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RESIDUES AND CHARACTERISTIC CLASSES FOR
RIEMANNIAN FOLIATIONS

CONNOR LAZAROV & JOEL PASTERNACK

Introduction

In [9] we began a study of characteristic classes for Riemannian foliations.
Here we shall continue this study. The basic technique which we will use will
be to start with a Killing vector field on Rim with a single nondegenerate
singularity at the origin and consider the resulting (Am — 2)-codimensional
Riemannian foliation on a (Am — l)-sphere S4m~ι. Given an Ad-invariant
homogeneous polynomial of degree 2m we relate the Bott residue of the vector
field determined by this polynomial and the Simons characteristic number
associated to the foliation on S4™"1 and this polynomial. By mapping various
classical groups onto 5 4 m~ ! and looking at the induced Riemannian foliations,
we will obtain infinite classes of examples of families of foliations with trivial
normal bundles for which appropriate exotic characteristic classes vary con-
tinuously.

As a consequence of these examples we obtain complete results on contin-
uous variation in some of the possible dimensions where variation can occur.
Namely, continuous variation does occur for classes in Hίίm~ι(RW^m_2) (see
§ 1). A basis for H^~l(RWim_2) is given by ph • . pjkht where 4(JΊ + • • • + / * )
+ Aiλ - 1 = Am - 1 and i < /\ if k > 0. Call this monomial pjht. Let FRΓq

denote the fiber of BRΓq -+ BGL(q).
Theorem (3.5). The map H^~\RW,m_2) -> Him-\FRΓim_2) is injective.

The classes pjht all vary continuously.
We will also conclude the uncountability of the homotopy groups

In § 1 we recall some basic facts and establish some notation. In § 2 we
prove the basic results relating various connections which will enable us to
deduce the relation between the residue and the Simons numbers. In § 3 we
exhibit the examples of continuous families of Riemannian foliations with trivial
normal bundles on various classical groups for which appropriate exotic classes
vary continuously. We also examine the homotopy of FRΓq.

We are greatly indebted to Professor James Heitsch for pointing out to us
that Theorem (3.5) follows from our computations and for pointing out certain
"hiatuses" which occurred in our original version of this paper.

Received September 13, 1974, and, in revised form, February 24, 1975.
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1. Some basic notions

In [9] we introduced the complexes RWq. For convenience, we omit men-
tion of the Euler class in this paper. For q = In or q = In + 1 we take the
Pontryagin polynomials pk on the Lie algebra of GL(q) defined by

Det (λlq - Λ-A) = Σ 8k(A)*q-k , P* = £2*

Let

RWq = R[p19 p2, . , pίq/21]/{P I deg P > q) ® Λ(h19 h2, . , hq) ,

where dcgpk = Ak, doghk = Ak — 1. The differential in this complex is
dpk = 0, dhk = pk. Let IF be a Riemannian foliation with trivial normal
bundle on a manifold M, V the unique Riemannian torsion free connection on
the normal bundle, γ a global frame of the normal bundle, and Vr the flat
connection relative to γ. This data determines a degree-preserving map

δ: RWq->A*(M)

given by δ(pk) = pk(K(F)), δhk = ΔPk(V, Fr). This map passes to a map δ* in
cohomology.

An analysis identical to that in [6] yields a basis for H*(RWq). Namely, let
/ = (i19 . . ., /j), / = (j19 . . . ? jk)9 iQ = the smallest element of / (or oo if / is
empty), and /0 = the smallest element of / (or oo if / is empty). Then a basis
for H*(RWq) consists of those monomials pjhΣ such that deg pjhτ > q, 4/0 +
deg pj > q, and i0 < j0. Algebraically, we have an isomorphism

Him(BO(4m - 2)) -> H'm-\RW,m_2)

given by sending pίχ . pik, with 4(/x + + ik) = Am and iλ < i2 < < ik9

to hίχpi2 pik. On the other hand,

H4m(BO(Am - 2)) ^ > H4m(BO(Am)) > H*m(BΓm) ,

where Tim is the maximal torus on O(Am), and the image consists of all sym-
metric homogeneous polynomials φ(t\, , t\m) of degree Am in two-dimen-
sional classes t19 , t2m.

