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PERTURBATION THEORY FOR CONDITION (C)
IN THE CALCULUS OF VARIATIONS

JILL P. MESIROV

I. INTRODUCTION

1. Introduction

One classical method of solving the Dirichlet problem for Δu = f on a
bounded domain Ω C Rn, is to minimize the Dirichlet integral

J(μ) = ί i|Γw|2 + f(x)u ,

over an appropriate class of functions u on Ω.
The generalized variatίonal Dirichlet problem is to study the critical points

of a functional

= j
where if, the Lagrangian, is a nonlinear differential operator from sections,
with prescribed boundary values, of a fiber bundle E over a compact manifold
M with boundary, to sections of the trivial line bundle RM.

The key step in finding a critical point which is a minimum, for example,
is to show that the functional actually achieves its minimum value. For this
we need some sort of compactness condition we use the Palais-Smale condi-
tion (C).

To state this precisely, we consider L%(E), a manifold modeled on the
Sobolev space of sections whose distributional derivatives up through order k
are in Lp, with norm || \\Ptk. A functional / : Lξ(E) —> R satisfies condition (C),
if given any subset S of Lv

k(E) on which |/| is bounded but | |D/| | is not bounded
away from zero, then there is a critical point of / in the closure of S. If / is
C2 and bounded below, and satisfies condition (C), then / assumes a minimum
on each component of L£(£), [13], [16].

The main question we consider is, if Jo satisfies the Palais-Smale condition
(C), under what conditions on a perturbation y can we show that the per-
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turbed functional J = Jo — Ϋ" also satisfies condition (C)? With this in mind,
we observe that a functional / having both of the following two properties
satisfies condition (C):

(a) A functional / is pseudo-proper on Lv

k if |/(5) | < a for some set S C Lp

k

implies \\u\\Pιk < b for all u e S.
(b) A functional / is coercive on Ljj?, if given any bounded sequence (ι^)

in Ll such that

(DJUi - DJuj)(Uί - uj) - 0 ,

then (Ui) has an Ll convergent subsequence. (See § 2 for a more precise de-
finition.)

The condition we call pseudo-proper, is classically sometimes called the
coercive condition, and is written: ||w||p,fc —> oo implies \J(u)\ —> oo.

In practice this is how these conditions are used. The pseudo-proper con-
dition on / provides a weakly compact set, from which we get a candidate
for the minimum of / as a weak limit. The coercive condition is used to show
the weak limit is in fact the strong limit of a convergent subsequence. In the
literature, condition (C) is almost always verified by checking these or similar
conditions. The pseudo-proper condition is also used in monotonicity methods
of solving partial differential equations [7].

Our work is an investigation of the pseudo-proper and coercive conditions.

If J0(u) = ££(u) is pseudo-proper (resp. coercive) onLf?, what conditions on

ψ*(u) — V(u) insure / = /0 — V is still pseudo-proper (resp. coercive)? We

treat the two conditions separately. This is more than a stability question. It
is not difficult to show that if a perturbation Ψ* is "small" enough, then it
preserves the two conditions. We ask, rather, how large Ψ* can be.

The contents of the paper are as follows : § 2 contains technical prelimina-
ries and notation. (We suggest skipping this section, referring back to it as
the need arises.)

In § 3 we discuss the motivating example of geodesies in the presence of a
bounded potential as a perturbation problem. Boundedness is too restrictive
a condition for most applications. The point of the remainder of the paper is
to investigate pseudo-properness, coercivity, and condition (C) under weaker
assumptions on perturbations.

§§4 through 7 contain the perturbation results for the pseudo-proper con-
dition. We begin with an especially illuminating and useful special case. For
u e L\(M, R) with "zero boundary values," let

/„ is the square of the L\ norm of u and thus pseudo-proper. Let V: M X R
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—> R be continuous, and λλ > 0 be the first eigenvalue of the Laplacian. Fi-

nally, let /(«) = /0(w) — ί V(x, u). The essential content of Theorem 5.1 is

Theorem 5.1'. (a) //

V(x, s) < const. + Ks2

for all s e R, and K < 2.19 then J is bounded below and pseudo-proper.
(b) //

V(x, s) > const. + λ^2 ,

then J is not pseudo-proper.
The theorem can be viewed as an asymptotic growth estimate on V, com-

pare with [6, § 8]. Part (a) shows that if V grows at most quadratically, at a

rate bounded by λ19 then it preserves the pseudo-properness of \Fu\2; part

(b) shows the sharpness of the bound on the growth rate found in (a). As an
outgrowth of Theorem 5.1, we give an example of a functional which satisfies
condition (C), but is not pseudo-proper.

The remainder of §§ 5 through 7 extends Theorem 5.1 to more general
functionals /0, arising from &th order Lagrangians, and perturbations Ψ*. In
the second half of § 5 we extend part (a) to general perturbations of order
zero, i.e., to those which only depend on u and not any derivatives of u. In
this context we also discuss geodesies in the presence of possibly unbounded
potentials. (The essential step in our discussion of geodesies is to find an ana-
logue of h in a setting where there is no linear structure.) The extension of
part (a) to general perturbations of order Λ: — 1 is carried out in § 6, while
in § 7 we extend part (b) to perturbations of order k — 1.

The coercive condition is dealt with in § 8. We consider coercive functionals

J0(u) = if(«), where if is a polynomial differential operator of order k and

satisfies an auxiliary condition which insures if is smooth from Lv

k(E) to L\(RM).

The perturbations rΓ(u) = V(u) are also polynomial, only depend on the

(fc — l)-jet of u, and also satisfy the auxiliary condition. Under these hypo-
theses we get an optimal result, namely that all such perturbations preserve
coercivity. We also show that we can relax the auxiliary conditions on V de-
pending on the relation between p and the dimension of M. Related conditions
are also given for the case where the functionals act on sections of a vector
bundle ξ, in which case L%(ξ) is a Banach space.

Some of these results were announced in [9]. In a subsequent paper [11] we
will continue our investigation of which functionals are pseudo-proper and
coercive. There we show, for example, that if if (u) is a quadratic polynomial
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in u and its derivatives, then modulo \u\\ J(u) = J*?(w) is pseudo-proper if

and only if the bilinear form associated with j£? is uniformly strongly elliptic.
The author would like to thank R. Palais for helpful and stimulating con-

versations.

2. Preliminaries and notation

M denotes a compact connected C°° Riemannian manifold of dimension
n > 1 with or without smooth boundary, dM. ξ and η denote finite dimensional
C°° vector bundles over M, and Ck(ζ), 0 < k < oo, the linear space of Ck

sections of ξ. Q°(f) is the linear space of C°° sections with compact support
in the interior of M. We define C°°(E) for E a finite dimensional C°° fiber
bundle over M in a similar manner. RM is the trivial line bundle M x R over M.

An RMC structure for a vector bundle ξ consists of a Riemannian metric
for ξ, whose norm we write as | | and inner product < , >, together with a
Riemannian connection [3]. We denote by V the covariant derivative with re-
spect to the connection, by Fj the yth covariant derivative, and by Δ the La-
placian with respect to the given metric. We use the sign convention giving
Au = uxx + uyy for the standard metric on R1.

