of x with D, is < 6}, then W, N S*~* C V.

Let ge R*, g¢ W, U W, and let X, be the flow in R" determined by X(x)
= Ax. It can be verified that there exists T such that X;(g) € W,. Assume p is
a point in the equator S™', p ¢ D, and p ¢ rm- Consider a sequence (g;) on the
sphere S™ converging to p, such that ¢, ¢ S*~' and also does not belong to the
central projection of D, U D,. Since X is a diffeomorphism, one can see that
Xr(p) € V which implies that the w-limit set of the trajectory through p is 7.
The same procedure can be applied to study the a-limit sets of the trajectories
of z(X). It follows that the critical elements O,, O,, 1,, - - -, 7 are the o and -
limit sets of the trajectories of z(X). As we proved before, these critical elements
are all hyperbolic. Next we show that the invariant manifolds of these critical
elements have transversal intersections. Assume a, < a, < -+ < a, < 0 <
Qi < oo <y Let pe Wi(r,) N W¥(y;), i # j. We may suppose that neither
i = m nor j = m, in which cases the transversality is obvious. If p is in the
equator S®'and p ¢ D,, the transversality of W*(y;) and W*(y;) can be checked
by induction hypothesis and by looking at a special four-dimensional case. To
see this consider the Poincaré vector fields: #(Y) in $"~2C S™ where Y(x) = Bx,

p=dig((5 TR) e (5 )

and n(Z) in §* C S™ where Z(x) = Cx,

c-sml(y 7). )

Now, if p € S** and p ¢ D, then 7, = 7, and since dim W*(y;) = n the mani-
folds W*(y;) and W*(y,,) are in general position. On the other hand if p ¢ S"77,
we must have a; > 0, a; <0, the phase portrait of #(X) in S — S is known,
and the transversality is easily checked. Similarly we can verify that the invari-
ant manifolds of singulalities (O, and 0,) and closed orbits intersect transversaly.
As a conclusion z(X) is a Morse-Smale vector field, and this finishes the proof
of this last case. The phase diagram for (X)) is given below:
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7
l

N
0, 0,
N

rk+1
l
Tm

Let & be the set of linear vector fields in R, y = {X(x) = Ax}, identified
with the Euclidean space R™, space of the entries of the matrices 4. Let #(Z’)
be the set of Poincaré vector fields on S™ with the topology which arises from
the metric ||z(X) — z(Y)]| =|X — Y. This coincides with the topology induced
by the CT-topology on the space Z'(S™) of C” vector fields on S*, r > 1. A
vector field X e Z(S™) is structurally stable if there exists a neighborhood V(X)
such that if ¥ e V(X) then Y is topologically equivalent to X, that is, there is a
homeomorphism of M taking trajectories of X onto trajectories of Y.

Theorem 2. The Morse-Smale Poincaré vector fields on S™ form an open and
dense set in n(Z) which coincides with the subset 3 C n(Z’) of the structurally
stable ones.

Proof. From Theorem 1, density is obvious and openess follows from con-
tinuity of eigenvalues with linear operators.

Next we show that a Poincaré vector field #(X) on S™ is structurally stable
if and only if it is Morse-Smale.

To prove necessity let us examine a Poincaré vector field #(X) which is not
Morse-Smale. If z(X) has an infinite number of critical elements, it can not be
structurally stable as a consequence of the density mentioned above. On the
other hand if z(X), X(x) = Ax, has a finite number of critical elements then
the operator A is not diagonalizable. Furthermore if (x — 2,)?*, (x — 2,)?2, - -
are the elementary divisors of 4, p,, p, > 2, then 2, # 0 for every i and 2; # 2;
for all pairs i, j. Also if [(x — z)(x — Z)]*, [(x — z)(x — Z,)]*, - - - are ele-
mentary divisors of 4, p,, p, > 2, z; = «; + if;, then «; # 0 for every i and
there is a pair 4, j such that «; = «; with §;/B; irrational. We now perturb X
so that all the real eigenvalues become distinct or the ratios §;/B; above be-
come rational. In both cases, the perturbed vector field has a larger number of
critical elements which proves that it is not structurally stable.

Sufficiency follows directly from a theorem of Palis-Smale [9]. This finishes
the proof.
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For linearly induced vector fields on S™ by radial projection, we have the
following similar results.

Theorem 3. Let Dz(X) be a linearly induced vector field on S™by redial pro-
Jection, where X(x) = Ax is a linear vector field in R**'. Then Dz(X) is a Morse-
Smale vector field if and only if the eigenvalues of A have distinct (except for
pairs of conjugate complex eigenvalues) real parts.

Let Dr(Z’) be the space of linearly induced vector fields on S* by radial pro-
jection with the topology induced by the C” topology on Z'(S™), r > 1.

Theorem 4. The Morse-Smale linearly induced vector fields on S™ by radial
projection form an open and dense set in Dr(Z), which coincides with the subset
2 C Dt(Z) of the structurally stable ones.

We conclude this section with the following statement.

Theorem 5. Two Morse-Smale Poincaré vector fields on S™ are topologically
equivalent if and only if their phase diagrams are isomorphic.