At this point we need a few simple facts about Simons cohomology classes.
Let E b e a ^-dimensional vector bundle over a manifold M, F a connection
on E, and φ an Ad-invariant polynomial on gl (q) which determines an inte-
gral cohomology class such that φ(K(V)) = 0. Then we have a Simons
cohomology class Sφ(V).

Lemma (1.1). // E is trivial with global framing s, and Vs is globally flat
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relative to s, then

J,(F, F ) = S,(F) m o d Z .

Proof. We know Aφ(F, Vs) = s*Tφ(F) from [9,1.16]. On the other hand
[14, Corollary (3.18)] implies s*Tφ(V) = SΨ(F), modZ.

Lemma (1.2). Let F be a trivial k-plane bundle with global framing s, and
Vs flat relative to s. Let φ be an Ad-invariant polynomial on gl (q + k). Then
SΨ(F®FS) = SΨ(F).

Proof. Let n = q + k. Let Gn>N be the Grassmannian of n-planes in N-
space. Let γn be the universal π-plane bundle, and Fn the universal connection
on γn. For N large there are a map f:M^>GnN and a covering map j : E-^γn

such that f~\Fn) = F, as in [14, (3.5)]. The framing s determines a bundle
map f:E@F-*γn®(k) such that f~\Fn φ F') = F Θ F% where F' is globally
flat relative to the canonical framing of (k). By naturality, it is enough to show
Sψ(Fn Θ F') = Sφ(Fn) for for Simons characters. Now we follow [18, (3.5)].
Let Ωn be the curvature of Fn, and Ω the curvature of Fn®F'. Then

\0 0/

So φ(Ω) = <p(Ωn). By the definition of Simons characters for Z2l_ι(G7l)N), if
x € Z2l_ι(GΐltN), then rax = d y, and

Sψ(Fn Θ FO^ = —(p(fl) - cc)x = ~(φ(Ωn) - ά)x = Sψ(Fn)x ,
ra ra

where a is any cochain representing the integral class associated to φ, and bar
denotes reduction mod Z.

We note that f*Sψ(F) = Sφ(f~Ψ).
In analogy to the definitions of [1] we need the notion of an X connection.

Let X be a Killing vector field on a Riemannian manifold M with isolated
nondegenerate singularities p19 , pr. An X connection F is a connection on
T(M) with the property that there are mutually disjoint open sets Ul9 , Ur

with pj € Uj and such that o n M - U Up FZY = f[X, Y] + Dπ2ZY, where
πx is the orthogonal projection in the direction of X, πxZ = /Z, τr2 the orthog-
onal projection perpendicular to X, and D is the Riemannian torsion free con-
nection on Γ(M). U Uj will be called the support of F.

By way of notation, D, D' will always be used to symbolize the Riemannian
connection on a manifold, whereas F, F', etc. will be other connections on
T(M) or on other bundles. If Y is a tangent vector, \Y\ will denote <Y, Γ>1/2

where <( , ) is the relevant metric. If X is a Killing vector field with isolated
nondegenerate singularity at p, and^ an invariant polynomial, then as in [2],

ŝ  (X, p) = φ(Lp)/{Dei (Lp)}1/2 where Lp is the linear transformation (&x)p.
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Let J^ be a foliation on a manifold M. By a flat coordinate system we will,
as is customary, mean local coordinates x19 ,xp, y19 ,yq such that the
leaves are given locally by y1 = cu , yq = cq.

Note. Let φ be an Ad-invariant homogeneous polynomial function on
gl(ra). We will say φ determines an integral class if, for any connection,
[φ(K(F))] is in the image of # * ( M Z).

2. Simons classes and the residue

Let X be a Killing field on R2n with a single nondegenerate singularity at the
origin. The metric on R2n is the standard one denoted by < , >. Let & be the
resulting Riemannian foliation on S2n~\ and F the unique Riemannian torsion
free connection on the normal bundle to 3F. Let φ be an Ad-invariant homo-
geneous polynomial of degree n on gl {In — 2) which determines an integral
class. In this section we will prove

Theorem (2.12). Sφ(F)[S2n-1] = c Res ? (Z,0), modZ, where c is a non-
zero constant depending only on n and would be 1 // the residue were normal-
ized.