Choosing some RMC structure on TM and ξ, we define norms

= Σ(\
j = 0\jM

for nonnegative integers k, and real p > 1. We define Lf(ξ) as the Sobolev
space of sections whose covariant derivatives up through order k are in Lp(ξ).
L%(ξ) is a Banach space with respect to || \\Ptk. If p = 2, L\(ξ) is a Hubert
space with inner product

j = 0 J M

and norm

Different RMC structures will yield equivalent norms since M is compact.
There are other norms equivalent to the one given above, we will use the one
best suited to the problem at hand. We refer often to the standard Sobolev
embedding and Rellich Theorems (see [4, pp. 22-23, 28, 31]).

If pk > n, we can give L%(E) the structure of a C°° infinite dimensional
Finsler manifold, modeled on Lp

k(ξ). For more detailed expositions of possible
precedures see [19], [2], [3], and [12]. One step necessary in one procedure
is the construction of vector bundle neighborhoods. As we will need this for
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a local argument in § 8, we give the definition here. For a proof of the exis-
tence of vector bundle neighborhoods see [12, § 12].

Definition 2.1. Let u e C\E). A vector bundle neighborhood of u in E is
a vector bundle ξ over M such that ξ is an open subbundle of E and u e C°(ξ).

We can now give a more precise definition of coercivity for functionals on

Ll(E).
Definition 2.2. Let E be a C°° fiber bundle over a compact connected n-

dimensional C°° manifold M, and pk > n. A functional /: L%(E) —» 1?, is called
coercive if on any vector bundle neighborhood f c E, if

- />/„]& - Sj) -> 0 ,

and 11̂  | | L j ( ί ) is bounded, then st has anLf(f) strongly convergent subsequence.
Definition 2.3. A map P: C°°(£) —• C°°(£) is called a polynomial differ-

ential operator of order k and weight at most w, if for each local representa-
tion of P, the j'th component of Pu(x) is

= Fj(x, ufc), , wm(*), Z>eK<(*)) , 1 < |α| < k ,

where each of the functions F^ is a sum of terms of the form

Φ(x, u γ ( x \ • ,

with 1 < 1̂ 1 < k, and l^l + + \βq\ < w, [12, p. 69]. (An intrinsic de-
finition may be found in [10, appendix II].)

Definition 2.4. A polynomial differential operator is said to be strict, if
for some local representation of P the functions Φ are of the form

Φ(x, MX*), , um(x)) = a(x)utl - uit .

(Note that this notion is invariant in the base variable of E (in x), but not in
the fiber variable (i.e., in ύ).)

In other words, a polynomial differential operator is a polynomial in the
derivatives of u whose coefficients may depend on u, but not on the derivatives
of u. For a strict polynomial, the coefficients are further restricted to be poly-
nomials in u.

Examples. (1) P(u) = a{x)eu{u/)2 is a polynomial differential operator of
order 1 and weight 2.

(2) P(u) = a(x)u\u')2 is a strict polynomial differential operator of order
1 and weight 2.

For the rest of the paper when considering LPk we assume 1 < p < oo, since
then bounded sets are weakly compact. All integration is with respect to the
Riemannian measure on M.

Notation. We designate an open set Ω with compact closure contained in
M b y f i C c M . D n denotes the unit rc-disk, i.e., {x e Rn \ \x\ < 1}. The tangent
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bundle of a manifold M is written TM. For the unit interval [0,1], we use I.
To designate the space of hv

k maps from a manifold M into R we use either
of the following: L{(RM) or Ll(M, R). For an open set Ω c Rn we use LJ(fl)
and LJ(β, I?) interchangeably. Lξ(E)Bf (resp. Lf?(f)a/) denotes the closure in
L&E) (resp. L*(£)) of the set of g e L*(E) (resp. Lξ(ξ)) which agree with / on
some neighborhood of the boundary of M. The closure of C0°°(f) in Lg(£) is
L%(ξ)0, while C^(ξ\Q) is the space of u e Cj°(£) with compact support in β. The
uniform norm is written || 1^.

Da = dlal /dx"1 dxa

n

n in the usual multi-index notation. To designate weak
convergence we use — .̂ Finally, the / -jet of a section u is written ik(u).

3. An example for motivation

The motivation for our perturbation problem comes from classical me-
chanics. We are given the following data:

N: differentiate manifold = configuration space
K: Riemannian metric on TN = kinetic energy
V: i?-valued function on N = potential energy

(By abuse of notation we may think of V as acting on TN.)
L: K — V = Lagrangian.

The motion of the system is an extremal of L at a point (p, v) € TN, where p
is a position vector and v a velocity vector.

We will show that the action integral

E{u) = JL(II) = ΪK(u, uf) - V(u)dt

satisfies condition (C), assuming that (i) K(u, ur) = || w/(/) ||^(£) is the metric on
configuration space N, (ii) the potential V is a smooth bounded function on
N, and (iii) u e Li(/? N)PtQ, i.e., LJ paths from P to 2 in ΛΛ

It is not difficult to show that the energy integral E°(u) = K(u, uf)dt, the

"unperturbed functional", satisfies condition (C) by verifying pseudo-proper-
ness and coercivity [17]. Assuming this, we consider the perturbed functional
E. As we observed in the introduction, it suffices to prove the following two
claims to establish condition (C) for E.

Claim 3.1. E is pseudo-proper on L\(I, N)PtQ.
Proof. Since E° is pseudo-proper on L\(l, N)P>Q, it is enough to show that

if E is bounded on S c L\(l, N)PtQ, then E° is also bounded on S. Now V is
bounded, so for all u € S

0 < E\u) = E(u) + ί V(u)dt < E(u) + (const.) length (/) .

Claim 3.2 E is coercive on Ll(I, N)PιQ.
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Proof. We will show that if a sequence ut is bounded in L\, and
φEu. — DEUj)(Ui — Uj)-+0, then ut has a strongly LI convergent subsequence.
Since E° is coercive and

(DEUi - DEu)(Uί - uj) = (DE°Ui - DEl){Ui - u3)

it is enough to show that, for a relabeled subsequence of ut,

J φVUi - DVUj)(ut - uj)dt -> 0 .

The inclusion of L\ into C° is compact, so there is a relabeled subsequence ut

which converges uniformly. Since V is smooth this means DVU. converges,
which, along with the uniform boundedness of ut, gives the desired result.

q.e.d.
Modifying the above, we get the following more general result.
Theorem 3.3. Let Jo: L%(E)df —> R be a C1 functional on sections of a tri-

vial fiber bundle π: E —> M over a compact manifold M with fiber N, and
pk > dim M. Let V: N —> R be a smooth uniformly bounded function on the

fiber. If Jo is pseudo-proper and coercive, then so is J(u) == JQ(u) — V(u).

Moreover, if Jo is bounded below it is enough to assume V is bounded from
above.

II. PSEUDO-PROPERNESS

4. Almost /-boundedness

In § 3, we dealt with the pseudo-proper half of the perturbation problem
by showing that for a uniformly bounded perturbation y (or one which is
bounded above), if the perturbed functional / = /0 — y is bounded on a set
S C L%(E)df, then the original functional Jo must also be bounded on S. This
assumption on y is too strong. It is enough for y to be dominated by /0,
which leads us to the concept of almost /-boundedness.

Throughout §§ 4 through 7, unless otherwise stated, we do not assume
pk > n.

Definition 4.1. Let / and y be functionals. Then y is almost J-bounded
if there exist constants θ < 1 and K such that for all u,

ΘJ(μ) + K .

