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CURVATURES OF COMPLEX SUBMANIFOLDS OF C
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0. Introduction

Complex submanifolds Mn of a complex N-space CN from the viewpoint of
hermitian geometry are distinguished by

(a) the existence of N holomorphic imbedding functions f19 /2, , fN so
that the kahler form is of the form idd(Σ \fi\2), and as a consequence

(b) the imbedding is minimal in the sense of riemannian geometry, and
all the holomorphic sectional curvatures are nonpositive. In [2] Bochner de-
monstrated that the Poincare metric of constant negative curvature on the unit
disc cannot be holomorphically imbedded in CN even locally. It seems there-
fore reasonable to pose the following

Question. Does there exist a complete complex submanifold Mn of CN

with holomorphic sectional curvature bounded away from zero?
In this paper we discuss partial results to this question. To begin with, we

show in § 1 that a negative answer to this question would imply that there is
no bounded complete complex submanifold of CN. In § 2, utilizing an elemen-
tary observation on the Gauss map we answer the question in the negative for
hypersurfaces, and in § 3 we show that it suffices to consider the question for
holomorphic curves (n = 1).

In § 4 we recall the higher order curvature functions introduced by Calabi
and show that two such functions are enough to determine a holomorphic
curve uniquely up to a rigid motion in CN, and thus providing a justification
for a generalization of the theorem in § 2, in terms of the higher order cur-
vature functions. In § 5, applying the method of extremal length we derive a
criterion, which involves the curvature behavior at infinity of a simply con-
nected metric riemann surface M for it to be conformally equivalent to the
disc. It is subsequently used to sharpen the result in § 2.

The last section contains curvature estimate for a piece of curve in C2 which
is a graph over a domain in C.

The author would like to thank Professors H. Wu and S. S. Chern for their
guidance and generous assistance.

Communicated by S. Kobayashi, October 3, 1975. Partial results of this paper form
essentially the second part of the author's thesis at the University of California, Berkeley
written under the direction of Professor H. Wu.
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1. Boundedness of complex submanifolds in Cn

It is an open question whether a complete minimal submanifold of euclidean
space can be realized in a bounded region. In the case of complex submani-
folds we show that a negative answer to the question in the introduction would
yield a negative answer here as well. This is accomplished by the following.

Proposition. The unit ball BN can be holomorphically imbedded in C2N

with the following properties: Let F: BN -> C2N be the imbedding. Then
(A) \dF(v)\ >\v\for each v e TP(BN), p e BN,
(B) the holomorphic sectional curvatures of BN are strongly negative, i.e.,

K(v) < -c < 0 for all v e TP(BN), p e BN.
Proof. Consider the map F: BN -> C2N given by F(z19 , zN) = (z1?

zN, ez\ - -, eZN). Relative to the coordinates z1? , zN, we have gί3 = (βF/dzi9

dF/dZj} = δtJ(l + | ^ | 2 ) , so that g« = δtjil + \e**\2)/G, where G = d e t ^
= Π< (1 + \eH\2)' T h u s K ^ = δ^δjAjQe^ - \e**\\l + | ^ | ) 2 / G ) , i.e., Kmι

= |e^| 2(l — (1 + |^ 2 ί | 2 )/G) ? and all the other components vanish. Hence it is
clear that the holomorphic sectional curvature of F(BN) at the point F(z) in
the direction F^,(v) = F^v^jdzd satisfies

= - ( Σ K^vWv^llΣgijVtVir < -c < 0Σ

for some c. Condition (A) is satisfied, since F(BN) is a graph over BN. q.e.d.
Next we recall the Gauss-Codazzi equation for computing the curvature of

a submanifold φ: M —• M:

K(v) = R(v, Jv, v, Jv) = R(v, Jv, v, Jv) - <B(v, Jv), B(Jv, v)>
( 1 )

where R = curvature tensor of submanifold M, R = curvature tensor of mani-
fold M, B = second fundamental form of M, K = holomorphic sectional cur-
vature of M, K = holomorphic sectional curvature of M. Recalling that the
second fundamental form is complex linear (B(Jx, Y) = B(x, Jy) = JB(x, y)),
we may rewrite (1) as

K(v) = K(v) - 2\B(v,v)\2 ,

which expresses the curvature decreasing phenomenon of a complex submani-
fold of a kahler manifold.