Proof. Let n(X), X(x) = Ax, and n(Y), Y(x) = Bx, be two Poincaré Morse-
Smale vector fields on S”. If they are equivalent it is obvious that they have
isomorphic phase diagrams. To prove the converse let us suppose that they
have isomorphic phase diagrams. Let «, + i3, where p =1, - - -, m, and 2,
where /=1, - - -, k be the eigenvalues of 4, and @, + i, wherep=1, - - -,m,
and 1, where [ = 1, - . -, k the eigenvalues of B. In the following, interpret the
notation as in the proof of Theorem 1. Let uscall u, < .-+ <y, ., and @, <
i, < -+« < #,,; the ordered set of the real parts of the eigenvalues of 4 and
B respectively. Consider the vector fields z(X;), Xi(x) = 4.x, 4, = diag ((v,),
o, (Um,r) and a(Y)), Yi(x) = Byx, B, = diag ((#), - - -, (#y ). Then n(X)
is topologically equivalent to (X)), #(Y) is topologically equivalent to z(Y)),
and the two vector fields #(X;) and z(Y;) have isomorphic phase diagrams. Ob-
serve that if uy, < -+ - <, <0< -+ <ypand g, < -+ <@g, <0< -+
<y, With r # s then k # 0. In particular if r <, then @, ,, is a real eigen-
value of B,. The vector field z(Y;) on S™ coincides with the vector field linearly
induced on S™ by Y,(x) = B,x, B, = diag (#, — #,,,), - - -, (—i,,,)) through
the coordinate maps ¢;* and +;* for some j, defined previously in this section.
Moreover, =(Y;) coincides with Dz(Y;), Y,(x) = B.x being a linear vector field
in R**!, where if B, = (b;;), then

( b11 bl,j—l 0 blj bm ]

bj—l,l tee bj—l,j-l 0 bj—l,j vt bj—l,n

by -+ by 0 bj; -+ by
L bnl te bn,j—l 0 bnj e bnn )

Also Dz(Y,) is topologically equivalent to Dz(Y,) where Y,(x) = Byx, B, =
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(% g), which coincides with n(Y,). We conclude that z(Y?) is topologically

equivalent to w(Y;). Consider By = diag (v), (vs), * - -, (V) Where v, < v,
<<, <0< - < v,,, are the ordered real parts of the eigenvalues
of B,. Then n(Y,) is topologically equivalent to z(Y;), Y;(x) = B;x. Denote by

a, + izp and 4, the eigenvalues of B;. Observe that we can suppose Ep and g,
with the same sign for each p. Now let 7: [0, 1] — {z(Z)} be the continuous
function defined by 7(s) = =(Z,), Z,(x) = C,x where

C, = diag ((sv, + (1 — wy), -+, (Vpyr + (1 — S)m 1)) -

Here interpret the notation as follows: if u; is the real part of a complex eigen-
value &, + i8,, then

oy ($E + (L=, —[sB, + (1 — 9)8,]
(Svi " (1 S)ul) (S—nép + (1 - S).Bp Sap + (1 - s)a'p) .

Therefore 7(0) = #(Xy), y(1) = n(Y;) and for each s (0, 1), 7(s) = n(z,) is a
Morse-Smale vector field. By compactness of 7[0, 1] and the fact that Morse-
Smale vector fields are structurally stable we conclude that n(X;) and #z(Y;) are
topologically equivalent. It follows that n(X) and z(Y) are topologically equi-
valent, and hence the proof is complete.

3. Linearly induced actions of R’ on spheres

Let ¢: G — Dif (M) be a C", r > 1, action of a Lie group G on a differenti-
able manifold M. The orbit 0,(¢p) of ¢ through x € M and the isotropy group
G.(p) of ¢ on x € M are the sets 0,(p) = {@,(x)|g € G}, G,(¢) = {g € G|p,(x)
=x}. An action ¢: G — Dif (M) is said to be transitive if for x € M one has
0,(p) = M. Given two actions ¢ and + of a group G on M, they are topologi-
cally equivalent if there is a homeomorphism of M taking orbits of ¢ onto or-
bits of .

Definition. Let p: G— Aut (R") be a linear action of a group G on R". Sup-
pose that G is isomorphic to R or Z. Then the action p is hyperbolic if for every
g € G, g+ 0, the eigenvalues of p(g) have absolute value different from one. In
the case where G is isomorphic to R* or R X Z, the action p is said to be hy-
perbolic if the following hold:

(i) There exists a p-invariant splitting R* = @ E; such that p is transitive
on the connected components of each E; — {0}.

(ii) Let G; be the isotropy group of some nonzero element of E,. By (i) G,
is isomorphic to R or Z. Let p;: G; — Aut (D, ., E;) be p|s, acting on @, E;.
Then for each 7, p; is hyperbolic.

Moreover, if G = Z* we say that the action is not hyperbolic.
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Definition. Let ¢: G — Dif (M) bea C”,r > 1, action of G on M, and y a
compact orbit of ¢. Then 7 is hyperbolic if

(i) there exists an invariant continuous splitting of the tangent bundle of
M restricted to y: T,(M) = E + I, where [ is the subbundle of tangent vectors
toy,

(i) the induced linear action p|;, — Aut (E,) is hyperbolic, where x € 7 and
p(g) = Do, |z,

In particular, a fixed point x € M of ¢ is said to be hyperbolic if the induced
linear action Dg,(x): G — Aut (T,(M)) is hyperbolic.