The following theorem is an obvious consequence of the definition.



530 JILL P. MESIROV

Theorem 4.2. Let JQ: L%(E)df —> R be a functional which is bounded from
below. If Ψ*: Lξ(E)df —> R is almost J-bounded, then the perturbed functional
J = /0 — Ψ* is bounded below and pseudo-proper.

Using Theorem 4.2 and the pseudo-properness of the functional J0(u) =
||u\\%ik, in subsequent sections we will give various conditions on perturbations
"Γ which insure the pseudo-properness of the perturbed functional

J(u) = / 0(u) - τT(iι) = \\u\\lk - rT(u) .

Since the results extend in a straightforward manner to more general func-
tionals /0 which dominate the norm ||M||£>fc, i.e.,

II MIS,* < cJ0(u) + K , (c,K: constants) ,

we will omit the details of the extension.

5. 0-order perturbations

We begin with an especially illuminating and useful example.
Let M be a compact Riemannian manifold with nonempty boundary. For

u e Ll(M, R)o, let

112

= l l M l l 2 , i

Let V: M x R —> R, and define a functional Ψ* by

ir(μ) = J V(x, u) .

Note that Ψ* is 0-order since it depends on u, but not any derivatives of u.
For / = 1, 2, let λj > 0 be the /th eigenvalue of the Laplacian, with cor-
responding orthonormal eigenfunctions φό € L\(M, R)Q, —Δφj = λjφj. Finally,

let/ = / o - ^ .
Theorem 5.1. (a) //

V(x, s) < const. + Ks2

for all s € R, and K < λλ, then J is bounded below and pseudo-proper.
(b) //

V(x, s) = const. + Ks2 ,

and K > λ19 then J is not pseudo-proper. Moreover, if K = λj for any j =
1,2, , then J does not satisfy condition (C).

(c) // V is continuous, and there are constants γ > λx and c such that
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(5.2) V(x,s)>c ±γs2 ,

for all s > 0 (or s < 0), then J is not pseudo-proper. In fact (5.2) need only
hold on some open set Ω C M.

Remark. Part (a) of Theorem 5.1 says that if V grows at most quadrati-
cally with a rate of growth bounded by λ19 then / will be pseudo-proper. We
can rewrite this condition on V in terms of an asymptotic growth estimate, i.e.,

limsup F ( * ? t y ) <K<λλ .
|s|-oo \s\2

In part (b) we see that if V grows quadratically, then the λγ "growth con-
stant" is a sharp bound for the pseudo-properness of /.

Part (c) shows the sharpness of the restriction in part (a). In particular, if
V grows faster than quadratically even on an open set Ω c M, e.g., V(x, s)
> cλ + c21 if where t > 2, then / will not be pseudo-proper. As a special case,

V(x,s)=Kx)±si

satisfies (5.2) for s > 0 (for + ) , or s < 0 (for - ) .
There are similar phenomena in the more general situation.
Proof, (a) By Theorem 4.2, it is enough to show that V is almost /0-

bounded. First we recall that

\\Vuf
λ, = inf J > 0 .

ueLl(M,R)0 Γ. 2

Now

ί V(x, u) < ί (const. + Ku2) < (const.) vol (M) + — ί ψuf .

But K < λι, so we see V is almost |Γw|2-bounded.

(b) First observe that

J(u) = ϊ\Fu\2 - Ku2 = - ί u(Δu + Ku) ,

and

DJu(v) = 2 [Vu-Vv - Kuv = 2 J u(-Δv) - Kuv .

Now writing u in an eigenfunction expansion, u = 2 atφu we see [|w||2,i =

Σ λta
2, J(u) = Σ α - K)aL

2, and
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uWh = Σ

Say K > λ19 since Λj, —» oo, ^ < A; < ^ + 1 for some N > 1. Let

If we define Uj = /w, then J(u3) = 0 while ||w7||2)1 —> oo, and hence / is not
pseudo-proper. Note that if K = Λ1? we can let u — φλ. This establishes the
first part of (b).

If £ = ^ , let uj = jφN + (l/DφN+1. Then we see that \J(μά)\ < λN+ι - K,
\\PJUj\\ —> 0, but ||w^ ||2>1 —> oo. Hence we see / does not satisfy condition (C).

(c) Replacing u by — u if necessary, we need only consider the case s > 0.
Pick z _}_ Φi- Then for any a e R,

(5.3) | | ^ + z||2M = J | Γ ( α ^ + z)\2 = a%

Also by (5.2)

/Wi + z) < Λi + JIFzi2 - r J H + ^)2 - c, .

Consequently,

(5.4) /(α^ + z) < tt - r)^2 + J l^l2 ~ Ci .

Thus for fixed z _\_ φ19 since γ > λ19

(5.5) J{aφλ + z) < const. for all a e R .

There are essentially two cases: as a —* oo, either (i) lim /(αr^ + z) >
const, or (ii) lim J(aφλ + z) = — oo. The first corresponds to V(x,s) = ^ J 2 ,
when Jiaφi) = 0, and the second to γ > λλ as can be seen from (5.4).

Case 0). Say there is & z _\_ φλ such that lim sup J(aφί + z) > const, as
a —> oo. Then there are or̂  6 i?, αr̂ . —* oo,s uch that / ( ^ ^ + z) > const.. If
Uj = α^^ + z, then by (5.3) and (5.5) we see that ||w,||2,i —> oo but \J(uj)\ <
const.. Thus / is not pseudo-proper.

Case (ii). Assume that for all z _\_ φ19 we have lim sup J(aφ1 + z) = — oo

as a -> oo. We can pick Zj J_ φλ such that \\Zj\U < 1 and \Fzj\2 —• oo. Let

Fjia) = ]{pcφλ + Zj). Since V is continuous and \\zj IU < 1, V(x, Zj) is bounded.

Thus \VZjf —> oo implies ^ ( 0 ) —> oo as / -> 0. Consequently for / sufficiently
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large, F/0) > μ, for some constant μ. Moreover, Fj(a) —> — oo as a —>• oo.
Therefore, since Fά is continuous, for each / sufficiently large there is an aά

such that Fjipcjφi + Zj) = μ- Now let Uj = e r ^ + Zj. Then /(w7) = μ but
ll^jlki —> °°> thus / is not pseudo-proper.

It is enough for (5.2) to hold only on some open set, since if flcM and
/ is not pseudo-proper on L\(Ω)Q, then / is not pseudo-proper on L\(M)Q. This
follows from the fact that if u € LJ(β)0, then it can be extended to ΰ e Ll(M)0

by letting ΰ = u on Ω and ΰ = 0 on M — Ω.
Remark. In the case of V(x, s) = Ks2 we can say more than part (b) of

Theorem 5.1. In fact we can completely analyze J(u) = \Vuf — Ku2 in terms

of K. J satisfies condition (C) if and only if K Φ λjr for / = 1, 2, . Further-
more, if K < λ1 the critical points of / are minima while if K > λ1 and /
satisfies condition (C) (so K Φ λ3), the critical points of / are "saddle points."
We will show in Theorem 8.13 that / is coercive for all K, although this fact
is not needed here.