Note. This is of significance only when n is even. Let (x19y19 , xn, yn)
be coordinates in R2n. We will be primarily concerned with

n C

= Σ *λ
j = l I

a
y?— —

3x

Let V be an Z-connection on R2n with support contained in the interior of
β2n p r o m the definition we observe that away from the origin, VXY = [X, Y]
and VZY = DZY for Z ±X. Letting F, D also denote F, D restricted to
TiR^lS271'1 we see immediately, from the definition of the induced connec-
tion, that the same holds on TiR^lS271'1.

Let R = Σl=i {χβldχj + yβ/dyj}. Let V be the (trivial) vector bundle on
S2n~ι generated by X and R. Let s' be the orthonormal framing {R/\R\,
X/\X\} of V. Let V = F\V, that is, if qx is the orthogonal projection of T{R2n)
on V then Ff

zY = qx{FzY). Let YQ = R/\R\ and Y1 = X/\X\.
Theorem (2.1). Ff is flat relative to the framing s' of V.
Proof. F and hence F' are Riemannian connections. Thus FΎ0 = aYλ and

FΎλ = -aY0 where a is a 1-form on S2n~ι. Then a = <Γ/Y0, Yχ> = <FY,, Y,>.
Now

a(X) = <FXYO, Y,> = < [ * , Yo], Y,> =

Now <Λ, Z> = 0. Using Z<Z, Λ> = <[Z, Z ] , jR> + <X, [X, R]} (since X is
Killing) we find that < [ * , # ] , X> = 0 and so <χX,R], Yλ> = 0. Thus a(X)
= 0. Now let Z be tangent to S2n~ι and normal to X. Then
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Now <#, Yλ} = 0, and also Z(1/|Λ|) = 0 since Z is tangent to S2n"1. It is
immediate that (DZR, Yi> = <(Z, Yα> = 0 since Z is perpendicular to X.
Thus α(Z) = 0. So α = 0, and V is flat relative to s'.

Let p be the orthogonal complement to <F = (X) on 5271"1. Let g2 be the
orthogonal projection from T(R2n)\S2n-1 to y, and let V" = V\v = q2oV.

Theorem (2.2). V" is the unique Riemannian torsion jree connection on v.
Proof. Let pλ: T(S2n~ι) -> & and p2: TCS272"1) -^ v be the orthogonal projec-

tions. Let Df be the Riemannian connection on S2n~ι. As we know, the unique
torsion free Riemannian connection F on v is given by V ZY = /?2[PiZ, YΊ +
P 2 D ; 2 Z Y . First take Z = X. Then F X Y = p2[X, Y], ^ F X Y - <?2{[X, Y] +
D^^Y} = ^ 2 [Z ? Y]. (Recall, in T(R2n), πγ is orthogonal projection on X and
τr2 is orthogonal projection perpendicular to X). Now [X, Y] is tangent to 5'2w"1

and q2[X, Y] = π2IX> Y]. Next take Z tangent to S271'1 and perpendicular to
X. Then F Z Y = jp2^

)z^ Since D; = πoD where π is orthogonal projection
from T(R2n) -> T^ 2 -- 1 ) , F Z Y = p2πDzY = q2DzY. Now F^Ύ = q2ΓzY =
^ 2DZY. Thus F = F / 7.

Remark. From now on, the unique Riemannian torsion free connection on
v will be denoted by V".

We now take two connections on T(R2n)\S2n~\ namely, F induced from an
X-connection and V Θ V" corresponding to T(R2n) \S2n~1 = V 0 v. Let φ be
an Ad-invariant polynomial on gl(2n) of degree n. We want to compare F and
V 0 F", i.e., to compute J,(F, P Θ V").

Let jc1? y1? , y2n.2 be local coordinates on S271'1 such that X = 9/SJC! (on
some open set t/). Let

be given by / f e , ^ , ,^2 n_2) = CVi, - , ^ - 2 ) - Let 0' be the connection
matrix of F' relative to {Yo, d/S^}, let <9r/ be the connection matrix of 7" rela-
tive to {3/3^!, , d\dyln_2] and θ the connection matrix of F relative to
{Yo, 3/3*!, 3/3>Ί, , djdy2n_2}.

