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1. Introduction

Let W be a C°° complete positive-definite Riemannian manifold, and let P,
Q be submanifolds of W. If γ: [0, b] -+ W is a geodesic of W intersecting P
and Q orthogonally at γ(0) and γ(b) respectively, then γ may be thought of as
a "stationary point" of the length function L acting on the space of paths from
P to Q. If Ωr is the space of continuous piecewise-smooth vector fields along
γ, which are orthogonal to γ and have initial vector tangential to P and final
vector tangential to Q, then the Morse index form /: Ωr X Ωr —> R is a sym-
metric bilinear map which is interpreted as the Hessian of L. The index of /
is the dimension of a maximal subspace of Ωr on which / is negative definite,
so this is a measure of the number of essentially different directions in which
γ can be deformed to obtain shorter paths from P to Q lying arbitrarily close
to γ.

If Q is a point, the Morse index theorem says that the index of / is equal
to the sum of the orders of the focal points of P along γ. (See e.g., [2, Chapter
11].)

In this paper we prove a Morse-type index theorem in the general case by
defining the notion of a (P, <2)-focal point of signed order, and then obtaining
an expression for the index of / as the sum of an initial term together with the
signed orders of the (P, 0-focal points. This is obtained in Theorem A in § 4.

Ambrose [1] and Morse [3] also have extensions to the general case. How-
ever the author feels that the present approach has advantages for two reasons.
First, the initial term is easily computed because it depends only on the second
fundamental forms 5, T of P, Q respectively with respect to /(0), γ'(b) res-
pectively. Secondly, the definition of (P, 0-focal point is very natural and
rather easier than, for instance, Ambrose's corresponding notion of a "con-
jugate point of P and Q\

The method of proof of Theorem A follows [1] and [2] in that an index
function / is defind on [0, b] and the discontinuities of i are analysed. Unlike
[1] and [2] however the index function in our case is not necessarily nonde-
creasing. This makes it unlikely that the ad-hoc subdivisions of [0, b] used in
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this paper can be avoided by using methods similar to those employed by
Osborn in [4].

The simple nature of the initial term in Theorem A makes it interesting to
obtain upperbounds on c e R+ in order that there be no (P, 0-focal points on
[0, c]. This is the motivation behind Theorem B, which is stated and proved
in § 5. This theorem is similar to some of the comparison theorems proved
by Warner in [5], although the proof is rather different.

2. The index form

Notation will be as in § 1, with the additional assumptions that γ is para-
meterized by arc length and prolonged so that its domain of definition is R. If
B is a C°°-manifold and if b e B, then Bb will be the tangent space of B at b.

For each t e R, let γ'(f) be the tangent vector of γ at γ(t), and let

For each t e R, R(t) will be the Ricci transformation of Wt into itself given
by

where R is the curvature tensor of W.
Let V be the vector space of parallel vector fields along γ, which are ortho-

gonal to γ. Then the evaluation map V —> Wt which sends X to X(t) is a li-
near isomorphism which will be used to identify Wt with V. For t > 0, Ω\
will be the vector space of continuous piecewise-smooth maps X: [0, /] —> V
with X(0) e F r ( 0 ) and X(t) e g r ( 6 ) , and X will be the derivative of X. Then
Γ : Ω\ X Ω\ -• R will be given by

P(X, Y) = Γ (RX - X, Y} + Σ <X(t;) - X(tt), Y(φ
JO ί

- TX(t), Y(ί)> - (X(0) - SX(0), Y(0)> ,

where the sum is over the jumps tt of X in ]0, t[.
P is a symmetric bilinear map and is the Morse index form arising from the

variational problem with end conditions S at 0, T at t as described below.
Suppose J is a submanifold of W intersecting γ orthogonally at γ(tQ), and

suppose that the second fundamental form of 1 with respect to γ'(t0) is equal
to T (so, in particular lΐitQ) = Qΐib)). Consider a 1-parameter family of curves
TsΦ < s < ε) from P to 1 converging to γ = γ0 as s —> 0. Let X be the as-
sociated transverse vector field, i.e., X(t) is tangential to the curve s H-> fs(ί)
at s = 0. If L(s) is the length of γs, then

dL ^ 0
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It is in this manner that / has the interpretation of the hessian of L as men-
tioned in the introduction.