Definition. Let ¢: G — Dif (M) be an action of G on M. A point x ¢ M is
said to be nonwandering if for an increasing sequence K, of compact neighbor-
hoods of zero covering G and for every neighborhood ¥ of x and n, € Z*, there
exists g ¢ K, such that ¢ (V) N V 5 @. The set of nonwandering points of ¢
is denoted by £2(¢). An orbit @,(p) through x is a singular orbit if G,(¢) # 0.
Observe that if G,(¢) # 0 then 0,(p) C 2(p).

One can give similar definitions for R* X Z' actions [I].

Let p: R* — Aut (R") be a linear action. Then p can be written as o(s, t) =
e*4*t5 where 4 and B are n X n commutative matrices. The linear vector fields
X(x) = Ax and Y(x) = Bx are generators of the action. We may assume the
operator A4 given in standard coordinates by a matrix in the real canonical form.

Proposition. Let p: R* — Aut (R"™) be a linear action of R* on R™ where X(x)
= Ax and Y(x) = Bx are generators of p. Then p is hyperbolic if and only if
there exists a basis of R™ where

(5 (s i),

(R ]

and a;B; — Bt #+ 0, 4d; — 4, # 0, a@; — a0, #+ 0, ad; — a;A; #+ 0 for
all distinct i, j. In this case all orbits are homeomorphic to R® except for one fixed
point, 2k orbits homeomorphic to R, and m orbits homeomorphic to R X S'. The
nonwandering set £2(p) consists of the singular orbits.

Proof. If the action p: R* — Aut (R™), p(s, 1) = e*4**5, is such that either
the operator A or B is not diagonalizable, then there exists a p-invariant and
transitive splitting of R”. This implies that the action is not hyperbolic. On the
other hand, if both 4 and B are diagonalizable, we can suppose the action p
expressed in standard coordinates in the following form: p(s, t) = e*4*“% where

A= diag ((al _ﬁl), ) (C(m _ﬁm>, A vy Zk) B
.31 (441 m (427

B = diag <<g]1 _gi)’ - (g: _gz), Ay o) Zk) .
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In this case, the necessary and sufficient conditions for the action p to be hy-
perbolic follow easily from the definition of hyperbolicity, as well as the orbit
structure. We proceed now to examine the nonwandering set £2(p), p being a
hyperbolic linear action. This is done by induction on the dimension n. For
simplicity we will consider next a special case. Let us suppose that the action
o0 R* — Aut (R"), o(s, t) = e*4**5, where

4 = diag <<g _ﬁ),zh zk) ,

B = diag <<g _9, A, ov e, Zk) ,

and either 8 or B is nonzero, is hyperbolic. Then a — @ # 0, ad; — @A; # 0
for every i and 2,4, — 4;,4; # 0 for all distinct 7, j. The orbit set of p consists
of a fixed point (origin), 2k orbits homeomorphic to R, one orbit homeomor-
phic to R X S' and all the others homeomorphic to R®. We will prove, by in-
duction on k, that the nonwandering set 2(p) of p consists of the orbits non-
homeomorphic to R?. Therefore we have to show that if x = (x,, - - -, x,,) is
such that x,, and x, are nonzero, and either / or m greater than 2, then x is a
wandering point of p. For k = 1, the inequalities which hold for hyperbolicity
permit to check the result without difficulty. By induction hypothesis, let us
suppose that the conclusion holds for a linear action of R* on R*¥*% k < n — 3.
Now we want to prove fork =n — 2. Set R* = E,,®D --- @ E, where E, is
two-dimensional. If x = (x,, - - -, x,_;, 0) is a wandering point for the induced
action p,: R* — Aut (E,, ® - - - @ E,_,), then it is a wandering point for p. To
see this it is enough to observe that the projection in E,,® - - - @ E;, 2<j<n,
of the orbit through (x,, - - -, x,,) is the orbit through (x,, - - -, x;). Now, if x =
(x5, * -+, Xn), X, #+ 0, we have the following three cases to consider.

(i) There exist i and j, either i or j greater than 2,i,j =1, ---,n — 1,
both x; and x; being nonzero. Here the projection (x,, - - -, x,,_,, 0) being a
wandering point for an induced linear action of R? on R™"! implies that x is a
wandering point of p.

(ii) Thereexistsj # n,j+# 1,j+#+ 2suchthat x,=0fori #j,i=1, ---,
n — 1. In this case, x is a wandering point for an induced linear action of R?
on E; @ E,. Then it is a wandering point for p

(iii) The point x is such that x, =0fori>2,i=2,.-.-,n— 1. xisa
wandering point for p since it is a wandering point for an induced linear action
of R? on E,,® E,. Thus the proof for this special case is finished. The proof
for the other cases being similar to this one will be omitted. Therefore the pro-
position holds.