Lemma (2.3). ff = /*(α/) /or .yom^ matrix of l-forms ω' on R2n~2.
Proof. FΎ0 - 0 by (2.1). Γ'iβ/dxJ = V\X) = V\\X\ Yo) = d \X\ Yo by

(2.2). Thus we merely have to show that d\X\ is in the image of /*. Now
d \X\ = adx, + Σ bkdyk. Apply to X to get X(\X\) = a. Now Z<Z,Z> =
2<[Z,Z],Z> = 0. Thus Z(|Z|2) = 0 and hence X(\X\) = 0. Thus a = 0.
The fact that Z(|X|) = 0 also shows that \X\ is constant along the integral
curves of X. Let ^ t be the local 1-ρarameter group for X. Then \X\ oφt = \X\.
Let m € U and let t be small. Then

9>t*(d|Z|){3/3^}m = Σ bk(φt(m))φ*(dyk){d/dyj} .

Now yk is constant on the integral curves of X, so φf(dyk) = dyk and
= δJt. Thus p*(d |Z|){3/3y i}m = bs(<pt(m)). But
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{3/dxj}m = (d/dyj)(\X\oφt)m = (β/dyj)(\X\)m = d\X\{d/dyj}m = b,{m). Thus
bj(jή) = bj(φt(m)) for all small t and all j . It follows that bk is independent
of x19 and so d\X\ = Σ bk(y19 , y2n_2)dyk is in the image of /*.

Remark (2.4). θ" = /*(ω") for some matrix ω" of 1-forms on R2n~2. This
is one of the steps in proving the vanishing theorem for Riemannian foliations

[11].
Lemma (2.5). θ = ί*(ω) for some matrix of 1-forms ω on R2n~2.
Proof. Let η = {Yo, d/dx19 d/y19 , d/dy2n_2} be the above local framing

for T(R2n)\S2n-1. Write θ = \\θi3\\, where

ff*J = α * ^ +

Then

Fη = ηθ, so

Now [X, y 0] = Z(1/|Λ|)Λ + [X,R]/\R\ = 0, since |JR| is constant on the
integral curves of a Killing field and we have seen [X, R] = 0. [X, X] = 0
and [X, 9/dy,.] = [d/dx19 d/dyj] = 0. Since Vxη = [X, η]9 we have η \\a^\\ = 0
and so | |Λ^ | | = 0. Next choose local vector fields Z19 -,Z2n_2 such that
Zj(yk) = δjk and Zs _[_ X for all /. Let φt be the 1-parameter group for X.
<pt: S

271'1 —> S271'1 is an isometry since X is a Killing field. We want to show
that each b\j is independent of xl9 and to do this it will be sufficient to show
that φf(bk

J) = by for small t. Now yk°φt = y^ and so ^^^(Z^ly^.} = δJk.
Since Z^ _L X, we have that Vz. = D Z y . Since ^4 is an isometry, ψJι{D) = Z).
Now

ψ7ιΦ)zfl = <PΓ>*Φ9t.*iz,)φt,*v)

Hence φj\D)Zjη =

NOW ί ' ^ ) = Σ ftί'^Og = 6F. PKφtM = Σ φΐ
since pt*(dyfc) = dyfe. Thus

for each /, /', k and small /. Hence b\j = φ?(bk

j) .
Remark (2.6). If we consider 7 on jR2ri outside its support, and choose flat

coordinates x19 y19 , y2n_! on i^2w for X, then it follows, just as in the pre-
ceeding proof, that the connection form for V depends only on y19 , y2n-\,
i.e., is pulled back from R2n~ι. In particular, if φ is an invariant polynomial
of degree n on gl(2n), then φ(K(F)) = 0 outside the support of V.