Thus we are in a position to conclude the argument. Suppose φ: Mn -* BN

is a complete holomorphic immersion. Then composing φ with the map F con-
structed in the proposition, we see clearly that F o φ is still a complete immer-
sion (a consequence of (A)). Since Fφ(M) is a submanifold of F(B), the cur-
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vature decreasing property implies that F o φ{M) has strongly negative holo-
morphic sectional curvature.

2. Hypersurfaces

In this section we study the Gauss map of a complex hypersurface in Cn+ι.
An elementary computation shows that the kahler form of the metric induced
by the Gauss map is the negative of the ricci form of M itself. It will follow
that no complete hypersurface of Cn+1 can have strongly negative holomorphic
sectional curvature.

To fix notation, let Mn <^-> Cn+ι be a complex hypersurface. The Gauss
map is defined analogously as the classical gauss map of a surface in 2?3. Let
ξp be a unit normal to M at p. ξp is determined up to a multiplication by eίe,
so ξp determines a point [ξp] in PnC. (Actually we shall use the fact that p

^>ξp^> [ξp] goes through the Hopf fibration M -^-> S2n+ι — -̂> PnC, and the
Fubini-Study metric comes from the standard metric on the sphere S2n+ι.) The
Gauss map is simply G(p) = [ξp]. If we represent M locally by the zero set
of a holomorphic function /, then G(p) = [(df/dzj(p), , (df/dzn+ι)(p)] is a
local representation of G, hence G is conjugate holomorphic.

Let ω — kahler form of Fubini-Study metric in PnC Then τr*ω = (dz, dz).
Let S denote the ricci form of M, i.e., the (1,1) form corresponding to the
ricci tensor. The claim is

(2) π*ω=-s.

Let 1 < a, β, γ < n + 1 1 < i, j , h < n. Let ea(x) be a field of unitary frames
with e19 - , en tangent to M, and en+1 normal to M. Its dual coframe field
consists of n + 1 complex valued linear differential forms θa of type (1,0),
and the kahler metric for Cn+ι is written as

ds2 = Σ θaθa .

The connection forms θaβ satisfy

θaβ + θβa = 0, dθa=ΣθβΛ θβa .

The curvature forms θaβ are given by

dθaβ = Σ0arA Θγβ + Θaβ ,

θaβ = -θβa = Σ Kβrfir A θδ ( = 0 in this case) .

Restricting everything to the hypersurface we have from

0n+i = 0
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that

0 = dθn+ι = ΣβiΛθi>n+1

so that by Cartan's lemma

θt.n+i = Σ <*tkθk > where aίk = aki ,

dθίj = Σθik Λ θkj — θi>n+1 A θj,n+ι

Therefore Θυ = θ ί>7 - θi>n+1 A 0 i f n + 1 = -θitn+1 A θj>n+1. The Ricci form
is given by

( 3 ) Σ Sjkθj A θk = - Σ atjάnθj A θk .
j k ί

Since the Gauss map is given by G(p) = en+1(p), the induced kahler form is

ώ n + 1 Λ ^ w + 1 = Σ 0»+i.< Λ 5 n + l f ,4 v

= Σ ^<f«+i A ^<,w+i = Σ aifiiτβj A θk

Comparing (3) with (4) yields the claim.
Theorem. Let p: Mn —> Cn+ί be a complete complex hyper surface. Then

(Mn, φ) cannot have strongly negative holomorphic sectional curvature.
Proof. Suppose not; say in fact K(v) < — c < 0, therefore the Ricci cur-

vature is < — (n — ΐ)c. In view of (2) this means that the Gauss map is dis-
tance-increasing by a factor greater than (n — l)c, hence (Λf, G) is complete
with respect to the induced metric G*ω. Since the Gauss map is equidimension-
al and antiholomorphic, the induced metric must have constant holomorphic
sectional curvature + 4 , which would imply that M « PnC, i.e., Mis a com-
pact manifold, a clear contradiction.

Remarks. (1) It is easy to obtain quantitative version of this theorem,
for example, using the same argument one can show that if ψ: Mn —> Cn+ί is
a complete complex hyper surf ace then for any point p e Mn, c > 0, there
exist a sequence of points pt and vectors vt e TP.M

n such that K(vt) >
— c/dist (p, Pi)2, where dist (p, p^ can be either geodesic distance on Mn or
the euclidean distance \p — pt |. It is easy to see in either case that if the con-
clusion is false, then the induced metric G*ω is complete.

