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RIEMANNIAN MANIFOLDS WITHOUT FOCAL POINTS

JOHN J. O'SULLIVAN

Introduction

One of several equivalent conditions which can be used to characterize
riemannian manifolds without focal points is the condition that the length of
all nontrivial, initially vanishing Jacobi fields be strictly increasing for t > 0.
Consequently any manifold of nonpositive sectional curvature has no focal
points. However, the existence of some positive sectional curvatures does not
necessarily destroy the nonfocality hypothesis. For examples, both compact
and noncompact, of manifolds without focal points whose sectional curvatures
change sign, see Gulliver [6].

In this paper we consider only those manifolds without focal points with the
property that || Y(0|| —> °° as t —• oo for all nontrivial Jacobi fields Y satisfy-
ing Y(0) = 0. It is known that the existence of a lower bound for the sectional
curvatures of the manifold implies this property. See [4, Theorem 2.1] and
[2, Proposition 2.9]. In particular, therefore, any manifold which is a rieman-
nian covering of a compact manifold without focal points has this property.

In § 1 we establish some properties of the geodesies on a simply connected
manifold without focal points. Given a geodesic ray k and a point p, we show
(Proposition 3) that there exists a unique geodesic ray which begins at p and
is asymptotic to k. In Propositions 2 and 4 we study the functions d(h(t), k)
and d(h(t), kit)) for geodesic rays ft, k which either intersect or are asymptotic.
These two propositions can be obtained for nonpositively curved manifolds by
using convexity properties of the distance function. On the other hand, for
geodesies which neither intersect nor are asymptotic, we show that analogies
with the case of nonpositive curvature break down. In particular, d(h(t), k)
may have a critical point which is a local maximum.

§ 2 is devoted to proving the so-called "flat strip theorem" for simply
connected manifolds without focal points whose dimension is > 2 . This theorem
was proved in the two-dimensional case by Green [4].

From recent work of Gromoll & Wolf [5] and Yau [11], it follows that a
solvable subgroup of the fundamental group of a compact manifold M of non-
positive sectional curvature is a Bieberbach group, and that such a group has
a strong influence on the geometry of the manifold, i.e., it gives rise to an
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isometric and totally geodesic immersion into M of a compact euclidean space
form. In § 3 we extend these results to compact manifolds without focal
points. See Theorem 2 and Corollaries 1,2. We also determine (Proposion 5)
the structure of the set of critical points of the square displacement function of
an isometry which maps each point into the complement of its cut locus.

We are indebted to P. Eberlein for the proof of Lemma 2 and also for sim-
plifying the proof of Proposition 2. We would also like to thank J. Milnor and
B. Smyth for several discussions and helpful suggestions.

0. Preliminaries

Throughout this paper all riemannian manifolds are assumed to be connected,
complete, C°°, and of dimension > 2 . A riemannian manifold M is said to
have no focal points if for any imbedded open geodesic segment c: (—a, a)
—*M, the exponential map exp: c1 —• M is everywhere nonsingular, where
0 < a < oo, and cL is the normal bundle of c. By [8, Proposition 4] this
condition is equivalent to the condition that || Y(0| | be strictly increasing for
t > 0 where Y is any nontrivial, initially vanishing Jacobi field. In particular,
no nontrivial Jacobi field vanishes more than once, and so a manifold without
focal points is also without conjugate points. Consequently, if M is simply
connected, all maximal geodesies c : (— oo, oo)—>M are imbedded, and it
follows from [7, Theorem A] that for such c, exp: cL —» M is a covering map
and therefore a diffeomorphism. It follows that for any point p not on c there
is a unique geodesic which passes through p and intersects c at right algles.

It is not known whether there are manifolds without focal pints which admit
a nontrivial Jacobi field Y with Y(0) = 0 and || Y(t) || bounded for t > 0. How-
ever such Jacobi fields cannot exist if the sectional curvatures of the manifold
are bounded from below by —/c2 for some K > 0. See [4, Theorem 2.1] and
[2, Proposition 2.9]. From now on we restrict our attention to those manifolds
without focal points which satisfy the condition that || Y(0| | —» °° as ί —• oo
for all nontrivial, initially vanishing Jacobi fields Y. Note that any manifold
which is a riemannian covering of a compact manifold without focal points
satisfies this condition.