We shall now compare the connections V and Vf Θ V" on Γ(Λ 2 n ) |S 2 n " 1 .
Choose local framings η' for V9 η" for v, and η = (^r, η") for F Θ v (the jy's
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need not necessarily be as in (2.3), , (2.6)). Let θ\ θ", θ be the corresponding

~ n,, 1. Then θ0 is the connection matrix for

V 0 F " relative to η. Let σ = θ — ΘQ. Form the connection P = tV + (1 — t)V
φ F " on S2""1 x /. Let p: S27*-1 X / -> 52 r i" 1 be the projection. The connection
matrix of F ί relative to p~\η) is θι = #0 + to? a n ( i the curvature matrix is
ί ? = dtσ + tdσ + t[σ, 0O1 + t2σ2 + Ko, where Ko = d0o + 0J. Let p be an
invariant polynomial on gl(2n) of degree n. Then Jφ(F, V Θ V") = p^^CX')}-
Now

O} = Λ Σ ί ίV(^ A (dσ + [θ0, σ]Y A (σψ A K«)dt ,

where we do not care what / is.
Lemma (2.7). dσ + [σ, θ0], σ, σ\ Ko are all tensorial.
Proof. A form θ coming from a connection and a framing η is tensorial if,

relative to ηA,θ becomes AΘA'1. Now there forms are tensorial by direct
computation.

Theorem (2.8). Aφ(F, Vf Θ V") = 0.
Proof. It is enough to show that each term

φ{σ A {dσ + [θ0, σ]Y A (σ*)' A 2Q) = 0 , ί + / + k = n - 1 .

Since each entry σ, t/σ + [0O, σ], Ko are tensorial, and ̂ ? is Ad-invariant, this
term remains unchanged if we use the framings η\ η", η in (2.3), , (2.6). In
this case we have /: U -> R2n~\ f(x19 y19 •, y2n_2) = (y19 , J 2 n _ 2 ), and each
entry is in the image of /*. Thus φ(σ A (dσ + [θ0, σ\Y A (σ2)j A Kξ) is in
f*(Λ2n-\R2n~2)) and so is identically zero.

Let φ be Ad-invariant polynomial of degree n which determines an integral
class. Let s = {Yo, Y1? Y2, , Y^-J be a local orthonormal framing of
T(R2n)\S2n~ι. Let Vs be the connection which is flat relative to s. Then s" =
{Y2, , Y2n_2} is a local orthonormal framing of v, the normal bundle to the
foliation. Let Vs" be flat relative to s".

Theorem (2.9). Δ9{V9 V
s) = J , ( P Θ V", Vs) + dz.

Proof. For any three connections ΔΨ(V\ V1) + Δφ(V\ V2) + Δφ(F2, F°) = dz,
and ΔΨ(F\ P ) = -Δφ(F2, Fι). Now let F° = F, P = P , P = F θ F 7 /. Then
J / P , P ) = 0 by (2.8) and the result follows.

Theorem (2.10). Sφ(F) - S,(F").
Note. Recall from § 1, Sφ( ) is the Simons cohomology class in H2n-ι(Sn-\

R/Z).
Proof. Choose local framings s as in (2.9) where the first two vectors Yo, Y1

are always R/\R\,X/\X\. The local connection matrix for P 0 F" is

= C O " ) where / = {R/\R\,X/\X\}) since F r is flat relative to s*. Then
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ΔΨ(V Θ F"9 Vs) = Δφ(V", Vs"). From our discussion of Simons classes in § 1 it
follows that SΨ(V) = S9(V").

Next we must relate the Simons characteristic number S9{V)\S2n'ι'\ to
ReSp (X, 0). This is essentially the Bott residue theorem. Let V be an X-con-
nection supported in an open set U with Ό C interior B2n. Let φ be an invari-
ant polynomial on gl(2ή) of degree n.

Theorem (2.11), (Bott residue theorem for B2n).

Remark. The approach to the proof for a Killing field X on a manifold M
with isolated nondegenerate singularities is to compare V and D (the Riemannian
connection on M) and to examine Δφ(F, D) near the singularities. This is done
in [2]. However for the uninitiated reader, we will carry out this analysis in the
case we will need it, namely,