(2) The theorem goes through for a minimal hypersurface of RN+1 in a
completely analogous manner.

3. Reduction to holomorphic curves

The general case of arbitrary codimension can be reduced to the consider-
ation of holomorphic curves, as shown in the following proposition.

Proposition. Suppose Mn is a complete complex submanifold of CN with
either of the following properties:
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(1) the holomorphic sectional curvature K satisfies K(v) < — c < 0,
(2) φ:Mn ->CN is bounded.

Then there exists an affine subspace LN~n+ι of CN such that LN~n+ι Π Mn is
a nonsingular complete holomorphic curve with the same property (1) or (2).

Proof. For each nonnegative integer / > 0, let Bt denote the set
{z e CNI |z| < /}. The set of affine subspaces L of CN of dimension N — n + 1,
whose intersection with Bt Π Mn is a nonsingular curve, is clearly open and
dense in the space of all affine linear subspaces. L and S can be made into a
complete metric space. A category argument then yields the existence of an
j^N-n+ι s u c j 1 t ^ a t j^N-n+i η j^n j s a n Onsingular curve, which being a closed
subset of Mn is cleary complete. Property (1) is satisfied due to the curvature-
decreasing property. Property (2) is trivial.

Remark. The properties (1) and (2) and completeness are inherited when
one passes to the universal covering manifold. Therefore for the questions
under consideration, it suffices, in view of the uniformization theorem, to take
the unit disc as the underlying Riemann surface.

4. Holomorphic curves

Consider a holomorphic curve φ: M1 —> Cn. In terms of local coordinates
z = x + iy, the hermitian metric induced from Cn may be written as ds2 =
F \dz\2, where F = Σt |/ |2 and φ = (/15 /2, , fn). As the metric is conformal,
the Laplace operator can be expressed simply as Δ = (4/F)(d2/dzdz), and the
Gauss curvature is found to be K = (—2/F)(d2/dzdz) logF ~ —\ά logF.

According to Calabi, there is a sequence of inductively defined nonnegative
real analytic functions on M:

Lemma {Calabi [3]). Suppose that the image φ(M) lies in no hyper plane.
Then we may define a sequence of functions {Fn} as follows:

FQ = 1 , F, = F ,
( ) 7

Fk+1 - p-(-^—\ogFΛ , for\<k<n.
Fk_ι\dzdz )

Fk is nonnegative and vanishes only at isolated points. The succeeding function
is defined by (5) away from these points, but extend to a real analytic function
on all of M. Fk = 0 for k>n + 1.

Theorem (Calabi [3]). Let ds2 = F \dz\2 be a real analytic hermitian metric
on M, and suppose that a sequence of functions Fk satisfying (5) can be de-
fined with the same properties as in the above lemma. Then there exists a uni-
que holomorphic isometric immersion of (M, ds2) into Cn up to a motion of Cn.

Simple computations give the following explicit formulas for these functions
in terms of the imbedding functions (/1? , f n ) :
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= Σ det

U fj h

ft fj fu

ft r; f"ι

From these intrinsically defined functions it is possible to define higher order
curvature functions Ko = 0, Kk = (Fk+1Fk_1)/(FF2

k) for k > 1. A simple com-
putation then gives Kk = \Δ log Fk. These intrinsic curvature functions have
geometric meaning: they are the squared norms of higher order fundamental
forms (Lawson [7]). In particular, Kγ = —%K where K is the Gauss curvature
of ds2 as usual, and Kk = 0 if A: > n.

The curvature functions satisfy certain recurrence relations the ones of in-
terest to us are

( 6 ) \Δ\ogKk = Kk+ι - 2Kk + Kk_, -Kl9 k = 1, . , Λ - 1 ,

and, as a consequence,

( 7 ) I log ί A Kn_, = - 2 * ^ - (n -

In terms of these curvature functions it is possible to formulate the following
rigidity condition.