If i{f), a(t), n(t) are the index, augmented index and nullity of P, it is well
known [1, p. 65] that a{t), n{t) and i(t) are finite, so that a(t) = n(t) + i(t).

To prove Theorem A we study the way in which i(t) changes as / goes from
0 to b. In § 3 it is shown that a(t) is upper semi-continuous, and /(/) is lower
semi-continuous. Thus a(f) and i(t) are continuous (and hence locally constant)
at all points where n(t) = 0. The jump discontinuities of i(f) and a(t) at a
point with n(f) Φ 0 are evaluated in Propositions 1 and 2, and the proof of
Theorem A is completed in § 4, where an expression for /(0+) is obtained.

3. Jumps of / and a on ]0, b]

We use i(L), a(L), n(L) to denote the index, augmented index and nullity
of a symmetric bilinear map L. If X is a scalar or vector valued function (resp.
a vector field along γ), then X will be its derivative (resp. covariant derivative).

The following lemma is the tool used in the analysis of the discontinuities
of i(t) and a(f).

Lemma 1. Let U be a finite-dimensional vector space, and let SB(U) be
the vector space of real-valued symmetric bilinear maps on U. Let K: ]c, d[
—» SB(U) be continuously differentiate at t0 e ]c, d[, and let N be the null
space of K(t0). Then 3ε > 0 such that yμ e ]0, ε[

(i) i(K(tQ + μ)) > i(K(t0)) + i(K(to)\N X N),
(ii) i(K(t0 - μ)) > i(K(t0)) + i(-K(to)\N X ΛO.

Proof, (i) Equip U with a scalar product, and if Z is a subspace of U
let (Z)i be the unit sphere of Z. Let C be a subspace of U of dimension i(K(tQ))
on which K(t0) is negative definite, and let D be a subspace of N of dimension
i(K(to)\N x ΛO on which K(t0) is negative definite. Since K is continuously
differentiate at tQ, 3εx > 0 and an open neighborhood B of (D)ι in (D 0 C)ι

on which K(tQ + μ)(X, X) < 0 yX € B, yθ < μ < £ι. Now (D 0 C\\B is
compact, so 3ε2 > 0 such that K(t0 + μ)(Y, Y) < 0 yY e (D 0 C\\B, yθ <
μ<ε2.Ίϊε = min {εl9 ε2}, it is clear that K(t0 + μ)(X, X) < 0, yX g (D © C)1?

V/i€]0,e[.
(ii) Apply (i) to L, where L(tQ + μ) = K(t0 — μ) for all suitably small μ.
Let t0 e ]0, b]. Following standard practice we construct a finite dimensional

subspace B of Ω\Q such that i(P°\B x B) = i(tQ) and a(P°\B x B) = a(t0).
If X is a smooth vector field along γ with X = RX then X is called a /αcobz

field. The set /" of Jacobi fields which are everywhere orthogonal to γ is a
vector space. If X <ε / has X(0) e Pm and X(0) - SXφ) ± Pm, then X is
called a P-Jacobi field. These arise as the transverse vector fields associated
with variations of γ through geodesies intersecting P orthogonally (see [2, p.
222]).