n

X = Σ aί{yid/dXi — Xίd/dyi} , the as are near 1.
ί = l

Proof in this special case. L e t Be = {x\Σ (<Aχ\ + a\y2d < ε 2} W e c a n
alway choose an ^Γ-connection which is supported on U and an ε so that
U Q Bε C interior B2n. Let *§e = dBε. Change coordinates. Let ut = atXi,
Vi = aji. Then Bε = {x \ Σ (ul + vί) < £2} Let us consider the global framing
7] of T(R2n) given by η = {d/dx,, d/dy19 , d/dxn, d/dyn}. Then, relative to η
and outside U,Vη = π® [X, η] where π is the 1-form π(Y) = <X, Y>KX, X}.
Notice that D is flat relative to η and K(D) = 0. Let Θ be the connection form

for V relative to η. Then θ = π ® L where L = D i a g / ΐ ^ ^ 1 V On

R2n x / formF ί = tV + (1 - i)D. Letp:R2n x I-+R2n. The connection and
curvature matrices of V1 relative to p~l(rj) are tπ ® L and dtπ®L + t dπ®L.
Thus

)) = Δf(F,D) = π(dπy-ιφ(L) .

By (2.6), ^(X(F)) Ξ 0 outside U, so

Now

Thus on Se
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= — Σ —f
ε or

so that on Se

π(dπ)n~λ = (n — 1)! ^ fj 2 (VidUi — w^dî ) f] dvkduk .

Finally making the change of variables xt = wjε, yi — v^ε we get

I 7r(dτr)n = (n - 1)! 2n ιΣ Σ {tyidXi - Xidyd Π dykdxk\
J Se j=*l CCj JSχί = l I kΦi J

n γ /» TO

where # ! and 5X are the ball and sphere of radius 1. Now Π?=i l / α j —

(Det (L))" 1 / 2 , let c = n! 2W ί f] ^ « ^ i τ h u s

ί co(K(F)) = c — ^ = c Res (X, 0) .
J £2» {Det (L)}1 / 2

Theorem (2.12). S^F^IS271'1] = c Res ( Z , 0), mod Z .

P/Όtf/. By (2.10) we know SΨ(V") — SΨ(V) for any Z-connection F. Now

given any local framing s of T(R2n) \S2n~\ SΨ(V) is determined on the domain

of this framing by Δψ{V, Vs). Thus we can take s to be the global framing

{3/3*!, d/dy19 , d/dxn, d/dyn}. For this s, Vs = D. Thus ΔΨ(F, D) determines

Sφ(F) on S2*-1, and therefore

Sφ(F)[S2n^] = ί _ ΔΨ(F,D) = [ dΔφ(F,D)

= f φ{K(F)) = c Res (X, 0) .

3. Applications

I n the first part of this section we will always take n = 2m and work in

Rim. We will start with a family Xa of Killing fields, each with a singularity

at the origin. T h e residue, with our choice of Xa, relative to suitably chosen

invariant polynomial φ, will vary continuously for a3 near 1. Thus the result-

ing foliation &β on 5 4 m - 1 will have the property that Sψ(F")[S*m~ι] will vary

continuously in R/Z by Theorem (2.12). Now consider the fibrations

/ : U(2m) - * S4m-\ f: SO(4m) -> Sim~\ f: Sp(m) -> S*™-1. The induced foliations

f^C^J will be shown to be Riemannian foliations with trivial normal bundle
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for ocj near 1. The continuous variation of Sψ{V/f)[S*m~ι] will imply the con-
tinuous variation of the associated exotic class coming from RW4m_2 associated
to φ. The result on the variation of classes in H*(FRΓq) and the uncount-
ability of π^(FRΓq) will follow from these considerations. At the end of this
section we will study π^(FRΓq).

Let Xa = Σ?=i (Xiiyid/dXi—Xid/dyi}. Let φ be an Ad-invariant polynomial on

gl(4m) of degree 2m. Now L = Diag ( [ _ ° ^ j ] ) > so <p(L) = <p(al, , a\m)

and {Det (L)}1/2 = f[ϊ=i <*i- Thus it is easily seen that Res,, (Xa, 0) varies con-
tinuously with al9 , a2m.