The conditions for hyperbolicity of linear actions of R* on R™ given on the
previous proposition, equivalent to the ones found in [1], will be useful in the
study of linearly induced actions on spheres.
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Let &/(R% R™) be the set of linear actions of R* on R" with the topology in-
duced by the following metric. Let p,(s, 1) = 41481, p (s, t) = e*42*%52 be two
linear actions of R?* on R", and put X;(x) = A4,(x) and Y,(x) = B,(x). Define
lo: — ol = max {|X; — X,|,|Y; — Y,|}. As an immediate consequence of the
previous proposition one has the following corollary.

Corollary. The hyperbolic linear actions of R* on R™ form an open and dense
set in o/ (R?, R™).

Let p: R*— Aut (R™*!) be a linear action, and + be the action ¢»: G1(n 4 1, R)
— Dif (§™), ¥(Ax) = Ax/|Ax| where 4 € G1(n + 1, R) and x € S”. An action p
of R? on S™ where p = o fis called a linearly induced action of R? on S™. If
the action p is generated by commuting linear vector fields X and Y in R**?,
then p is generated by Dz(X) and Dz(Y). Note that if x € S™ then 0,(p) =
2(0.(p))-

Theorem 6. Let p = +rop be a linearly induced action of R* on S™ where
X(x) = Ax and Y(x) = Bx are generators of p. Then the compact orbits of p are
hyperbolic if and only if for some basis of R**', the operators A and B are re-
presented as A = diag(4,, - - -+, A1), B=diag(,, - - -, An,1) and (2, — 2,)A;, — 4;)
— (A5 — 2, — ;) # 0 for all distinct i, j, | or

A = diag <<g _ﬁ), Ay oo, 2,,_1) ,
B = diag ((g _§>, A, v, 2,,_1) ,

where B or B is nonzero and

(@a—2)B—(@—2)p#0,

(@ —2)A; — ) — (@ — 2)42 — ) # 0,

Ay —2)A — 2) — A5 — 2 — 2) # 0
for all distinct i, j, 1.

Proof. Observe that if ¢: R? — Dif (S™) is an action with fixed point y t_he13
in some local coordinates the derivative is the linear action Doy, ,,(y) = e*****

where
4= (2 (e o),

ox’

B = (0 (% e M("){ o)

ox’

As in the case of linear actions we can restrict the study to the cases where the
operator A is given in standard coordinates by a matrix in the real canonical
form. We will show first that if 4 is not diagonalizable, the action p will present
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a nonhyperbolic compact orbit. Let us suppose the elementary divisors of 4 to
be

(x — ]1)1711, (x — 21)1?12, e, (x _ Zz)p‘n’ (x — 2)P=, .-,
[(x —z)(x — Z)1" [(x — z)(x — Z)]%e, - - -,
[(x — z)(x — 2] [(x — z)(x — 217, - - -,

(x - ul): . '1[(x - wl)(x - wl)]’ Tty

where 1;, u; are reals, z;, w; are complex numbers, and p;; > p;, > -+ >2,
Gin =Gz > 0 =2, Pi = Pisiis 9 = Gisr,n- We have four possibilities to
examine.

(i) pu > pu- In this case the action g presents a fixed point p with Dg,(p)
nonhyperbolic. Therefore  has a nonhyperbolic fixed point.

(ii) pu=p,= -+ = Pin. Here there exists a sphere S of dimension m — 1
consisting of singularities of Dz(X), and this sphere S is an invariant set for
Dz(Y). Then either Dz(Y) has on S a singularity p which will be a nonhyper-
bolic fixed point of g, or the action g will present a nonhyperbolic orbit homeo-
morphic to S* on S.

(i) pu = 0, g, > qi.. In this case the action p has a nonhyperbolic orbit
homeomorphic to S*.

Giv) pu=0, ¢, = ¢ = -+ = qin. Here there is a sphere S of dimension
2m — 1 consisting of closed orbits of Dz(X), and this sphere is an invariant
set for Dz(Y), Then either the action p will have a nonhyperbolic orbit homeo-
morphic to S or a nonhyperbolic orbit homeomorphic to 7%

Now if both operators 4 and B are diagonalizable, then we can suppose the
action p expressed in standard coordinates in three different ways, each of
which we will consider separatedly.

(1) p:R*— DIif(S"), p =Vop, ps,t) = %8, 4 = diag (A, + - -, Ap,1),
B = diag (4;, - -+, 4,,,)- The vector fields X(x) = Ax and Y(x) = Bx are gener-
ators of p; Dt(X) = r..(X) and Dz(Y) = x,(Y) are generators of p. The 2(n + 1)
points p;, = (0, ---,1,---)and ¢, = (0, - --, —1, - - +), where all but the ith
coordinate are zero, are fixed points of the action p. In the local coordinate
systems (U,, goi),_(V_i, ;) defined in the beginning of § 2, the derivative Dp(p;)
= Dp,(g;) = e****# is such that