Proposition. // φ, φ/: Mf —» CN are two holomorphίc immersions satisfying

Kλ = K{, K2 = K'2, then F = consequently ψ and ψ' are congruent.
Proof. If Kx (and hence K[) vanishes identically, then Calabi's theorem

(Lemma 1) implies that Φ(M) and Φ'(M) lie in a 1-dimensional linear subva-
riety of Cn. In this case checking the congruence of Φ and Φr is trivial.

Let us then assume that neither Kγ nor K[ vanishes identically. To prove Φ
and Φ' are congruent, it suffices to prove F = F7 in some open set because of
the analyticity of F and F'. Take a coordinate neighborhood on which all the
Fk and Fk are nowhere zero, and denote this neighborhood by U. On U we
have

F(K2 - 3KX) =
dzdz dzdz

ί = F'(K'2 - 3K[)

We know K2 - 3K, = K'2- 3K[. We will show in the following that K2 - 3K,
is not identically zero in U. Hence we may cancel the common factor to get
F = F\ as desired.

Now suppose K2 — 3 ^ = 0 in U, and we will deduce a contradiction. This
condition implies both Δ log Kλ = 0 and K2 = 3Kr. Hence Δ log K2 = Δ log 3 ^
= 0. Since K3 = \Δ log K2 + 2K2, we see that K3 = 6Kλ. Now suppose at the
kth stage, we have Kk = ^k(k + 1 ) ^ . With the help of the recurrence relation,
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Kk+ι = \Δ\ogKk + 2Kk - Kk_λ + Kl9 1 < k < n - 1 ,

we get

Kk+ι = \Δ log (\k(k + l)Kλ) + k{k + l)Kx - k{k -

= ^k + \){k + 2)KX .

In particular, 0 = Kn = Jw(« + 1)K1? which contradicts our assumption that
Kλ is not identically zero, q.e.d.

The previous proposition indicates that perhaps one should consider higher
order osculations in our study of the general question. In this direction it is
easy to prove

Theorem. // Φ: D —> CN is a complete holomorphic curve, then either
inf K1 = 0or inf K, . Kn_x = 0.

Proof. Suppose not then there is a curve Φ: D —> CN with the property
that Kλ > c > 0, Ku , Kn_λ > c > 0 for some c. Consider the metric ds2

= Kx Kn^ds2, which is a complete hermitian metric by the assumptions.
Further, the relation JlogΛ^ Kn_λ = —2Kn_λ — (n — V)Kγ shows that
ds2 has strictly positive curvature. This is a contradiction to the fact that unit
disc cannot carry such a metric (see Greene-Wu [4]).

5. A condition for hyperbolicity

In Greene-Wu [4], it is stated that if M is a simply connected Riemann
surface with hermitian metric g. Suppose there exist poe M and c > 0 such
that —c/d(p0, p)2+ε < K(p) < 0 for some positive c. Then M is conformally
equivalent to C A complementary result is the following.

Theorem, // M is a simply connected Riemann surface, and g a hermitian
metric on M with nonpositive curvature satisfying: there exist po€ M and a
compact set G C M, such that K(p) < —c/d(p0, p)2 for all p $ G. Then M is
conformally equivalent to a disc.

Remark. This result has been extended by Greene and Wu [5] to a con-
dition for a complete manifold M of arbitrary dimension to be complete hy-
perbolic in the sense of Kobayashi.

The proof employs the method of extremal length. We give a short con-
venient formulation.

Definition. Let Ω be a region in the plane, and Γ a set of rectiίiable 1-
chains in Ω. Consider the family of all conformal metrics ds = p\dz\, where
p is required to be Borel-measurable. Let

L(γ, p) = ί p \dz\ for each γ e Γ ,
J r

A(Ω, p) = ί p2dxdy , L(Γ, p) = inf L(γ, p) .
JO TiΓ
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Define the extremal length of the family Γ (relative to Ω) to be

/\Ω(Γ) = sup L(Γ, p)2/A(Ω, p) , where p satisfies 0 < A(Ω, p) < oo .
P

The following properties of extremal length are well-known see for instance
Ahlfors and Sario [1] or Otsuka [8].

( 1 ) AΩ CO *s a conformal invariant. More precisely, if φ is a conformal
map sending Ω to Ω', Γ to Γ', then /\Ω (Γ) = /\0, (Γ).