A finite sequence {ut} with 0 < ux < < un < t0 is strongly normal in
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[0, t0] under the following conditions:
( i ) Each nontrivial P-Jacobi field has no zeros in ]0, uj.
(ii) Each nontrivial Jacobi field X with X(t0) € βΓ ( 6 ) and X(t0) — TX(t0)

_[_ Qrib) has no zeros in [wn, ίo[.
(iii) For / = 2, , n — 1, each nontrivial Jacobi field has at most one

zero in [«<_i, κ ί + 1 ] .
It follows from the Rauch comparison theorem and the extension due to

Warner [5, Cor. 4.2] that strongly normal sequences exist, and moreover
there are a finite sequence {i/J and ε > 0 such that {ut} is strongly normal in
[0, t] for all t <= [tQ — ε, t0 + ε]. For all such t we set

Bύ = {X € Ωc

r: X is smooth with X = RX except possibly at

P r ( 0 ), TX(t) -

T h e o r e m (For proof s e e [ 1 , p . 6 8 ] ) . A s s u m e n > \ . F o r e a c h t e[t0 — ε ,

+ e],i(0 = / ( / ' I * ' X 5 0 ^ α(0 = α(7*|B* X BO
Let H = WUχ ® Θ WUn. The evaluation map evt \ B* -* H given by

is a linear isomorphism, so the map / : ]t0 — ε, t0 + ε[ —> SB(H) given by

is well-defined. Moreover, by the above theorem, ϊ(ί) = /(/(ί)) and
n(J(t)). In the following lemma we do the computation necessary to apply
Lemma 1.

Lemma. / is smooth, and the derivative J(tQ) of J at t0 is given by

where X = ev^(x) and Y = ev^iy).
Proof. For h e ]tQ — ε, t0 + ε[ and for z € H, let Zh be the unique Jacobi

field along γ such that Zh and evi\z) agree on [un, h]. Then the function Z :
]ί0 — ε, t0 + ε[ X i? -> V given by Z(A, t) = Zh(t) is smooth. It follows that
/ is smooth and

( l )
dh dt

Now

fdX dY'

(f09 un) .

dtl
^ γ \ _
dt' " / \dh ' dt

d j_ d_χ_ γ\ + / d

dt dh dt / \3A dt dt
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dX dY\ /dX d BY"

dt dh dt I \ dh dt dt

3 RX^ γ\ _ / ^ Rγ\ = o by symmetry of # .

Also, (dX/dh)(t0, un) = 0, so from (1)

Writing C(h) = (dX/dt)(h, h) and D(h) = X(h, K), we see that if 17 e Qrm then

Differentiating this with respect to h, and then putting Y(h, h) = U we get

X_ γ frizί2 3A dt

This together with (2) gives

(3) /fox*, y) = [<ax/dh, 3Y/dt - TY> - (ax/at, TY>

(A, A) .

Now if N J_ β r ( 6 ), then <Z, N> | (h, h) = 0 so that

However, (3Y/3ί — Γ(Y)) | (ί0, ί0)
 i s orthogonal to β r ( δ ), so from (3)

and this gives the answer needed to prove the lemma.
From the definition of /', it is clear that X e Ω\ is in the null space J?1 of

V if and only if each of the following two conditions holds.
(i) Z i s aP-Jacobi field.
(ii) X(t)-TX(t) ±Qrib).
If dim βι φ 0, then we call t a (P, Q)-focαl point of order n(t) = dim / * .

Notice that if Q is a point then a (P, 0-focal point is usually called a focal
point of P along γ, while if both P and Q are points then a (P, 0-jfocal point
is just a conjugate point of ^(0) along γ.

If ί e ]0, 5] and I J e / ' , then

and this is independent of the choice of strongly normal sequence used to de-
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fine H. Let n+(t) (resp. n_(t)) be the dimension of a maximal subspace of e/
t

on which the symmetric bilinear map

(X, Y) -> <RX{t), Y(f)> - <Z(0, ?(*)>

is positive (resp. negative) definite. If t is a (P, <2)-focal point, we call n+(t)
(resp. n_(0) the positive (resp. negative) order of /. Notice that if W has po-
sitive sectional curvatures at t, or if Q is a point, then n+(t) = 0 and n_(ί) =
n(ί).