A= dlag(ll — Zi’ ey, 11;._1 - li; Zi.x.l - 212’ ) 2n+1 - 213) s
B = dlag(/?l — Zi, B ',zi_1 - Zi, 2“.1 - zi: o "2n+1 - Zz) .
These fixed points are hyperbolic if and only if
A = 2) — 2) — (A — 1) — 2) # 0

for all distinct i, j, k. Observe that if the above inequalities hold for points
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x € S™ such that x # p, and x # g;, then the isotropy group G (p) = {0} or
R. It follows that the action p has these 2(n 4+ 1) hyperbolic fixed points as its
only compact orbits. Therefore all compact orbits are hyperbolic if and only if
the previous inequalities hold. In this case the action p has all orbits homeo-
morphic to R* except for 2(n + 1) fixed points and 2n(n + 1) orbits homeo-
morphic to R. Also the nonwandering set 2(p) is formed by the singular orbits
which form {n(n 4 1) spheres of dimension one. To see this it is enough to use
induction on the dimension n and observe that outside the equator S™™' =
{x € $*|x,,, = 0} the action p consists of two copies of the linear hyperbolic
action ¢ where (s, 1) = e*1**B 4, = diag (4, — Apy1, -+ 5 An — Anyy) and
B, = diag (21 - 2'n+1: Tt zn - Zn+1)'
In the case where n = 2, the orbit structure is shown in the figure below:

(2) p:R*—Dif(S"), p =Vop, p: R*— Aut (R*™), o(s, 1) = e*4**, where

4 = diag <<g —ﬁ) PR zk) ,
B = diag ((g _—;_z‘é)’ Ay oo, Zk) ,

and B or § is nonzero. As before, the vector fields X(x) = Ax and Y(x) = Bx
are generators of p; Dz(X) = #..(X) and Dz(Y) = n(Y) are generators of p.
The 2k points p; = ©, ---,1, --+-)and ¢, = (0, - - -, —1, - - -), where all but
the ith coordinate are zero, i = 3, - - -, k + 2, are fixed points of the action p.
Evaluating Dp,(p;) = Dp,(g,) we can see that these are hyperbolic fixed points
if and only if

(“—‘Zi).é_(a_zi)ﬂi(),
() (@— )0 — %) — @ — )@ — ) £ 0 for all distinct 7, j, I,
A — 2)A — ) — Ay — )4 — 2) # 0.
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Now let us suppose that the above inequalities hold. For points x ¢ S?,
X % pg, X # q;, and x # (X, X,, 0, - - -, 0), the isotropy group G,(p) = {0}, Z
or R. It follows that the only compact orbits are the hyperbolic fixed points p,,
g; and one orbit y homeomorphic to S*. This orbit 7 is the intersection of the
plane x;, x, with the sphere S™. It is easy to verify that a linear action ¢: R X
Z — Aut (R™), n > 2, given by ¢(s, n) = e*“B", where 4 = diag (,, - - -, 2,),
B = diag (u,, - - -, u,), 4; # 0 and u; > 0 for every i, is hyperbolic if and only
if 2;1gu; — 2;1gu; + 0O for all distinct 7, j. Using this fact and calculating the li-
near action Dp,|z,: G,(5) — Aut (E,), where p € y and G,(p) = R X Z, we can
conclude that the orbit 7 is hyperbolic. Hence all compact orbits are hyperbolic
if and only if the above inequalities (*) are true. In this case the action g pre-
sents 2k fixed points, 2k(k — 1) orbits homeomorphic to R, one homeomorphic
to S*, 2k homeomorphic to R X S* and all the others homeomorphic to R%.
The nonwandering set £2(p) consists of the singular orbits which form a complex
of 3k(k — 1) spheres of dimension one and k spheres of dimension two. As
previously, to verify this we use induction on the dimension » and note that
outside the equator S™~! the action g consists of two copies of the linear hyper-
bolic action ¢ where

SD(S, t) — e8A1+£B1_ s

4, = diag(<““ﬁ*k —8 ),zl Y S zk) ,

a—lk
B = diag((&_ﬁzk O_(_ﬁz >,21 — A s Apy — Zk) .
— A

In the particular case where n = 2, k = 1, the orbit structure is shown in
the figure below:

(3) o: R le(S"), 0= \J/‘OP, p(S, t) — esA+tB’
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ool T )
pede((e )G R )

and B, or §; is nonzero for i = 1, 2.

Now we can show that there is a nonhyperbolic orbit homeomorphic to S*.
Let us restrict ourselves to the case where n = 3, the generalization to n > 3
being similar. Suppose f; # 0. Then the intersection of the plane x,x, with S*
an orbit of p homeomorphic to S*. Let p € 7. By computing the linear action
Dg,|z: G,(p) — Aut (E,) which is given by ¢(s, n) = e°4B" where

A= <[(az - al)@l - (_&2 —_al)Bl]/Bl _(;B_Z‘EI - BZﬁl)/Bl _) ,
(192/31 - /32/91)/,31 [(a, — “1)‘81 — (@, — (71),81]/;81
b = (08 QEAIE) | —sin G5
sin 2zB,/B)  cos (2xB,/B)

we can verify that this is not a hyperbolic action. It follows that the orbit 7 is
nonhyperbolic. By putting all these results together the theorem is proved.

Let o/(R? S™) be the set of linearly induced actions of R* on S™ with the
topology which arises from the following metric. If p, is generated by Dz(X;)
and Dz(Y)), and p, is generated by Dz(X;) and Dz(Y,), define ||p, — @] =
max {| Dz(X;) — Dz(Xy,)|, | Dz(Y,) — Dz(Y,)|}. As a consequence of the previous
theorem we have the following corollary.