( I I ) Let D be a domain in the plane such that its complement with respect
to the extended plane consists of mutually disjoint nonempty closed subsets
F, F'. Let Dn be a sequence of domains increasing to D such that the com-
plement of each Dn with respect to the extended plane consists of closed sets
Fn, F'n which decrease to F and Fr respectively. Let Γn be the set of rectifiable
arcs in Dn which join Fn to F'n, and Γ be the set of rectifiable arcs in D which
join F to F' . Then f\Dn (Γn) increases to /\D (Γ).

(III) For a doubly connected region D in the plane bounded by simple
closed curves γ1 and γ2 as below, consider the two families of curves in D :

ΓY = {closed curves which separate γ1 and γ?} ,

Γ2 = {"radial arcs" which join γ1 to γ2} .

Then we have Λ * (Λ) AD (Λ) = 1.
(IV) For a doubly connected region D in the plane bounded by a simple

closed curve γ and the component of Dc containing oo, /\ D (Γ2) < oo implies
that F U D is conformally a disc.

Proof of the Theorem. Since M is simply connected, we may consider M
as a subset of C. Let 0 correspond to pQ. Then the exponential map expP o:
T0(M) -> M is a difϊeomorphism by the curvature assumption, and we have
well-defined geodesic polar coordinates (r, 0) on M, (which is distinct from the
usual z = re") with the metric ώs2 = dr2 + G(r, 0 ) ^ 2 . Let K(p) < -c/d(0, p)2

= -c/r(p)2 for r(p) > r0 > 0. Let

£>Λ = {p e M : r0 < r(p) < R} and γo = {peM:ro = r(p)} ,

Z) = {p € M: r0 < r(p)} and r i2 = {/? € M: /? = r(p)} ,

Γ? = {simple closed curves in DR which separate γ0 and γR) ,

Γf = {arcs in DR which join γ0 to ^ } ,

Γ2 = {arcs in D which join f0 to

An upper estimate for the extremal length ADB (Λ*) will be derived. We re-
mark that dr2 + G(r, θ)dθ2 is a conformal metric on the underlying Riemann
surface, and therefore so is pQ \dz\2 = (dr2 + G(r, Θ)d2)/G(r, θ). It follows im-
mediately from (III) that
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(ΓR) = l = inf

ΛAΓ?)

<
Py ~ inf L(γ,p0Y

r€Γf

It is clear that L(γ, pQ) > 2π for all γ e Γf so that

To estimate A(DR, pQ) we compare G{r, θ) against the solution of the Jacobi
equation

( ) r r = 0 .

For r > r0,

( 8 ) -K = (VG) r r/VG > c/r2 .

Let V^o = min, V^(r 0 ? ^), ( V ^ r ) 0 = min, VG r (r 0 , ̂ ) > 0. The solution of
the ordinary differential equation

yrr = c/r2 , y(rQ) = Λ / G 0 , yr(r0) =

is found to be

Vl + 4cro KVl + 4c)
^

2K

, 1 Q _+
Vl + 4cr0 i( l - Vl + 4c)

It is easy to see that y(r) > y4(r0, c, V(To, (v/^?r)0)' Kl + Vl + 2c), so that

G(r,0) > A(rt,c, V^o, ( V G r ) o > 4 d + V Π Π Ξ ) . Hence

AφR, Po) = 2π Γ (r/G(r,θ))dr <,~[B % n < M
J r0 A J r0 I + V l + 2C+

which implies /\DR(Γξ) < \M\π. It follows from (II) that f\D(Γ2) < oo,
and M is conformally equivalent to a disc by (IV).

Corollary. Let Φ: M->Cn be a simply connected complete immersed curve,
with Φ(p0) = 0. // K(p) < —c/\Φ(p)\2 for large \Φ(p)\, then M is conformally
a disc.

Proof. It is clear that \Φ(p)\ < d(p0, p).
We now apply this criterion to an immersed holomorphic curve in C 2 .
Corollary. If φ\M-^C2isa simply connected complete holomorphic curve,

then there is no p0 e M such that, for some constant c > 0 and compact set
G C M, p0 € G and
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K(p) < -c/d(po,pY forptG.