We now apply Lemma 1 to the above. Statements (i) and (ii) of the follow-
ing proposition are immediate, while (iii) and (iv) use the fact that a(i) +
i(-/(0) = dim//.

Proposition 1. Let t e ]0, b\. Then 3ε > 0 such that yμ <= ]0, ε[
( i ) Kt + μ) > i(t) + #ι_(ί),
(ii) i(t - μ)> Of) + n+(0,
(iii) a(t + μ) < a(t) - n+(t),
(iv) ait - μ) < a(t) - n_(0.
It follows that / and α are locally constant at any t with n(t) = 0. We call

/ a nondegenerate (P, β)-focal point if rc_(ί) + n+(0 = n(t) > 0. Clearly, if
W has positive sectional curvatures at the (P, 0-focal point t, then t is non-
degenerate, while if Q is a point then all (F, 0 - focal points are nondegenerate.

Proposition 2. // ί w a nondegenerate (P, Q)-focal point, then the inequali-
ties of Proposition 1 are equalities, and t is an isolated (P, Q)-focal point.

Proof. Let ε be as in Proposition 1 and let μ e ]0, ε[. From Proposition 1
we have

a(f) - n+(f) > a{t + μ) > i{f + μ) > i(t) + n_(f) ,

ait) - n_it) > ait - μ) > Kt - μ) > ϊ(ί) + π+(ί) .

Since ait) = ίit) + nit), the hypothesis of Proposition 2 implies that all the
above inequalities are equalities. The result now follows.

4. Calculation of ι(0+)

If t is sufficiently small and positive, then i(f) (resp. ait)) is equal to

i ( / Ί Λ X A ) ( r e s P tf(7ΊΛ X A)) where

e Pm, X(t) e Qγ{b)] .

For a proof of this see [1, p. 64].
If X, Y € Λ , then

(4) /*(*, Y) = <z(0 - TXit), Yit)) - <z(0) - sxφ), y(o» .

If P and 2 were both hypersurfaces, each eft = {/ and the right hand side
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of (4) would be defined on f for all t e R. This would make it possible to
compute z(0+) by using Lemma 1, so we begin this section by considering
this case.

Let P, Q be hypersurfaces of W, which intersect γ orthogonally at γ(0), γ(b)
respectively. Let S, f be the second fundamental forms of P, Q with respect
to γ'(0), γ'(b), respectively, and let i(f) (resp. ά(t)) be the index (resp. aug-
mented index) of the corresponding index form P. We compute ϊ(0+) in terms
of S, T and R(0), and later use this to compute ι'(0+) in the general case.

Lemma 3. Let N be the null space of S — f. Then 3ε > 0 such that \fμ
e]0,ε[

(i) Kμ) > KS -T) + i(L IN X ΛΓ),
(ϋ) ά(μ)<KS -T) + a(L\NχN),

where L e SB(V) is given by

L(X, Y) = <RX - TTX, Y> .

Proof. Let /: R -> SB(f) be given by

J(t)(X, Y) = <X(0 - TX(t), Γ(0> - <*(0) - §Xφ),

As already remarked, 3ε > 0 such that for 0 < t < ε, ι(/(0) = ι(f) and
α(/(0) = 5(0.

Clearly

/(0)(X, Y) - <,RZ(0) - f Z(0), Y(0)> + <Z(0) - TX(0), 7(0)> ,

and the null space N of /(0) is given by

N - {X € / : S(X) = T{X)} .

We now show that
(a) /(/(0) IN X Λ0 = KLIN x TV),
(b) α(/(0)|N x Λ0 = a(L|iV X N).
Let

and

iVx = {X <E / : X(0) - 0} .

Then / = U @N19 and /: U ->V given by l(X) = Z(0) is a linear isomor-
phism. Let N2 = l~ι(N). Then N = N, φ TV2. Also /(0) is positive definite on
iVl5 and

/(0)(Z, Y) = L(l(X), l(Y)) for X, Y <= N2 .