Proof of Remark. First we show that if / is bounded on a sequence uj9

and | |F7wJ2,i —> 0> then the w/s are converging strongly in Ll(M, R)o. In fact,
we show || Wy ||l,i —> 0. If uό = Σ atφu then

= Σ

since each term on the right hand side is positive. Now because λt —> oo,
1 — K/λι-+l as Z—> oo. Since K is not equal to any eigenvalue, 1 — K/λt Φ 0
for any /, and therefore there is a γ > 0 such that |1 — K/λt\ > γ for every
/ = 1, 2, . Hence we see

II F T " II 2 > > *s2 V 2 n 2
 Λ/2 11// II 2

I I ' JUj\\2,i 2L J 2-k * i a i — ϊ l l w l l 2 , i

To study the nature of the critical points of /, we examine the second var-
iation

D2Ju(v,v) = 2 [ VV'Vv — Kv2 = 2 { v(—Δv — Kv) .

Thus, if v = 2 biφi, then

When K < λ19 if v ^ 0 then Z)7w(v, v) > 0, because ^ < λ2 < . Hence,
if u is a critical point then it must be a minimum. On the other hand, if
λj < K < λJ+19 then we can choose v to make D2Ju(v, v) positive or negative.

q.e.d.
With this insight we are ready to answer the question of which zero order
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perturbations are almost /0-bounded for JQ(u) = \\u\\p,k = \Fku\p, u e (Lf)0.

If M has no boundary we must modify /0 to J0(u) = ί (\Fku\p + \u\p), but the

theorems go through with little change.
Let ξ be a finite dimensional C°° vector bundle over a compact connected

C°° finite dimensional manifold M with boundary. Choose an RMC structure
for TM and ξ. Let Jo: L£(£)o —> R be a functional defined as follows

U

Define constants λ(p, k) by

\\Vku\p

Λ(p, k) = inf -J .

• *~ Ji-p
Note that λ(p, k) is the reciprocal of the norm of the continuous linear inclu-
sion of L£(f)0 into Lp(ξ)0, and thus is positive.

Theorem 5.6. Let V be a 0-order differential operator from ξ to RM, i.e.,
V: ξ —> RM is a fiber bundle morphism, such that there exist constants A and
a such that

(5.7) J V{ύ) < A + a J I u \p for all u e Lp(ξ)0 .

If a < λ(p, k), then

J(u) = J0(u) - J V(u)

is bounded below and preudo-proper on Ljj?(f)0.
Proof. The natural modification of the proof of Theorem 5.1 part (a).
Theorem 5.8. In the notation of Theorem 5.6, let Jo: Lp(ξ)df -• R and V

satisfy (5.7) for all u e Lg(f)a /. Then there is a constant γ > 0, such that if
a < γ, then

J(u) = JQ(u) - J V{u)

is bounded below and pseudo-proper on Lξ(ξ)af. Moreover, γ > λ{p, k)/2p.
Proof. It suffices to show there exist positive constants B, γ such that

(5.9) [\u\p <B + — [\Vku\p .
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Then the argument is again similar to the proof of Theorem 5.1 part (a).
Note this γ and the γ in the statement of the theorem are identical.

In turn, (5.9) follows from the inequality

(5.10) H U < # i + —llMlU.it

(To obtain (5.9) from (5.10) use (a + b)p < 2*(ap + bp) for any a, b > 0.)
Then one finds B = (2Bλ)

p

9 and γ = fa/2)p. TO prove (5.10), fix φ e L£(f)a/.
If u e Lf(f)a/, then v = u — φ <=. L%(ξ)0. Now use the triangle inequality and
the definition of λ(p, k) applied to ||v||p,o The constant Bγ depends only on φ,
and γl > λ(p, k). Thus γ = fa/2)* > λ(p, k)/2*.

Remarks. 1. As we remarked before for the case of 3M = 0, \Fku\p

is no longer a norm, so we must add \u\p to /0(w). The same general theo-

rems are true in this case.

2. The value of the constants λ(p, k) and γ will crucially depend on the
choice of norms and the RMC structure. Their existence is of course inde-
pendent of such choices.

3. In the case of M = bounded domain in Rn, we can verify condition
(5.7) on V by checking for the following pointwise conditions

( a ) V(x,s)<A +a\s\* ,

or

(b) limsup V(*x>s) <a .
ι«ι- \S\P

An appropriate version of the above should extend to the general fiber
bundle setting. We now present some results in that direction. We consider,
as in § 3, the classical mechanics case, i.e., geodesies in the presence of a
potential.

For the rest of this section, let N be a complete noncompact Riemannian
manifold, and p the distance function induced by the metric (if N is compact
all smooth potentials are bounded). Let / = [0,1], and let

o(κ)= [\u\t)fdt
Jo

be a function defined for u eLl(I,N), where w(0) = P, w(l) = Q for fixed
P,Q eN, i.e., LI paths from P to Q, written L\(I, N)P>Q. We seek a pertur-
bation theorem of the nature of Theorems 5.1, 5.6 and 5.8. That is, we want
to find asymptotic growth conditions on a potential function V: N —> R such
that
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J(u) = JQ(u) - P V(u(t))dt
Jo

is pseudo-proper.
Recall the condition from Theorem 5.1 was

lim sup - Z ^ A < K < λλ ,
l«l-oo s2

where λλ is the first eigenvalue of the Laplacian, and is the "best" constant
possible in the inequality

Thus in order to handle the case of geodesies, we will find a function on N with
which to compare V corresponding to f(s) — s2 on R, and an invariant con-
stant corresponding to λγ.

For a fixed x0 e N, define a function pXo: N -+ Rby pXQ(x) = p(xQ, x). Let
50 be the set of γ e R such that for some Br € R,

ί1 p(x09 u(t)Ydt < l / 0 (w) + Bγ

JO γ

for all u e L\(I, N)P>Q. We will show that the constant γ0 = sup (50) depends
only on the metric on N. This constant γ0 plays the role of λι in the pertur-
bation theorem. One can show that γQ < oo, but since we do not use this fact
the proof is omitted.

In order to be able to state the asymptotic growth conditions, we must in-
troduce the notion of asymptotic equivalence. Let I b e a connected topolo-
gical space.

Definition 5.11. For /: X -> R, we say

lim sup f(x) = a ,
X-+ oo

if for every ε > 0 there is a compact set Kε c X such that f(x) < a + ε for
x e X — Kε, and no smaller a will do.

Definition 5.12. Let V, W be continuous functions on X. V is asymptoti-
cally dominated by W if

lim sup ( — ^ - ) < 1 .
x— \ W(x) I ~

V and W are asymptotically equivalent if each one asymptotically dominates

the other.
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Claim 5.13. // V is dominated by W, then for all ε > 0 there is a constant

Kε > 0 such that

V(x) < Kε + (1 + ε)W(x)

for all x e X.
Proof. Definitions (5.11) and (5.12). q.e.d.
Asymptotic equivalence relates to the notion of almost /-boundedness as

follows.
Theorem 5.14. Let M, N be Riemannian manifolds, N complete noncom-

pact and connected, and M compact. Let J: Ll(M, N)df —> R, where pk > n.
If W: N -» R is almost J-bounded, and V: N —> R is dominated by W, then
V is almost J-bounded.

Proof. We know

ί W(u) <K + ΘJ{u) , where θ < 1 .

Since W dominates V, pick ε > 0 such that (1 + ε) <l/θ. Then by (5.13)
there is a Kε > 0 such that

J V(μ) < Kε + (1 + ε) f W(u) < Kε + K + θ(l + ε)J(u)

for all u e L$(M, N)df. But θ(l + ε) < 1, therefore V is almost /-bounded.
q.e.d.