The condition that the length function of any nontrivial, initially vanishing
Jacobi field be strictly increasing for t > 0 and unbounded as t —> oo can be
used to establish a uniform growth result for such Jacobi fields. We now state
this result without proof. A proof is contained in the proof of [3, Lemma 4].

Proposition 1. Let p be any point of a manifold M without focal points,
and R any positive number. Then 3 T > 0, T = T(p,R), such that \\Y(t)\\ >
R\\Y'(0)\\ for t > T, where Y is any nontrivial Jacobi field along any unit
speed geodesic ray going out from p and Y(0) = 0.
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1. Pairs of geodesies

In this section we will examine the behavior of the functions d{h(t), k(f))
and d(h(t), k) where h and k are geodesies on a simply connected manifold M
without focal points. Note that all geodesies of M are length minimizing since
M is simply connected and has no conjugate points. We begin with the follow-
ing lemma.

Lemma 1. Let h and k be two unit speed geodesic rays going out from a
point p of a simply connected manifold M without focal points. Suppose that
the angle at p between h and k is not equal to 0 or π. Let c: [0,1] —• M be
the constant speed geodesic segment joining h(a) to k(a) for any fixed a > 0,
and let m = min d(p, c(s)). Then d(h(t), k(t)) < d(h(a), k(a)) for a — m < t

s€[0,l]

<a.
Proof. For each s e [0,1], there is a unique vector Z(s) e TP(M) such that

c(s) = exppZ(s). SetX(V) = Z(s)/\\Z(s)\\, and consider the variation r: [0, oo)

X [0,1] —> M defined by r(u, v) = exp uX(v). The vector fields ru — r*
du

ri

and rΌ = r^ are orthogonal because for each fixed v, ru is the unit tangent
dv

vector to a geodesic ray going out from p. Further for each v, \\rv||
2 is a strictly

increasing function of u because rυ is a nontrivial Jacobi field vanishing at u
= 0. Now let φ(s) = d{p, c(s)). Then c(s) = r(φ(s), s), and c(s) = φf(s)ru(φ(js), s)
+ rv(φ(s), s). For 0 < I < m, g(s) = r(φ(s) — Z, s) is a curve joining h(a — I)
to k(a — I), and g(s) = φ'(s)ru(φ(s) — l,s) + rv(φ(s) — I, s). Therefore

L(g) = Γ [ ( p W + \\rΌ(φW ~ l,s)f\ι/2ds
Jo

< f Kφ'isW + \\rv(φ(s),s)\\Ψ2ds = d(h(a),k(a)) .
JO

Consequently d(h(a — /), k(a — /)) < d(h(a), k(a)), and the lemma follows.
Proposition 2. Let M be simply connected, and let h, k be two distinct

unit speed geodesic rays going out from a point p of M. Then for t > 0, both
d(h(t), k) and d(h(t), k{t)) are strictly increasing and tend to infinity as ί —> oo.

Proof. The case where A(0) = — k(0) is trivial, so we assume that the angle
at p between h and k is not π. Now d(h(t), k) = L(gt) where gt is the unique
geodesic segment which joins h(t) to k and is perpendicular to k. An easy first
variation argument gives L'(gt) = 0 if and only if gt is also perpendicular to
h. Since exp: g^ -> M is a difϊeomorpbism, this cannot happen. Hence Lf

never vanishes and, since 1/ cannot be negative for small values of t, it follows
that L'(gt) > 0 for all t > 0. Hence d(h(t), k) is strictly increasing. Now
let 0 < tλ < t2. By Lemma 1, there exists a nontrivial subinterval [a, t2) of
[tl912) such that d(h(μ), k(u)) < d(h(t2), k(t2)) for a < u < t2. Let [6, t2) be the
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largest subinterval of [t1912) with the property. To show that d(h(t^, k{Q) <
d(h(t2),k(t2)) it clearly suffices to prove that d(h(b),k(b)) < d(h(t2),k(t2)). If
gt: [0,1] -*> M is the constant speed geodesic segment joining h(f) to kit), then
d(p, gt(s)) depends continuously on both t and s and vanishes only when t = 0.
Hence we can find an ε > 0 such that min d(p, gb+e(s)) > ε. But then it fol-