Corollary. The set of linearly induced actions of R* on S™ having only hyper-
bolic compact orbits forms an open and nonempty set in o/ (R, S™). This subset
is not dense in (R, S™) for n > 3.

We now discuss the important concepts of structural stability and £2-stability
for linearly induced R*-actions on S™.

Definition. A linearly induced action g, € &/(R?, S™) is structurally stable if
there is a neighborhood V(g,) such that if g, € V(p,) then g, is topologically
equivalent to p,.

Definition. A linearly induced action g, € &Z(R?, S™) is £2-stable if there exists
a neighborhood ¥(g,) such that if 5, € V(p,) then there is a homeomorphism
h: Q(p,) — £2(p,) taking orbits of p, onto orbits of p,.

Theorem 7. A linearly induced action of R* on S™ is $2-stable in /(R%, S™) if
and only if it has only hyperbolic compact orbits.

Proof. Sufficiency follows easily from Theorem 6. To prove nesessity let us
suppose g is not an action with all compact orbits hyperbolic. We have to ex-
amine several possibilities. In each case we want to show that p is not £2-stable.

(I) po=op, p(s, t) = e4**E where both A4 and B are diagonalizable,
and the action p has at most one pair of complex conjugate eigenvalues such
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as in cases (1) and (2) in the proof of Theorem 6. Since it does not satisfy the
inequalities of Theorem 6, g, has an infinite number of singular orbits. In this
case every neighborhood ¥(p,) contains an action g, with a finite number of
singular orbits, namely, g, satisfying the inequalities of Theorem 6.

(II) p, = Pop, pls, t) = e*4**2 where both 4 and B are diagonalizable
but the action p has more than one pair of complex conjugate eigenvalues such
as in case (3) in Theorem 6. Here p, presents at least two orbits homeomorphic
to S, and every neighborhood V(p,) contains two actions p, and g, with the
following orbit structures. Besides the two orbits homeomorphic to S’, p, has
all orbits homeomorphic to R X S* and p, to R®. It follows that g, is not £-
stable because it can be approximated by actions p, and p, with an infinite and
only a finite number of singular orbits respectively.

() p = +rop, p(s, 1) = e****5 where either 4 or B is not diagonalizable.
Let us suppose that 4 is not diagonalizable. We can apply the same procedure
as in the proof of Theorem 6. If 4 has (x — 2)%, 2 real, ¢ > 1, for elementary
divisor, then either p has a finite number of singular orbits and can be approxi-
mated by an action with a larger number of singular orbits or p presents an
infinite number of singular orbits and can be approximated by an action with
only a finite number of singular orbits. On the other hand if 4 has
[(x — 2)(x — 2)]%, z complex, ¢ > 1, for elementary divisor, then we can per-
turb p in order to get an action with more than one pair of complex conjugate
eigenvalues. By what we have seen, an action of this kind is not £2-stable imply-
ing that g is not {-stable either.

As an immediate corollary of case (II) before we have

Corollary. The structurally stable linearly induced actions of R on S™ do not
Jform a dense set in o/ (R%, S™) for n > 3,

However in «/(R?, S®) the structurally stable actions form an open and dense
subset which is characterized in the next theorem.

Theorem 8. A linearly induced action of R? on S* is structurally stable if and
only if all its compact orbits are hyperbolic.

Proof. Necessity follows directly from the proof of the previous theorem.
To prove sufficiency let us suppose p: R — Dif (S°) is a linearly induced action
with all its compact orbits hyperbolic. Then by Theorem 6 we only have to ex-
amine the two cases below.

(I) p=1op, pls,t) = e4**2 where 4 = diag(2,, - - -, 4,), B = diag (4,
-+, 2) and (A; — )4, — 2) — (A; — 2)(A, — ;) # 0 for all distinct i, j, I
This action p is generated by the vector fields Dz(X), X(x) = Ax and Dz(Y),
Y(x) = Bx. Consider S* with the Riemannian metric induced by the usual metric
on R'. It is easy to show that Dz(X) and Dz(Y) are gradient vector fields. Thus
the action p is a gradient action, meaning that is generated by commutative
gradient vector fields. From a theorem in [2] p is a structurally stable action.

D) 5 =+op, p(s, t) = e*4**2 where
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4 = diag ((;‘ “ﬁ) 3 zz) . B=diag ((g _2) i L) ,

(@—2)B—(@—2)p+0,
(@— )0 — 1) —@—1)A —2) #0  foralli,j.

a —

First we can find a real k such that the operator B + k4 = diag «,3

Rl

).

i Z) has the following properties: (& — 4,) and (@ — 4,) have the same sign,

and both (fl — Z) and E are nonzero. Since the vector fields (B + kA4)(x) and
B(x) are generators of the action p we proceed with the additional hypothesis
that A has the above properties, meaning that (@ — 4,) and (¢ — 2,) aie of the
same sign, and both (2, — 4,) and j are nonzero. Consider the following vector
fields in R®:

X(x) = A,x where 4, = diag ((a TB b —F ) @, — 22)) ,
and
Yi(x) = Bx  where B, = diag ((a _/_322 a_B ), A — L)) ,

The Poincaré vector fields #(X;) and z(Y,) are also generators of the action p,
and we can verify that z(X,) is a Morse-Smale vector field and e*4**¢3! is a hy-
perbolic linear R*-action. We know from a corollary of Theorem 6 that the li-
nearly induced actions of R? on S™ having only hyperbolic compact orbits form
an open set in «&Z(R% S™). Hence it follows that there exists a neighborhood
V(p) in &/(R?, S°) such that if p* € V(p) then g* has all its compact orbits hy-

perbolic. Besides, ¥(p) can be chosen such that g* = o p* where p*(s, t) =
esA*+ tB*’

. a* _/3* . &* _B* _ _
A* = diag <<ﬁ* a*)’ AF, 2;“) , B* = diag <<B* &*)’ ¥, 25“) s

(a* — 2¥) and (a* — 2¥) have the same sign as (@ — 1)), (A4F — 4¥) has the
same sign as (4, — 4,), and g* 3 0. Our goal is to show that such an action
p* € V(p) is topologically equivalent to p. Let us consider the vector fields

*(y) — A% * — di af — 2 —p* * *
X#(x) = A¥x  where A¥ = diag s (A — 2D,

‘3* C(* _ lgk
Y*(x) — Bfx  where B — diag (¥ =% B\ ar — )
1 = by 1 = g B* & — I > (A1 2)) -
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Here #n(X;) and #(Y}) are generators of p*, (X7) is a Morse-Smale vector field,
and e*4i*¢%1 is a hyperbolic linear Rl-action. For simplicity let us adopt the
following notation:

(D e E))

where & = o — Ay, A=A — A, & = of — AF and ¥ = ¥ — 2F. We also
denote (X;) by X,, and x(X}) by X¥. Let 7 be the orbit of the action g which
is homeomorphic to S*. This coincides with the closed orbit of the vector field
X,. In the local coordinates (U, ¢,), defined in § 2, consider the coordinate
plane X transversal to y. The Poincaré map f; associated to this transversal sec-
tion 3 is given by fi(x,, x,) = ("%~ ®/?x,, e~**%/#x,). Observe that f, is the flow
X, restricted to 3 for t = 2z/B, and f; is a contracting or an expanding diffeo-
morphism. We will proceed by considering f; expanding (hence @ < 0 and
(A — @) > 0) and also 4 > 0. The proofs on the other cases are similar.

By taking the real number r such that 3 + r3 = 0, the operator C; = 4, + rB,
has the form C, = diag (&, &, 7). Then the vector field Z,(x) = z(C,x) has 3 as
an invariant set, and P, = y N X is a hyperbolic singularity for Z,|,. Note
that the trajectories of Z; are contained in the orbits of p, the flow Z,,|; com-
mutes with f;, and the orbits of p are invariant by f;. By the same procedure,
consider the corresponding f; and Z, for the action g*. In order to construct
the desired homeomorphism we have to analyse two cases according to the in-
dex of the singularity P, of Z,|;.

(1) P, is source or a sink for Z,|;. In a neighborhood of P, in the trans-
versal section X, fix one orbit of Z, in each quadrant, and its image by f; and a
circle S transversal to Z;. Do the same for Z,.



186 GILDA DE LA ROCQUE PALIS

Zufi

f(S)

We will restrict to a quadrant, for the others proceed similarly. Define an orien-

tation preserving homeomorphism H: A/IE — A/zl?2 where A4, and B, are the
points of intersection of the above orbits of Z, with S;. To obtain an extension
for S, set H(x) = f5(Ox(Z,) N S,. Here x does not belong to the coordi-
nate axis (in which case the definition is the natural one) and # is such that
Yy =fU0,Z)) N A.P,B,. In order to define H in fi(S)), let X € £1(S,) and take
¥ = 0(Z,) N S,. Then put H(X) = Oy y,(Z,) N fi(S:). Now we may extend H
to the interior of the annulus with boundaries S, and f£,(S;), proportionally to
the arc length of trajectories of Z; and Z,. If x, belongs to the interior of the
annulus, consider the points of intersection y, = 0,(Z)) N S, and z;, = 0,(Z,)

—~~ e
N £(S). Define H(x,) by H(x,) € Oy (Z,) and 50 = HEOHOD pop o i
4941 H(z))H(y,)
the interior of the disc bounded by S there exists # such that f7(x) belongs to
the annulus. Let H(x) = f;"Hf?(x). Thus we have a homeomorphism defined
in the disc bounded by f£,(S,) taking orbits of p onto orbits of p* and such that
Hf, = f,H.
(2) P, is a saddle point for Z,|;. Here fix an orbit of Z, in each quadrant,
its image by f}, circles \S; and f;(S;) which are tangent to these orbits, and the
analogous f, and S, for Z,.
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/“
N

1S SA(S2)

As before let us restrict ourselves to one quadrant, the procedure for the others
being similar. Define first an orientation preserving homeomorphism H: 1/41\31
Azﬁn order to get an extension to fi(S)), for x € B,C, set H(x) = Oy ,(Z;) N
B,C, where y = 0,(Z)) N A,B,. For % ¢ D, A, define H®) = f;"(On(Z5) N
5;42 where 7 is such that y = f(0x(Z,)) N ZI\BI. Now we want to define H on
S,. Let x, ¢ E,F, and consider y, = 0,,(Z;) N D,A,. Then set H(x,) = Oy ,(Z)
N E,F,. The extension of H to the interior of the disc bounded by f,(S,) is done
as in the previous case.