The function with which we will compare V, corresponding to f(s) = s2 in
the linear case, is ρ(x0, x)2. We first show that the "comparison" is independent
of the specific point x0 e N which we might pick.

Theorem 5.15. Given any points x0 and xλ in N, then pXQ and pXl are as-
ymptotically equivalent.

Proof. Given any ε > 0, let Kε = {x 6 N \ p(xl9 x) < p(x19 xo)/ε}. Then Kε

is compact, and for all x e N — Kε

< i + £ m

p(xλ,x) ~

The argument is symmetric in xx and JC0. q.e.d.
We now give a perturbation theorem corresponding to Theorem 5.1 part

(a), for the space of paths Ll(I,N)PtQ. Recall that we seek conditions on

V:N-^R such that r(u) = P V(u(t))dt is almost /0-bounded where
Jo

= f
Jo

0 | 2 Λ , ueLl(I,N)PtQ .

Before we state and prove the theorem, we prove two lemmas. The first es-
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tablishes an inequality similar to (5.9), and the second establishes the existence
of the invariant γQ which corresponds to the first eigenvalue λγ.

Lemma 5.16. // xQ e N, then there are constants B, γ > 0 such that

(5.17) f p(x0, u(t))2dt < 1 fVωi 'Λ + B
JO γ Jo

for all u e L\(l, N)P>Q. Moreover, γ > 1/2.
Proof. For any path u € L\(I, N)P>Q,

r1 / r1 \ l/2

(5.18) p(u(0), u(t)) < \\u\s)\ds < {\\u'(s)fds\ .

Therefore,

p(Xo, u(t)) < p(x0, u(0)) + p(u(O), u(t)) < p(x0, P) + M Iu\t)fdt\ .

Consequently,

Γ p(x0, u(t))2dt < 2p(x0, PY + 2 Γ \u'(t)fdt .
Jo Jo

Lemma 5.19. Let So be the set of γ <= R satisfying (5.17) for some Br e R.
Then each of the following holds:

(a) Soφ0.
(b) // γQ = sup (So), then γ0 > 0 and is independent of x0.
(c) // x0 = P, then γ0 > 1 and we can let B = 0.
Proof, (a) This is immediate from Lemma 5.16.
(b) Again by Lemma 5.16 we know γ0 > 0. It remains to show γ0 is inde-

pendent of xQ. Pick xx ε M, xλ Φ x0, with corresponding 5X and γx. Note that
if γ e Sγ (resp. SQ), then β < γ implies β e Sx (resp. 50).

If γι φ γ^ say γ0 < γ19 we will obtain a contradiction. Pick εx > 0 such that
To + £i < TV N o w l e t ε = £ι/r» > °' so ε > 0 and f0 + ^oε < ^ , i.e., ̂ 0 <
γj(l + e). With ε thus chosen, since (̂JCQ, )2 and p(xx, )2 are asymptotically
equivalent, there is a K£ > 0 such that

(5.20) Γ p(x0, u(t)Y < Γ Kε + (1 + ε) P p(xl9 u(t)f .
Jo Jo Jo

Since γ0 < γj(l + ε), there is a δ > 0 such that γ0 < (γγ — d)/(l + ε). Now
γχ = sup (5Ί), so there is a ^ in 5X such that 7- + δ > ?Ί, that is, γ > γλ — δ
which implies γx — δ € S1 by an above note. Combining this with (5.20) we see

(5.21) f p(xQ, u(t)Y <Kε + B(\ + ε) + Sλ±
Jo n~
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Now (5.21) implies (Γl - δ)/(ί + ε) e So, but γQ < (Tι - δ)/(l + ε) and ϊo =
sup (50). This is a contradiction.

(c) This follows immediately from (5.18).
Theorem 5.22. // V: N —> R is asymptotically dominated by aρ{x, )2 for

any x e N, a < γ0, then the functional

J(u) = Γ (|κ'(ί)|2 - 7(M(0))Λ , u e Lt(I, N)PfQ
Jo

is bounded below and pseudo-proper.
Proof. By Theorem 5.14 and 5.15 it is enough to show that ap(x, )2 is

almost /0-bounded for some x e N, where

J0(u) = [\u\t)fdt .
Jo

This follows from Lemma 5.19.

6. (k — l)-order perturbations

In this section we investigate conditions on a perturbation V, which imply

almost /0-boundedness for JQ(u) = ||M||JIΛ = | \Vku\p on the space Lg(f)0. The

results in this section generalize those in § 5, especially part (a) of Theorem
5.1. They apply to the case of arbitrary boundary values with an appropriate
change of the constants involved, using the technique of Theorem 5.8.

We analyze almost |Ffcw|p-boundedness, for the case of perturbations V

which are dominated by some strict polynomial differential operator P of order
at most k — 1, and homogeneous of degree at most p, i.e.,

V{u) < constant + P{u) .

Locally one can express this condition as

V(x, u,Dau) < constant + 2 Λa(x)Daiu Daru ,
a

where a = (α15 , ar) is an r-tuple of multi-indices, 0 < \at\ < k — 1, and

r < p .

One should understand the above condition as an asymptotic growth condi-
tion on V. For example:

1. In the case k = 1 and p = 2, where V is a function of the zero jet and

lim sup Σ^iA < a(x) ,
ι*ι-~ \s\2

we have V(x, u) < b + a(x)u2 for some constant b.
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2. In particular, there is no growth requirement in the "negative direction"
such as the — eu term in

V(x, u, u') = -eu + a(sinu)u2 + b{uj < au2 + b(u'Y .

One might ask how necessary is the above restriction on V. We have shown
the necessity in the case k = 1, p = 2 in Theorem 5.1. In Theorem 7.1 we
will discuss the necessity of the growth condition for arbitrary p and k.

Given the above growth condition on V, we wish to show that V is almost

I F*M ̂ -bounded, that is,

[v(u) <θ {\Fku\p + const .

for some θ < 1. Clearly it is enough for us to consider the dominating poly-
nomials P(w).

Lemma 6.1. Let P be a strict polynomial differential operator from ξ to
RM, of order at most k, and homogeneous of degree r < p.Then P extends to
a C00 map of Lp

k(ξ) into Ll(RM).
Proof. This is a local question, so we may assume M = Dn, ξ = Dn x Rm,

and RM = Dn X R. If u = (w1? , wm), then F(w) is a sum of terms of the
form

A(x)Da*uai D°'uar ,

where A e C°°(M, R), 0 < \at\ < k. The map u —• Dαίwα. is a linear differential
operator of order 1^1 from ξ to RM, and thus extends to a continuous linear
map of Lliξ) into L£_ | α i l(M, jf?). Therefore it suffices to show that multiplica-
tion is a continuous multilinear map of 0 J = 1 L?_ |α.,(M, R) into LJ(Λf, i?). The
proof of this, given r < p, is a straightforward application of the Sobolev
theorems and Holder's inequality, see, for example, [12, Theorem 9.4].