*6[0,l]

lows from Lemma 1 that L(gb) < L(gb+e), and since L(gb+e) < d(h(t2), k(t2)) by
choice of ε, we must have d(h(b), k(b))<d(h(t2), k(t2)). Therefore d(h(t^, k(tj)
< d(h(t2), k(t2)), and so d(h(t), k(t)) is strictly increasing. It remains to show
that d(h(f), k) and d(h(t), k(t)) both tend to infinity as t -> oo. It is sufficient
to show that d(h(t), k(t)) —> oo since it is then immediate, via the triangle
inequality, that d(h(t), k) —> oo. We now suppose that 3 β such that d(h(t), k(t))
< β, V t > 0. For any real number R, it follows from Proposition 1 that 3 T > 0
such that || Y(t) \\ > R \\ Y'(0) \\ for t > T where Y is any nontrivial Jacobi field
along any geodesic ray going out from p and Y(0) = 0. Choose a > T + β,
let ga: [0,1] —> M be the constant speed geodesic segment which joins h{a) to
k(ά), and consider the variation r defined during the proof of Lemma 1. Then
for each s e [0,1], φ(s) = d(p, ga(s)) > T. Moreover, it follows from the def-
inition of r that Ys(u) = rv(u, s) is a Jacobi field satisfying Y8(0) = 0, | | ϊ ΐ (0) | |

= \\X(s)\\ where X(s) = -**-. Therefore
ds

Uga) > Γ \\rυ(φ(s), s)\\ ds>R[X \\X(s)\\ ds > Rθ ,
Jo Jo

where 0 < θ < π, and cos θ = <Λ(0), Λ(0)>. The last inequality holds, since
X(s) is a curve in the unit sphere of TP(M) which joins h(0) to A (O). Conse-
quently, if we choose R > β/θ, we get L(gα) > β. This contradiction shows
that lim d(h(t), k(t)) = oo. The proof of the proposition is complete.

ί — oo

Definition. Let M be simply connected and without focal points. Two unit
speed geodesic rays h, k: [0, oo) —> M are said to be asymptotic if 3 a such that
d(h(t), k(t)) < a for all t.

Proposition 3. Let p e M and let k be any unit speed geodesic ray. Then
there is a unique geodesic ray going out from p, which is asymptotic to k.

Proof, (i) Existence. For p e k, the subray of k which begins at p is
clearly asymptotic to k. For p $ k, let {pn} be a sequence of points whose limit
is p, and let {tn} be a positive sequence which tends to infinity. Since M is
simply connected, there is a unique unit speed geodesic ray hn: [0, oo) —• M
beginning at pn and passing through k(tn). For each n, hn(0) is a unit tangent
vector at pn so, by passing to a subsequence if necessary, we may assume that
hn(0) converges to a unit vector Z at p. Let h be the geodesic ray defined by
h(t) — exρp tZ for t > 0. We will show that h is asymptotic to k. Let cn (resp.
c) be the geodesic segment joining pn (resp. p) to &(0). For each n we can
define a geodesic variation rn by considering geodesic rays which go out from
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k(tn) and intersect cn. Fix t > 0. Then it follows from Lemma 1 that for all
sufficiently large n we can fined a curve joining hn(f) to k(f)9 whose length is
less than the length of cn. Therefore for such n, d(hn(t), k(t)) < d(pn, &(0)),
and taking limits a s « ^ o o we obtain d(h(t), k(t)) < d(h(0), k(0)). Hence h
is asymptotic to k.

(ii) Uniqueness. The uniqueness of h is immediate from Proposition 2.
Proposition 4. Let h0, k0 be two asymtotic geodesic rays. Extend h0, k0 to

maximal geodesies h, k: (— oo, oo) —> M respectively. Then both d(h(t), k{t))
and d(h(t), k) are nonincreasing functions of t.

Proof. For a e R set ha(f) = h(a + t), ka(t) = k(a + t). Then the geodesic
rays ha and ka are asymptotic, and so by Proposition 3, d(ha(i), ka(t)) <
d(ha(0), ka(0)) for / > 0. Setting t = b-a where b > a, we obtain d(h(b), k(b))
< d(h(a), k(a)), and therefore d(h(t), k(t)) is a nonincreasing function. Now if
a € R, we can certainly reparametrize k so that the perpendicular geodesic
from h(a) to k intersects k at the point k(a). Hence, itb > a, we have d(h(b), k)
< d(h(b), k(b)) < d(h(a), k(a)) = d(h(a), k), and so d(h(t), k) is nonincreasing.
This completes the proof of the proposition.