Up to this point, regardless of the index of the singularity P, of Z,|;, we
have an orbit preserving homeomorphism defined in a neighborhood N of P,
in the transversal section 2. Now we want to extend H to a neighborhood V
of 7. If x e V, let ¢, be minimum such that X,_, (x) = y belongs to N and set

H(x) = X#(H(y)) where t = fit,/3*. Restrict H to a neighborhood of y whose
boundary is a torus T transversal to X,.
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Consider now a circle C, in the plane O,P;Q, such that all positive trajecto-
ries of X, beginning at points of C, have arc length k, and a point R, on the
axis O,P, such that the arc length of the trajectory of X, from O, to R, is I
Assume V; is a neighborhood of y whose boundary is a torus 7; transversal to
X, and which intercepts the plane O,P,Q, on C,, and W, is a sphere centered
at P, also transversal to X, and intercepting O, P, in R,. Similarly take C,, R,,
T, and W, corresponding to Xi. Next we define H on T,. If x ¢ T}, consider
y= @x()f'l) N T and set H(x) = @u(y)(f;") N T,. The extension of Hto (T, — T)
can be done proportionally to the arc length of trajectories of X, and X3. The
definition of H in W, can be obtained similarly as it was set for T3, the exten-
sion to the interior of W, can be obtained by the time parameter on the trajec-
tories of X, and X* and between 7, and W, in an analogous manner as in (7;
— T). Therefore H takes orbits of g onto orbits of g*.

It remains to prove continuity for points in the interior of the disc bounded by
C, and in the line segment O,R,. This proof depends on the following lemma.

Lemma. Let J be a set with accumulation point x, in the interior of the disc
bounded by C.. For x e J let L(x) be the arc length of the trajectory of X, start-
ing at x and with final point in W,. Then lim,_, L(x) = k, + [ where k, is the
arc length of the positive trajectory of X, starting at x,.
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R, W,
D
D
)
~L0—
4 (o)

G

Proof of the lemma. Let T(x) be such that X rn(X) € Wi Then T(x) =
(1/2)1g(l/x;). Put

A= Ax, 1) = V(3 + )@ + Fe™,
B = B(x, 1) = x,de* .

Then

T (x) - T (x)

L(x) = I VA* + Bdt = [ V(A + B)* — 2ABdt .

0 0
Let
— T (x) T (x) T () 2AB
Lx=J y Bm—j VI Nm:j

@)= 4+ Bu—| T e e Lo

— T (x
One can verify that lim L(x) = 0 and that lim J ) (A4 + B)dt =k, + 1. There-
r—Zo r—=To 0

fore lim,_,, L(x) = k, + I which proves the lemma.

We return to the proof of the theorem. Notice that if T(x) is such that
X 1-1(X¥) =y € Ty, L(x) is the arc length between x and y through a trajectory
of X,, and x, belongs to the interior of the disc bounded by C,, then lim,_,, »
= y, € C,, and lim,_ ., L(x) is the arc length of the trajectory of X, between x,
and y,. We apply the above arguments to convergent sequences to a point in
the interior of the disc bounded by C; and to a point in O,R,. We have thus
obtained an orbit preserving homeomorphism in part of S® But by considering
the other fixed points of g we can make the same construction simultaneously
for the whole S* Thus we obtain a homeomorphism of S° taking orbits of p
onto orbits of p*, proving the theorem.
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Let Z"(R%, S%) be the set of actions of R* on S® with the C” (r > 1) topology.
The method used to prove the previous theorem yields the following stronger
result.

Theorem 9. A linearly induced R*-action on S* having only hyperbolic com-
pact orbits is structurally stable in Z"(R?, S°).

Proof. Let p: R* — Dif (S°) be a linearly induced action of R* on S As in
the proof of Theorem 8 we can consider a Morse-Smale generator X, of o, the
Poincaré map f; corresponding to the transversal section 3, and the vector field
Z,. By a theorem in [8], there exists a neighborhood V(p) C Z(R?, S*) such
that if 7€ V(p) then 5 has a Morse-Smale generator X# with the same proper-
ties as X,. Let /2 be the Poincaré map corresponding to the section X', and sup-
pose X #(P) = P, for P1 in the intersection of 3 with the closed orbit of X}.
We can ~reparametrlze X in such a way that the new Poincaré map f, = X%,
where X3 is the reparametrization. To obtain the corresponding vector field
Z, let Z,(x) = a(x)X#(x) + Y#(x) where X#(x) and ¥#(x) are generators of 7.
The function a(x) can be chosen in such a way that Z, has X' as an invariant
set. With X#, f, and Z, so defined the proof is the same as in the previous
theorem.
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