Theorem 6.2. Let P be a strict polynomial differential operator of order k
from ξ to RM, homogeneous of degree at most p. Then there is a constant
γ > 0 such that for all u e Lξ(ξ)0

(6.3) JP(M) <γ

Moreover, if γ0 is the greatest lower bound of the set of γ > 0 satisfying (6.3),

and

then ί P(u) is almost \\Vku\v-bounded for u e Lj?(£)0.
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Proof. By Lemma 6.1, P extends to a continuous map from LftξX into
L\(RM). Since P is homogeneous of degree p, there is a γ > 0 such that

(If not, there are Uj e LJ(£)0 with || w7 ||5,fc —>0 and || P(κy) | | l f0 = 1. By continuity,
if uj -> 0 in Lf then P(uj) -> P(0) = 0 in L](RM).) q.e.d.

For Theorem 6.2 to yield an effective procedure, one must find the constant
γ0 more explicitly. We carry this out in the case where P acts on scalar valued
functions on a bounded open set Ω in Euclidean space.

Let

\u\\lι= Σ \\D'u

be the norm on Lf(β, R)o, for 0 < / < k. Define constants λ(p, k /) for 0 <

/ < A by

λ(p, k;l)= inf J i ϋ l ^ _ > 0 ,

so λ(p, k l) is the reciprocal of the norm of the continuons linear inclusion
of Lf(β)0 into Lf(β)0.

Theorem 6.4. Lei F(w) = ^(;c)(Dαiw)αi (DaNu)aN, where A is smooth,
0 < \oίi\ < k — 1, α«(i Σ αΐ ^ P ϊ " ^ w βαc/i o/ the following holds:

(a) ITzere exist constants pλ, , pN such that J] \\pt = 1,

IclαϊPΐ
lim sup J—! = /3i < oo

for i = 1, 2, . , Λf. (/n /αcί j8t w 0 or 1.)
(b) Γ/z r̂̂  is a smallest constant K such that for all γ > K,

(6.5) ^V(u)<r\\u\\lk + const.

for all u e Lξ(Ω)0. Moreover, if K < 1, then V(u) is almost \\u\\^k-bounded.

(d) If J] at <. p, then we can make K arbitrarily close to 0, but the con-
stant in (6.5) may go to + oo.

Proof, (a) We first observe that if J] at = p, then we let p^ = p/at and

jQ4 = 1. If 2 flί < p, then 2 ^ / p < 1? hence we can pick 1/p^ > ajp such

that Σ I/Pi = 1> a n d
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\s\aίPί

lim sup -!—! = β, = 0 .
1*1 °° |3

(b) This follows immediately from Theorem 6.2, but is proved again in (c).
(c) We observe that

V(u) = I A(x)(Daiu)ai - (DaNύ)aN

(6.6) J J

< H^IU I \(Daiu)ai (DaNu)aN\ .

Now pick p/s as in (a), and constants μu which we will choose later, such
that \\f=1μi = 1. Since Σ l//?< = 1, we know that for any JC1? -,xN,

χ1 ... χN = μlXl . . μNχN < (μ1x1)
Pl/p1 + + (μNXN)PN/pN .

Combining this with (a) and (6.6) we find

ί V(u) < \\A\\J-^- [\Daiu\p + + Jx$L [\Da*u\p\ + const .
J L px J p N J J

(6.7)
const .Γ M i

LpJiPtk la^
+ +

pNλ(p, k;\aN\)i

So our first approximation of K is

(6.8) K < {lΛd--ML— + + J»f{ 1 .

Now we will pick the μ f's to minimize the right hand side of (6.7). Using
standard techniques we get

μf = (.Π

where ct = βi/λ(p, k | ^ | ) . Substituting back into (6.8) and using the fact that

Σ1/Pι= !> we get

Π (

Note the constants in (6.7) depend on ||y4!)«,, and arise from the lim sup state-
ment of (a).

(d) is clear from the above and the fact that if Σ at < P t n e n βi = ® ̂ o r

Remark. Condition (b) is stated as it is because K might be — oo in which

case we cannot use it in (6.5).
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It is straightforward to extend Theorem 6.4 to F's which are a sum

(6.9) V(u) = Σ Λa^

where the Aa,a are smooth, each a is an N(a9 α)-tuple of multi-indices with
0 < |αi | < k — 1, and each a is an N(a9 α)-tuple such that J] a% < P The
result of this extension is

Corollary 6.10. With V as in (6.9) let Ka,a be the K of Theorem 6.4 corres-
ponding to the Λa^a monomial. If 2 KajCb < 1, then V is almost \\u\\p

v^-bounded.
Remark. It is clear how one extends Theorems 6.2, 6.4, 6.10, to Mi order

perturbations.

7. {k — l)-order perturbations: Growth restrictions

The results of this section continue the generalization of Theorem 5.1. First
we focus on part (c), and consider the question of the necessity of restricting
ourselves to perturbations dominated by polynomials which are homogeneous
of degree at most p. The idea is to show that if the perturbation V grows faster
than a polynomial in the derivatives, homogeneous of degree p, then

is not pseudo-proper. Next we generalize part (b) of Theorem 5.1 by showing
that if V is homogeneous of degree p, then there is a constant K such that if
Kη > 1, then

is not pseudo-proper.
Let

= \\u\\*tk =

on L£(£)o, and

r(u) = J v(u),

where V is a (k — l)-order differential operator from ξ to RM, continuous on

Theorem 7.1. // there is a contίnuons functional i^Sμ) on L£(£)o, an open
set Ω C C M, and ψ e C£(ξ\Ω) such that

(7.2) rTiλψ) >c, + f^Uψ) for all λ > 0 ,
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(7.3) lim ^ ' W = + oo ,

then J(u) = J0(u) — i^(u) is not pseudo-proper on Lj?(£)o
Proof. Pick an open set Ωo c c M, with β Π β0 = 0, and φj e C0°°(f |flo)

such that

(7.5)

We will show there are constants #,, such that J(uj) = 0 and || Uj \\*tk = /O(M./)

—• oo, where ŵ  = φά + ajψ, thereby establishing that / is not pseudo-proper.
Observe that

(7.6) Jo(uj) = f \F%f + \a,\* [ |F*ψ|* - J0(φj) + |^|V0(ψ) > J0(φj) ,

so JQ(Uj) —> oo as / —» oo.

Also if 0 represents the 0-section,

(7.7) τr(Mj) = ί V(φj) + ί n ^ ψ) + ί V(0)
J Ωo JΩ JM-Ωo-Ω

(φj) + -r(ajψ) + c

where

c= -[ V(0) - ί F(0) + ί F(0)
JM-Ω JM-Ω-Ωo

is a constant independent of /.
Since V is continuous, and ||^||S,,Λ_i < 1, we know

(7.8) IJ V(φj) <K for all / = 1, 2,

Hence assuming ^ > 0, we see by (7.7), (7.8), and (7.2) that

(7.9) -K + c + c, + rάajψ) < Tίuj) <K + Πatf) + c .