Proof. Suppose that on the contrary, such p0, c and G do exist. It follows
from the theorem that M is conformally a disc. Let {z19 , zn} be the finite
set of points in G where K vanishes. Then near each zi9 K can be written as
K(z) = — \z — Zi\2nίh(z), where h is a positive function. Consider the metric
(Uί\z — Zi\~2ni)(—K)ds2. Since the first factor is bounded away from zero
outside the compact set G, it follows as before that it is a complete metric.
But the curvature of the new metric is Y\t \z — Zi\2n\ hence it stays bounded
away from zero outside G. Therefore an application of comparison theorem
shows that M is again compact, which is a contradiction, q.e.d.

The method of construction in the proof of the above corollary may also
be used to obtain the following.

Theorem. Let M be obtained from a compact Riemann surface M by de-
leting a finite number of closed connected subsets each of which has nonempty
interior, and let φ: M —• C2 be a complete holomorphic curve. Then there is
no pQ in M such that, for some constant c > 0 and compact G C M, K(p) <
-c/d(po,p)2 for p$G.

Proof. Suppose on the contrary, such p0, c and G do exist. We choose /
to be a meromorphic function on M satisfying:

(a) the zeroes of |/|2 in M are precisely those of K, counted according to
order of multiplicity,

(b) the poles if any are contained in the interior of M — M,

(c) m i n , 6 a j f | / ( z ) | 2 > 0 .
Since the zeroes of K are finite in number, and 3M is compact, such function
/ can easily be found. Then we can prove as in the corollary above that
— \ffKds2 is a complete metric of curvature \ff. Thus by a previous argument
M would be compact, a contradiction.

6. A curvature estimate

While the previous discussions center around global restrictions on the cur-
vature of a complete immersed curve, there is, as in the case of minimal sur-
faces in R\ a semilocal restriction on the curvature.

Theorem. Suppose a complex holomorphic curve in C2 is parametrized as
a graph (z, f(z)) over a disc \z\ < R, then we have the estimate

R < 4/Ύ(a)-1/2 , where a = min \K\ .

Proof. The idea, due to E. Heinz [6], is simply to estimate the area of
the surface over {|z| < r). To proceed, we work with polar coordinates z =
reίθ, let Dp = {(z, f(z)): r < p}, and we have

Area (Dp) = 2 ί ϊ (1 + frf)dx A dy .
JJ \z\<P
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Observe that

dc = </=\(d" - d') = r-^-dθ - — —dr ,
dr r dθ

an application of Stoke's theorem yields

dθ + r4~ Γ d + /
αr Jo

P4 Γ/vo/v^dβ Γ P4
dp Jo Jo dp

= { d<(\ + rf) = f f dd\\ + /'/o
J\z\ = p JJ\z\<p

Consider the following function F(r), defined for 0 < r < R,

F(r) = [r pdp Γ (1 + fipeiβ)n^))dθ ( = Area of (Dr)) .
Jo Jo

Let K = -/"/"(I + f/0"3 < - α < 0. Differentiating F(r), we have

F'(r) = r £ (I

F"(r) = Γ (1 + ff)
Jo

so that

F"(r) > [ ddc(l + m
J \z\<r

= f f'ψdx A dy > f α(l + /'f) 3^ Λ dy .
J \z\<r J \z\<r

Since, by Holder's inequality,

πr2 < F(r) < (πrψ4[ (1 + fjjdx A dyY* ,
\J \z\<r )

we obtain

F"{r) >a\\ (1
JJ\z\<r

from which we deduce the differential inequality

^f(F'(p))2 = 2F'{p)F"(p) > 2F'{p) -^~
aσ πy*

> ^ 4 τ 4-(F(PW for all 0 < ^ < R .
2πzpA dp
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Therefore

dp

or

(TO)2 a o r F'(r) / aa o r F(r) / a V* 1
~ 2πΨ (F(r))2 " \ 2 / τrr2 '

which implies

( 9 ) _ A(FCr)-1) > f ̂ Y / 2 JL for 0 < r < R .
dr \ 2 / πr2

Now let 0 < Rλ < R2 < R. Integrating the inequality (9) gives

dr\F(r)) ~ \ 2 / TΓ JΛI r2

TΓ^? ~ F(/?i) ~ FCΛO F(i^2) " V 2 / TΓV^! Λ2 /

Letting R2-> Rwe obtain

Rl ~ \2J XR, RJ

Hence

Choose R, = 2(2/a)ι/2, we obtain R < 4(a/2)~1/2 as asserted.
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