The case U(2m). Let (z l5 , z2m) € C27h and consider the 1-parameter
group (Zi, , z2m) -> (β ίαiSz1? e

i ί t 2%, , eίa2mSz2m) = z(s). A simple calcula-
tion shows that this is the 1-parameter group associated to

2m

-Xa =
j

Let έ? = (0, 0, , 0, 1) e C 2 m , and let /: U(2m) -> 5 4 m " x be
If f(A) = z, then f(eίasA) = z(j) where ^ ί α S = Diag(e ίβ l% , eίa2mS). Thus

z(j) = HAA-ιeia*A) and so

where jcα = Diag (ia19 , /αr2m) in u(2m), and L^ is the left translation in
V{2m) by A.

In the Lie algebra u(2m), let Xj be the matrix with an / in the //' position
and all other zero, yjk9 j < k, have an / in the jk and kj position and all other
zeros, and zjk, j < k, have a 1 in jk, —1 in kj and all other zeros. Then
{xj, yjk, zjk] form a basis for u(2m), {xj9 yjk, zjk}k<n form a basis for u(2m — 1)
and for each A

/ ^ o L i 4 maps u(2m - 1) Θ [Ad {A~ι)xa] onto [ Z J .

Thus

n / " 1 ^ ) ) ^ = LA^{u(2m - 1)) Θ [ L ^ o Ad U " 1 ) ^ ] .

Lemma (3.1). {L4f#Cyy 2 m ) , L^^Cz^ 2m)} pro/Vcί to α fcαώ for

T(U(2m))A/T(Γ(Xa))A

for ccj near 1.

Proof. Xj for / < n, yjk for k < n, zjk for /: < n, yJn, zjn, and Ad {A~ι)xa

give us a basis for u(2m) when ^ = 1, since Ad (A~1)xa = χ1 + . + xn

for αrjr = 1. Call this set of vectors βatA. Let g: R2m X U(2m) -> i? be given
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by g(a, A) = Det (βa>A). For each A, g(l,A) φ 0. By compactness there is a
neighborhood W of 1 in R2m such that g(a, A) φ 0 for all a'mW and all A in
U(2m). Thus for α in W, {LAt#(yj 2 m ) , L4fS|e(Zj 2m)} give us a basis for

Now f~\^r

a) is a Riemannian foliation. Let sa be the framing of the normal
bundle arising from (3.1). This is a (4m — 2)-codimensional foliation of
U(2m). Let

<5* : # * ( i ^ 4 m _ 2 ) - Jϊ*(t/(2m), Λ) .

Theorem (3.2). Lei p,Λ be αw element of Him-\RWim_2). Then δ*(pjhτ)
varies continuously in Him~\U(2m),R).

Proof. f~ι(V") is the Riemannian connection on the normal bundle to

r\Pa). δ*(pjht) = [pj(f-ψ")ΛPt(f-ψ",Fa)].
Let ψ = PJPH a polynomial of degree Am. Then by [9, 1.6]

PJ{S-IV")ΔPSS-IV", n = J9(f-ψ", n .

Now [Jφ(f-Ψ", Fs)] = S9(j-Ψ"), mod Z. Since

H^-\SAm~\ R/Z) -> HAm-\U(2m), R/Z)

is an injection, and S/F") varies continuously, so does f*S9(V") = Sφ(f-ψ")
and hence also d*(pjhi).

The case SO(4m). As in the case of U(2m), let f(A) = A(e) where e =
(0, 0, , 0, 1) in R4m. The integral curve for -Xa through z = (JC1? y19 ,

( , Xj cos (XjS — yj sin αr^ ,̂ Xj sin ^ 5 + y^ cos ajS, ) =

Now let

sin (XjS cos

Then z(s) = Dz, so if /G4) = z, then /(D^) = z(s).
Now in the Lie slgebra so(4m), let xJfc for / < k be the matrix with — 1 in

/Λ and + 1 in £/ position and all other zero. Let Vj = x2j-ι,2j' Then {xjJc} form
a basis for so(4m) and

D = exp s(aιvι + + a2mv2m) .

Let va = a{Vx + + a2mv2m and write D = eSVa. Then f(AA~ιeSVaA) =
and so
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ULA^(so(4m - 1) Θ [Ad (A^vJ) = [Xa]fU) .

Now just as in the U(2m) case we have
Lemma (3.3). {LA^{xjAm), j Φ Am — 1} project to a basis for

T(SO(4m))/f-\^a) for aj near 1 .