Further, if Z e N1? Y € N2, then
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, Y) = -<ΓX(0), Y(0)> + <X(0), TΓ(0)> - 0 .

The proof of (a) and (b) is now clear, and the lemma follows from Lemma 1.
We now return to the general case in which the end manifolds P, Q are

not necessarily hypersurfaces.
For any subspace B c V, pB: V —> B will be the orthogonal projection onto

B, and BL will be ker pB. Let U = Pr{0) Π QHb), and write S — T as an ab-
breviation for the map

pvo(S\U - T\U): U->U .

We will construct symmetric linear maps S, T on V such that
( i ) Prΐm o S I Pm = S and ^ o T\ Qγ{h) = Γ,
(ii) index (resp. null space) of S — f = index (resp. null space) of S — Γ,
(iii) f I U depends only on S and T.
P, Q will then be chosen to have 5, f as second fundamental forms with

respect to /(0), f(b) respectively.
It is clear that (i) implies that Ί(t) > i(t) and ά(t) > a(t) for all t > 0. We

later show that for sufficiently small positive ί, l(t) < i(t). This will yield the
desired expression for /(0+) which, by Lemma 3, depends only on S, T and
R(0).

Construction of S and f. Let C (resp. D) be the orthogonal complementa-
ry subspace of Pm (resp. Qΐ(b)) in Pm + β r ( 6 ). Then

and C 0 Z) is orthogonal to U.
Define Sly Tλ: F —> V by the requirements that
(a) I m ^ c D and Im5X C C,
(b) Pc©i> ° (S o /?pr(0) - Γ o pQγφ)) = T1 — S l e

Let Sf, Γf be the adjoints of S19 T19 and let λ e /?. Put

It is clear that S and Γ are symmetric and that (i) and (iii) are satisfied.
Also, if N is the null space of S — T, then

(S - T)X = (S, - Tλ)X + (Sf - T*)X + SX -TX

= -Pc@D(SX - TX) + SX -TX + (S* - Tf)X

= /^SX - p^TZ + (5* - Tf)X

= 0 , since X ε N c £/ .

It is a consequence of (i) that ι(S — f) > i(S — T), so the following lemma,
together with a countup of dimensions, shows that (ii) is also true.
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Lemma . Let S — T be positive definite on G C U. Then, for suitably
large λ, S — f is positive definite on G θ U1-. (We henceforth assume that
S/f are defined using such a λ.)

Proof. Recall that (B)ι denotes the unit sphere of a normed vector space
B. If Zz(G\, then by (i)

<(5 - f)X, X) = <(5 - T)X, X} > 0 .

Thus there is an open neighborhood D of (G)ι in (G 0 U±)l such that
(S - f)X, X > 0, yX e D. If Y e (G φ £/-% then there are Yλ eG,Y2e C,
Y3 εD,Y4ε (Pm + Qΐ(b)V such that γ=γι + γ2 + γz + y4. Thus

, y2> + <y3, y3> + 2<y4, y 4 »

where K is a continuous function on (G φ ί/1)^ If H = (G φ U^WD, then
iϊ is compact so we may choose ε, με R+ such that

ε - inf {<y2, Y2> + <Y3, ^s> + 2<Y4, Y4>} > 0 ,

μ=sup{\K(Y)\}.

Choose λ > μ/ε. Then

S f > > 0 , yZ e (C θ

and the lemma is established.
So far, i, n, n+, n_ have been integer-valued functions denned on the posi-

tive real numbers. We now extend their domains of definition to the nonne-
gative reals as follows.