Using a continuity argument, we now show there are ad > 0 such that J(uj)
= 0, i.e., τr(uj)/J0(uj) = 1. By (7.6), (7.7), and (7.9), we have

ί 7 1 0 ) -K + c + C l + ^ f a ^ ) < ^(Kj) < K

Since /o^^) -> oo, pick / so large that J0(φj) > K + c + y^(0), where 0
denotes the 0-section. Then letting aά = 0, we see
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and hence for α̂  = 0,

For a fixed /', by condition (7.3) on i r

ι we see that

-K + c + ct + rr.jajψ) _

W +
as α, -* oo. Therefore, there is an aά > 0 such that

1 <

Since i^(Uj)/J0(Uj) is a continuous function of aj9 for / sufficiently large
there are aά > 0 such that

i.e., J(uj) = 0. q.e.d.
What sorts of functionals Y* satisfy the conditions of Theorem 7.1? To an-

swer this we give several examples.
Example 1. Let M be a bounded open domain in Rn, and ξ = M x R so

we are considering real-valued functions on M. Say Y(u) = V(u). If there

exist constants ca > 0 and not all zero, and qa> p, such that on some open
set Ω C M,

F(w) > constant + Σ ca(Dau)Qa ,
\a\<k-l

then |Γfew|p — i^(w) is not pseudo-proper on L%(M, R)o. This follows imme-

diately from Theorem 7.1, with

Example 2. Since i^(u) = \ V(ύ) is only determined up to integration by

parts, we need to assume more than V{u) > constant + 2] Pj(u) where the
Pj are strict polynomial differential operators homogeneous of degree greater
than p. This can be seen clearly in the following:

(a) Say J0(u) - £ {u'Ύ on L»([0,1], R\ Say r{u) = | V(u) for F(x, M, uf)

= 3u2u'. Then
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\ύ) = 3 Γ uw = Γ <yy = o .
Jo Jo

Hence Jo — y is pseudo-proper, even though y is a cubic polynomial in
u and u'.

(b) Say /0(κ) = f (w"')2 on LJ([0,1], Λ)o. Let y(w) = f F(w) where

F(x, u, a', K") = M V . Then

-T(w) rr= ΓwV' = — 3 [u\ufY < 0 .
J J ~

Hence Jo — y is pseudo-proper, despite the fact that V is quartic.
Example 3. Here we show the additional assumption needed on y1 to e-

liminate the difficulties exhibited in Example 2.

Say J0(u) = f \Fku\p as in Theorem 7.1, y(u) = f F(w), and on an open

set Ω C M,

> constant + P(w) ,

where P is a strict polynomial differential operator homogeneous of degree
q> p.

If there is a section ψ e Co(ξ\Ω) such that

(7.11) P ( ψ ) > 0 ,

then I |Ffcw|p — ^ ( M ) is πoί pseudo-proper on !£(£)„.

This is immediate from Theorem 7.1. One cannot satisfy (7.11) in Examples
2a and 2b.

Now we consider the special case of the above, where the perturbation rΓ
arises from a Lagrangian V which is a strict polynomial operator, homogene-
ous in u of degree p. We investigate the pseudo-properness of functional of
the form

Jη(u) = J0(u) - ηiT(u) = ||ιι||£ιfc - η | K(iι) , 9 > 0 .

First, we may as well assume that y(u) is not bounded above, because in
this case Jη(u) is pseudo-proper for all nonnegative η. Thus for some u € Lj?(£)0,
Ψ*(u) > 0. Let

where the sup is taken over all u € L|(f)0 for which f (w) > 0. Then K > 0,
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and K < oo since by Theorem 6.4, (6.7) and the homogeneity of rΓ, there is
a constant c < oo such that Ψ*{u) < cJ0(ύ). K corresponds to the reciprocal of
the first eigenvalue of the Laplacian, which plays a crucial role in Theorem 5.1.

Theorem 7.12. // η > 1/K, then Jη(u) is not pseudo-proper. Moreover,
this holds for η = 1/K if K is attained for some u.

Proof. Since 1/η < K, and f is homogeneous, there is a uv φ. 0 in L£(f)0

such that 1/η < i^(uv)/JQ(uv). Thus we see

(7.13) Jη(uη) = J0(uη) - η-r(uη) < 0 .

The argument is now similar to Theorem 7.1.
It is possible to construct a smooth one-parameter family φt e Lf(f)0 such

that φ0 = 0, and
(a) II^IU,*-! < 1,

(c) uη + φt 3Ξ 0.
Consider the function f(t) = Jη(uη + φt), which is a continuous function of /
since the φt

9s vary smoothly. Since φ0 = 0, we have /(0) = Jη(uη) < 0. As
* —> oo, f(t) —> oo because the continuity of V and (a) imply ir{uη + φt) is
bounded, while (b) implies J0(uη + φt) —> oo. Thus there is a τ such that f{τ)
= 0, i.e., a φτ with \\uη + φτ\\Vtk Φ 0 and Jv(uη + ^τ) = 0.

Using the homogeneity of rΓ in the usual way, we get a sequence Vj —
j(uv + φτ) showing Jη is not pseudo-proper.

Theorem 7.14. If K — sup f^(w)//0(w) taA eπ over all nonzero u e L£(£)o w
nonnegative, then Jη(u) is pseudo-proper for 0 < η < 1/K.

Proof. Since i^(u) < KJ0(u) for all u e Lj(f)0, we see ηψ*(u) < ηKJQ(u)
for 2y > 0. If ^K < 1, this implies ηir{u) is almost /0-bounded. q.e.d.

It is likely that a more precise version of the above two theorems is true
which includes the case when K might be negative.

Note that the above theorems generalize almost immediately to the case
where V is an in homogeneous polynomial of degree p, since the terms of
lower degree homogeneity always preserve the pseudo-proper condition (see
Theorem 6.4 (d)).

III. COERCIVITY

8. Perturbing coercive functional

We consider the following problem. Say a functional J0(u) = J*?(w) is co-

ercive on Ll(E), where j£? is a differential operator from E to RM of order k.

If V is an operator of order k — 1, what conditions on a perturbation ^(u)

= I V(u) insure that J(u) = J0(u) — Y°(u) is also coercive on Lv

k{E)l We will
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only consider the case where j£f is a polynomial differential operator of weight
pk, and V is also a polynomial (not necessarily strict) differential operator.
The weight restriction on Jδf is placed to insure that j£? extends to a C°° map
from Ll(E) into LJ(tf^) (see [12, pp. 69-77]). In this case Theorem 8.6 gives
the optimal result: as long as we stay within the weight restriction imposed
by the original Lagrangian Jδf, all lower order polynomial perturbations pre-
serve coercivity. Since we are working in a fiber bundle setting, we must as-
sume pk > dim M throughout this part of the section.

In the case of a vector bundle ξ, the spaces L%{ξ) are Banach spaces, and
thus the pk > dim M assumption is not required. In this situation, if we as-
sume the perturbation V is polynomial in u, i.e., V is a strict polynomial dif-
ferential operator of order at most k — ί and degree at most p, then we can
get explicit algebraic conditions on V to preserve the coercivity condition
(see Theorem 8.13).

. From Definition 2.2 of coercivity we can reduce our considerations to vector

bundles ξ over compact M. Further, if a perturbation i^iμ) = V(u) satisfies

the following condition:

(8.1) if sj -^ s in L£(f), then φrH - Drs)(Sί - Sj) -> 0 ,

and Jo is a coercive functional, then it follows that / = Jo — y is also coer-
cive. In fact, using a partition of unity argument, it is not difficult to show
that it is enough to check condition (8.1) locally. Thus we can reduce the per-
turbation problem of coercivity to the verification of (8.1), on vector bundles
ξ = Ω X Rm where Ω C Rn is a bounded open domain. Indeed, by compos-
ing V with coordinate functions we reduce further to the case ξ = Ω X R.
Therefore we will state and prove our theorems in this setting with the under-
standing that they hold in the general fiber bundle case.