As in the case of U(2m), f~ι{^a) is a family of Riemannian foliations,
f~ι(V") is the Riemannian connection on the normal bundle, δ* is determined
by f~ι(V") and Vs where s is given by the framing of (3.3). Then just as in the
proof of (3.2) we have

Theorem (3.4). δ^ipjhi) varies continuously.
Note that the remark following (3.2) applies equally well to SO(4m).
The case Sp (m). We will think of Sp (m) C U(2m) and so sp (m) C u(2m).

( A A\
/ /\ with A± — —Al, A3 = A%9 A2 = Aξ. Let

Γj have an i in // and — i in m + j , m + / for / < m. Let vjk have an i in jk
and kj and —/ in m + /, m + k and m + k, m + j for / < k < m. Let zjk

have a + 1 in jk, — 1 in kj, +1 in / + m, k + m and — 1 in k + m, j + m
for j < k < m. Let wjk have / in /, m + k, k, m + j , j + m, k, and k + m, j
for / < k < m. Let ujk have + 1 in /', k + m, + 1 in k, j + m, — 1 in j + m,
A:, — 1 in k + m, k. Then {r,-, v̂ ,̂ zjk, wjk, ujk) form a basis for sp (m). Let
ra = aλrx + + amrm, and eTaS = exp^rα. Let z 6 C2 m. Then ^r«sz = z(s)
is the integral curve for

*a = Σ α i ί - y ^ + ^ - Γ - + ^ + 2 m ^ — - *
av, a ^ + 2 m dyj+2

An easy computation shows Res^ (X, 0) is as for the previous Xa. A lemma
identical to Lemmas (3.1) and (3.3) shows that

LA,AV3 im f o r / < 2m, zj lm for / < 2m, wd 2J < 2m, Uj 2J < 2m}

projects to a basis for T(Sp (m))IT(f-ιXa). Using this framing and f~\Vf/) we
get, as for U(2m) and 5(9(4m) that d*{pjhi) varies continuously.

Theorem (3.5). ΓΛe map Him-\RW4m_2) -• H'm-\FRΓ,m_2) is injectίve.
The classes {PJK}, with constitute a basis for Him~\RWAm_2) all vary contin-
uously.

Proof. In § 1 we have described a basis {pjήj for Him-ι{RW^m_2). Con-
sider the polynomials {pjPt} and label them φ(J>ί). The foliation /"XJ^J in
Lemma (3.1) gives rise to a commutative diagram:
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Now, if the map H4m-\RWim_2) -> Him-\FRΓ4m_2) were not injective, then
some linear combination J] c(J ^pjhi would be identically zero in

= 0 , modZ

-1] = cφi(al, , a?2m)/πai9 mod Z and so

Let ψτ = <p(J,i)- Then for all

But S ^ F '

for all choices of α ,̂ -,a2m. This is impossible. Now we have already seen
that all of the cohomology classes <5*(pΛ) vary continuously.

The homotopy of BRΓq, FRΓq. Let Xa be the family of Killing ίileds
given in the beginning of § 3. Let 3F a be the resulting Riemannian foliation
on S 4 m - 1 with F " the Riemannian connection on the normal bundle. Consider
the fibration

FRΓim_2 -> BRΓim_2 -> BO(4m - 2) .

Let fβ: 5 4 m " 1 -> BRΓAm_2 be the map which classifies &a.
As in the previous theorem, let φ19 , φr be the polynomials pJpi where

{pjhi} form a basis for Him-\RWAm_2). Let fa: S4™"1 -+ BRΓim_2 be the map
which classifies &β. Let ^ ( α ) be the element in H*m-\BRΓim_2,R/Z) cor-
responding to S9(V"). Define

by

For various choices of α = (α15 •• ,αfr) we get a surjection onto a neighbor-
hood of the identity. Thus

Theorem (3.6.) ττ4m_1(BjRΓ4m_2) and πi7ϊι_λ{FRΓim_2) map surjectively on-
to 0 Λ / Z , where r = dim Hί"m~ι(RW±7rι_2). Thus these homotopy groups are

r

not countably generated.

Note that these homotopy groups were first studied in [12] using methods

of [1].

). Choosing / = fa we get
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