Let z(0) = i(S - T) and Λ(0) = n(S - T). Let n+(0) (resp. Λ.(0)) be the
dimension of a maximal subspace of N on which pNo(R — f T \ N) is positive
(resp. negative) definite, where N is the null space of S — T. If n(0) Φ 0,
then we say that 0 is a (P, 0-focal point of order n(0), while 0 is a nonde-
generate (P, β)-focal point if n_(0) + n+(0) = n(0) > 0. Notice that these de-
finitions are independent of the choice of λ used in the definition of S and f.
Also, if TFhas positive sectional curvatures at ̂ (0), then n+(0) — 0 and n_(0)
= Λ(0), while if Pr(0) Π Qΐ{b) = {0}, then i(0) - nφ) = 0.

Proposition 3. // nφ) = 0 or if 0 is a nondegenerate (P, Q)-focal point,
then 3ε > 0 such that there are no (P, Q)-focal points on ]0, ε[ and yμ e ]0, e[,
f^) = i(0) + n_φ).

Proof. Let ε > 0 be as in Lemma 3. Then that lemma, together with pro-
perty (ii) of § and Γ, shows that yμ e ]0, ε[

Λ_(0) > ά(μ) > i(μ) > iφ) + n_φ) .
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Thus the above inequalities are equalities, so there are no (P, 0-focal points
on ]0, ε[. We already know that a(μ) < ά(μ), so it remains to show that for
sufficiently small positive μ, i(μ) > i(0) + n_(0).

Let Vl9 V2 be subspaces of Pm, Qΐib) respectively, such that V1 Π V2 = {0}
and V1 Θ V2 = Pm + β r ( 6 ) . Define L: U — V as follows. For each Xeϋ,
there are unique elements vλ e V19 v2 <=. V2 such that

TXX == v2 - vλ .

Set

LX = v1 + S ^ = v2 - 7\Z .

It follows from the Rauch comparison theorem for submanifolds [5, p, 351]
that 3β! > 0 such that for all h € ]— ε1? €i[\{0} and all X € U there are unique
Jacobi fields Xh, &h along γ such that

(a) Xh is a P-Jacobi field with Xh(\h) = X + \hLX9

(b) arh(h) e β r ( 6 ) , #Λ(A) - τarΛ(ή) j _ QrW, a
Now define / : ] - ε 1 ? εx[ -> 55(17) by

, Y) = <Xh(ih) - tκ(\K), ΓΛ(iA)> for Λ ^ 0 ,

, Y) = <(5 - T)X, Y} .

Notice that for he]O,£lL J(h)(X9Y) = /Λ(3εΛ,g)Λ) where 3EΛ|[0,iA] =
^ Λ I [0, JA], 3£Λ I [JA, A] = %h I [JA, A], and similarly for g)ft. In the following
lemma we do the calculation necessary for applying Lemma 1.

Lemma. / is smooth, and

, Y) = <(Λ - f f )X9 Y> ,

/or Z , Y in the null space N of S — T.
Proof of Lemma. Let m be the dimension of F, and d the dimension of

V. The following ranges of indices will be used:

1 < A, B, - - , < d , 1 < /, /, , < m , m + 1 < a9 β, , < d .

We shall also employ the summation convention whereby repeated indices are
summed over their respective ranges.

Let X, Y € U9 and pick an orthonormal basis e19 , ed for V such that
X = xeY for some x € /?, and {el9 , em} spans Pr(0). Let ŵ  and va be the
Jacobi fields with w,(0) = ^ , ut(0) = Sei9 and ve(0) = 0, va(0) = eα. Since
^α(0) = 0, the vector fields wa given by

wa(t) = va(t)/t for ί φ 0, we(0) - * e(0) = ea

are smooth, and {^(ί), , n r o(0, wTO+1(/), , wd(ί)} are linearly independent
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for t € ]—ει,ει[. Thus we can uniquely define smooth functions aA: ]—ει,ει[
—> R by the requirement that

aa(h)waQh) = X

Clearly aa(0) = 0, so the functions ba: ]—ε1? ελ[ —> I? given by

6β(A) = aa(h)/h for Λ ^ 0, 6σ(0) = dβ(0)

are smooth. Also

( 5 ) aMUi(\h) + 2ba(h)va{\h) = X + }/*LZ , for A e ] - ε l 5 6 l[ .