Consider a functional /„: L%(Ω, R) —> R which is coercive, and perturbations

of the form rT(u) = f V(jr(u)), where pk>n,V is say C\ and 0 < r < k - 1.

We are looking for conditions on V, so that it satisfies (8.1), where, in co-
ordinates, Df^ is of the following form:

(8.2) S ί η \ Σ
J o < ι r ι < r

and 1 < \a\ < r.
Theorem 8.3. If k — r> n/p, and V is any C1 function of jr(u), then con-

dition (8.1) holds, and therefore J = Jo — Ϋ~ is coercive.
Proof. If k — r > n/p, then L% is compactly contained in Cr. Hence, if

st —r s in Lv

k, then Dast —> D's uniformly for 0 < a < r. This together with
the continuity of DV gives condition (8.1).
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Corollary 8.4. If V only depends on the O-jet of u, i.e., V: R —> R, and
is C1, then Jo — Ϋ" is coercive.

Corollary 8.5. // V depends on the (k — l)-jet of u, Ω C R1 (i.e., n = 1),
and V is C1, then Jo — Ψ* is coercive.

We now restrict to the case of polynomial perturbations V(jr(u)), 0 < r <
k — 1, on u e L%(Ω, R) where Ω c Rn and pk > n. As we said before our
result is the best possible since we want to perturb polynomial Lagrangians
of weight pk on L£ by lower order polynomial Lagrangians keeping /0 — ψ'
smooth from L%(E) into L\{RM).

Theorem 8.6. Let V be a polynomial differential operator of order at most
k — 1 on Ll(Ω, R), where Ω c Rn and pk > n. If the weight (V) < pk, then

i^(u) = V(u) satisfies condition (8.1). Thus J = Jo — rΓ is coercive.

Proof. It is enough to consider V of the form

V(u) = f(x, u)Daiu Da*u ,

where / is smooth, and the at are multi-indices, not necessarily distinct, 1 <
Wι\ < k — 1, and weight (V) = Σί = i |α«l < pk, since V is a sum of such
terms. In fact, for ease in exposition we will do the case of only two distinct
multi-indices since there is no great difference in the proof for the more gen-
eral case. Thus, let

V(u) = f(x, u)(D"u)s(DδuY

1 < \γ\, \δ\< k - 1 and \γ\ s + \δ\t < pk. Let ut —r u in Lf, and let ht =

DrUi, gi = DδUι. We note that for / < k, since pk > n by the Rellich theo-
rems, L\ is compactly contained in Lf/ι. Hence we see that

(8.7) hi-thiR

and

g, -* S in

Writing df(x, ύ)\du = f2(x, u), we have

= I i* - f2(x, ujhj'gj') - fa - Uj)

ΓW - f(x, uj)h^g/] (A, -
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We will show that each of the three terms of (8.8) tends to 0.
For the first term we observe

(f2(x, udhfgS - f2(x, uJh/gj'Xut - u

< \\U(x, udhfgf - /,(*, uj)hjsg/\\uo \\ut -

But Ui—rU in Ll and pk > n, so by the Sobolev and Rellich theorems, the
Uι <= C°, and ut-^ u uniformly therefore \\ut — u^ —> 0. Thus it is enough
to show that ||/2(JC, ^)/ί/g/| |1 ) 0 is bounded. Since / is smooth and the w/s are
uniformly bounded, there is a constant K > 0 such that

(8.9)

By (8.7) we know that the hi are bounded in Lf*/lrI and the gt are bounded
in Lf/lδι. Since

where l / c + l / d = l , expression (8.9) is bounded as long as sc < pkl\γ\
and td < pkj\δ\, i.e., as long as

. 1 1

c a

t\δ\
7

pk

which is true since weight (F) = s \γ\ + t \δ\ < pk.
We show the second term tends to 0 in a similar way

(8.10)
J [Kx, - hjή I

(x, f(x, | |A, - hj\\qι0

where 1/r + ί/q = 1. By (8.7) we know that ||/^ — A J ί f 0 - • 0 as long as
^ < pk/\γ\ It remains to find conditions on r such that ||/(JC, w^Λj"1^*||r#0 is
bounded. Since / is smooth and the w '̂s uniformly bounded, there is a constant
ϋCr > 0 such that

(8.11)

Since

< (J I
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f o r l / c + l / d = l , using (8.7) we see expression (8.11) is bounded as long
as (s — l)rc < pk/\γ\ and trd < pk/\δ\, that is, as long as

1 = J + J _ > fr-W + t\δ\
r cr dr pk pk

Combining this with the previous condition on q, we see expression (8.10)
tends to 0 if

1 = 1 + i > Irl + ( s - D l r l + U K 9

q r ~~ pk pk pk

that is, if pk > s \γ\ + t\δ\ = weight (F).
The third term tends to zero by the same argument used for the second

term, q.e.d.
Theorem 8.6 tells us that as long as we remain within the weight restriction

imposed by the original functional, all lower order polynomial perturbations
preserve coercivity. However, by "milking" the Sobolev theorems we can ob-
tain more precise conditions on perturbations V which insure the preservation
of coercivity. For example, if p > n, from Theorem 8.3 we know that any C1

function V of /fe_i(w) will preserve coercivity. We now briefly explain how one
gets the stronger results.

First observe that using the full power of the Sobolev and Rellich theorems
we can replace (8.7) by:

If ut —r u in Lζ, \γ\ < k — 1, and p(k — \γ\) > n, then Drut -> Dru

uniformly, and hence i n L j for all a. If, however, p(k — \γ\) < n, then

DrUi —> Dru in LJ for all a < pn/[n — p{k —

Using this fact, and the methods used in the proof of Theorem 8.6 we can
prove the following theorem, from which Theorem 8.6 follows as a corollary.

Let V(u) = f(x, w)(Driw)Sl (Dr»u)s» onLfCQ, R) where Ω C Rn, pk > n,
and the γt are distinct multi-indices 1 < \γt\ < k — 1. Let at = pn/[n —
p(k-\Ti\)].

Theorem 8.12. // 2 (.Sil^i) < 1? where the sum is taken only over those

i for which p(k — |^ |) < n, then T(u) = V(u) satisfies condition (8.1) and

therefore preserves coercivity.
Remark. One can interpret Theorem 8.12 as saying that as long as i^(u)

is well defined, i.e., as long as V(u) € L](Ω9 R), then Ψ*(u) satisfies condition
(8.1).

What about the case where V is a strict polynomial operator, i.e., polyno-
mial in uΊ In this setting we do not have to assume pk > n, and using the
same method as in Theorems 8.6 and 8.12 we obtain the following result
which extends to the spaces Lf?(?) for vector bundles ξ.
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Let Ω, aί7 and γt be as for Theorem 8.12, except that now 0 < | ^ | < k — 1.
Let

V(u) = f(x)(D7lu)Sl (DrNu)SN , u e L&Ω, R) .

Theorem 8.13. // 2 (Si/ad < 1? where the sum is taken only over those

i for which p(k — \γt\) < n, then i^{u) = V{u) satisfies condition (8.1) and

thus preserves coercίvity.
Theorem 8.13 has many implications for functionals arising from strict poly-

nomial Lagrangians, acting on real or vector valued functions on a compact
manifold. For example, for the special case which we considered in Theorem
5.1,

- V(x, u) ,

Theorem 8.13 implies that for any quadratic strict polynomial perturbation
V, J is a coercive functional regardless of the dimension of the manifold M.
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