However, by definition of ελ we have that y/z e ] —ε1? εi[\{0}, yί 6 R,

( 6 ) Z , ( 0 = at(h)ut(t) + 2ba(h)va(t) .

So, if we define Zo(/) = ^ ( 0 ) ^ ( 0 + 2ba(0)va(t), then X(h, t) = Xh(t) is a
smooth vector-valued function of two variables.

Differentiating (5) with respect to h at h = 0 we have

( 7 ) 4,(0)11,(0) + ifl,(0)ώ,(0) + 2i β (0K(0) + ^α(0)i;α(0) = \LX .

Putting A = 0 in (5) we get that

( 8 ) a.φ) = x, α,(0) = 0 for i = 2, , m ,

so from (7)

( 9 ) d,(0)e,

Thus, if K(t) = ((3X/dt)(t, it), Y(t, it)}, then K is smooth, and from (6)

Kφ) = <d,(0)ώ,(0) + ia,(0)ii,(0) + 6β(0)«β(0) + 2iβ(0)i)β(0), Γ>

which becomes, in consequence of (8) and (9),

K(p) = \«LX - SX, SY>

However, ba(0)ea is orthogonal to P r ( 0 ), so

Thus from (10)

(ID £(0) - κ<^^ - sx, SY> + (RX, y> + (Sx,
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Using similar techniques it can be shown that if

H(h) = <3fh(ih)9 &h(ϊh)> for h φ 0 ,

fl(θ) = <fx, y> ,

then H is smooth and

(12) 7/(0) = \{<LX + TX, TY) - ζRX, Y) + ζfX, LY)) .

Since J(h)(X9 Y) = KQi) — H(h) we see that / is smooth and

Jφ)(X, Y) = (RX, Y} + i«§X - fX, LY} + (LX - §X, SY)

- (LX + TX, TY)) .

Thus, if X, Y e N then

j(0)(X, Y) = (RX, Y) - <TX, TY) ,

as was required to prove the lemma.
Returning to the proof of Proposition 3, we see that the above lemma, to-

gether with Lemma 1, shows that 3ε2 > 0 such that yμ <=. ]0, ε2[

TO) > i(/(0)) + n_(0) .

However, as akeady remarked, J(μ)(X, Y) = Iμ(3iμ, $)μ), so that ί(J(μ)) < i(μ).
Thus

ϊ(0) + n_(0) < i(J(μ)) < i(μ) < a(μ) < a(μ) < i(0) + Λ.(0) ,

and the proof of the proposition is complete.
Propositions 1, 2 and 3 are combined to give the main result of the paper:
Theorem A. Let P, Q be submanίfolds of W, and let γ be a geodesic of

W intersecting P and Q orthogonally at γ(0) and γ(b) respectively. If P, Q
have only nondegenerate (P, Q)-focal points on [0, b], then these (P, Q)-focal
points are finite in number. Further, the index i(b) and the augmented index
a(b) of the index form of this configuration are given by

i(b) = i(S - T) + Σ n_{t) - Σ n+(t) ,
0<t<b 0<t<b

a(b) = i(S - T) + Σ n_(t) + Σ «+(0 >
0<ί<6 0<ί<6

where S, T are the second fundamental forms of P, Q with respect to γ'(0),

γ'(b), respectively.

5. A comparison theorem

In view of Theorem A it is desirable to obtain an estimate of the distance
from P to the first (P, g)-focal point. If S — T is positive definite (e.g., if
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P r ( 0 ) Π Qγ{h) = {0}), then methods similar to those employed by Warner [5,
Proof of Theorem 3.2] may be used to yield such information. However, these
methods depend on V being positive definite for small t, and as we have seen,
this is not the case for general S, T.

In this section we illustrate a method of finding such estimates using the
idea of translates of S as employed by Ambrose in [1]. The principal drawback
in our use of this construction is that we must assume that P is a hypersurf ace
of W.

Let t0 be the first focal point of P along γ, and let t e [0, tQ[. For each X e F,
there is a unique P-Jacobi field & such that &(i) = X. Let St(X) = t(t).
This defines a map St: V —» V which may be shown to be an element of the
space SL(V) of symmetric linear maps from F to F (See [1, p. 54]). Notice
that if P is not a hypersurf ace, then the above breaks down at / = 0.

Lemma 4. The map S: [0, /0[ —• SL(V) given by S(t) = St is smooth and
satisfies the Riccati equation

S(f) = R(t) - S\t) .

Proof. The smoothness of S follows from the theory of solutions of ordi-
nary differential equations. Let % be a F-Jacobi field. Then (S&)(t) =
so by differentiating we get

= r(t),

which gives

= (R%){t) - (ssarxt).

Hence the lemma is proved.
If L € SLiV), let Ώ € SL(Qrib)) be given by L\X) = pQγ{b)LX.
Theorem B. Assume that P is a hypersurface of W and that
( i ) each eigenvalue of S has modulus < Λ,
(ii) each eigenvalue of S* — T has modulus > Ω > 0,
(iii) for each positive t, each eigenvalue of R(t) has modulus < Θ.

Then the first (P, Q)-focal point occurs at or after t19 where tγ is the smallest
positive solution of the equation

cot Θ1/2t = Ω-ιΘ-ι/2(Θ + Λ2 + ΛΩ) if Θ > 0 ,

t = ΩΛ~\A + Ω)~ι if Θ = 0 .

Proof. For θ > 0, let τθ be the smallest positive solution of

cot θ1/2t = Λθ~1/2 ,

and let τ0 = Λ~\ It follows from the Rauch comparison theorem for submani-
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folds [5, Corollary 4.2(a)] that the first focal point of P occurs at or after τθ

and this occurs after tλ. Thus S is defined on [0, tj. Let

D = {(0, t) e R(> 0) x R(>0):t< τθ] ,

and define g: D -» R by

g(0, t) = θ1/2 cot (θ1/2t + K) , where £ = cot"1 ( - Λ r 1 / 2 ) .

Then g is continuous and negative on D, and dg/dt = —θ — g2.
Lemma. // X, Y are unit vectors in V and if t < τθ, then

(d/dtχStX,Y><\(dg/dtXΘ,t)\ .

Proof of Lemma. Let || || be the norm on V associated with < , >, and for
L e SL(V) let

= sup {||LZII: Z e V and | |Z | | = 1} .

Then

= |<K(0* - StStX, Y)\<θ + \\St\
dt

|2

To establish the lemma it is enough to show that \\St\\ < \g(θ, t)\ for θ >
θ,t<τβ. Since | |S0 | | < \g(θ9 0)| it suffices to show that if θ > θ, t2 e [0, τβ[,
ZzV are such that \\Z\\ = 1, 0 < | |S ί f | | = \g(θ, t2% then (d/dt) \\StZ\\ < \dg/dt\
at (β, t2). However, this is clear because in this case

d\\StZ\\ = <R{t)Z - StStZ, StZ> \\StZ\r at t = t2

dt

<θ + \\St\\2<\dg/dt\ at(ί,/ 2 ) .

Returning to the proof of Theorem B, we note that if t2 € [0, tx[ is a (P, 0 -
focal point, then IX e Qΐib) such that \\X\\ = 1 and S*2X = TX. However,
from the lemma it is clear that if Y e β r ( 6 ) , then

<S0X - St2X, Γ> < \g(Θ, 0) - g(Θ, t2)\ < \g(Θ, 0) - g(θ, h)\ = Ω .

Since So = S, we now have a contradiction of hypothesis (ii). This completes
the proof of Theorem B.

Similar theorems may be proved using the above methods.
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