If h and k are two distinct maximal geodesies on a simply connected mani-
fold without focal points, then either

1. h and k intersect, or
2. 3 a subray of h which is asymptotic to a subray of k (if this is the case,

we can parametrize h and k by arc length so that d(h(t), k(t)) is a nonincreas-
ing function of /, and also use the term asymptotic to describe two maximal
geodesies which can be so parametrized), or

3. h and k neither intersect nor are asymptotic.
For any pair h, k of distinct maximal geodesies on a simply connected mani-

fold of nonpositive sectional curvature, it follows from the second variation
formula that each of the functions d\h(t), k) and d\h(t), k(t)) is convex. If the
geodesies neither intersect nor are asymptotic, it follows that each of these func-
tions assumes its absolute minimum at t = t0 say, is nondecreasing for t > tQ,
nonincreasing for t < t0 and tends to infinity as t —• ± oo. However, there is no
analogue to Propositions 2 and 4 for geodesies of this type on an arbitrary
simply connected manifold without focal points. In fact, d(h(t), k) may have
a local maximum. To see this let M be a simply connected surface without
focal points whose Gaussian curvature K is positive at some point p. Let U be
a geodesically convex neighborhood of p where the curvature is everywhere
positive. Let c: [0,1] —> Λί be a constant speed geodesic segment which lies
entirely in U. Let h, k be maximal unit speed geodesies such that h(0) = c(0),
k(0) = c(l) and such that h and k are both perpendicular to c. Let ct: [0,1]
—• M be the constant speed geodesic segment which joins h(t) to k and is per-
pendicular to k. A first variation argument shows that (L(ct)) is equal to

dt
cos (π — ψ(0) for t < 0 and equal to cos ψ(t) for t > 0 where ψ(t) is the
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interior angle at hit) of the geodesic quadrilateral bounded by ct, c, h and k.
For t in some interval (—ε, ε) this quadrilateral lies completely in U, and it
follows from the Gauss-Bonnet formula that for 0 < \t\ < ε, ψ(0 is an obtuse
angle and consequently d(h(t), k) has a local maximum at t = 0. A similar
argument shows that d(h(f), k(t)) can also have a local maximum. It is however
true that both d(h(t), k) and d(h(t), kit)) tend to infinity as t -+ ± oo. To see
this, suppose there is a sequence ίn —> + oo (or — oo) such that d(h(tn), k(tn))
remains bounded. Then using the variations rn obtained by considering the
geodesic rays going out from h(0), which intersect the geodesic segment join-
ing h(tn) to k(tn), we could construct, along some geodesic ray going out from
h(0), a nontrivial bounded Jacobi field which vanishes initially, and this would
contradict Proposition 1. Therefore d(h(t),k(t)) —> oo as t-+ ± o o , and we
can now use the triangle inequality to obtain the same result for d(h(t), k).

2. The flat strip theorem

Again let M be simply connected and without focal points. Let h, k be two
distinct maximal unit speed geodesies of M such that d(h(t), k(fj) is bounded
for all t € R. By Proposition 4 we can parametrize h and k by arc length so
that both of the functions d(h(t), k) and d(h(t), k(t)) are constant, and if we
choose our parametrization in such a manner that the geodesic γ, which joins
h(0) to k and is perpendicular to k, intersects k at k(0), then both of these
functions are equal to the same constant, b say. It thus follows easily from the
first variation formula that γt, the geodesic which joins hit) to k and is per-
pendicular to k, is also perpendicular to h. Also γt must intersect k at k(f) for
otherwise, since d(h(t), k) = d(h(t), kit)) = b, there would be two perpendic-
ulars from h(f) to k in contradiction of the fact that M has no focal points.
Now let X(t) be the unique unit vector in the normal bundle hL of h, such
that kit) = exp bXii). Define r: R x [0, b] -+ M by r(t, u) = exp uXii). Since
exp: hL —• M is a diffeomorphism, r defines an imbedding of the rectangular
strip R X [0, b] C R2 into M. Let Q denote the resulting strip of surface in M.
The purpose of this section is to prove the following theorem.

Theorem 1. Let h and k be two maximal unit speed geodesies of a simply
connected manifold M without focal points. Suppose that d(h(t), k(t)) is bound-
ed y t e R. Then, with respect to the metric induced from M, the strip of
surface Q defined above is flat and totally geodesic.

Before proceeding with the proof of the theorem we first prove the following
lemma.

Lemma 2. Let N be any simply connected manifold without conjugate
points. Let p and q be two points of N with d(p, q) = a > 0. Let cn: [0, a]
—> N be a sequence of smooth curves satisfying

( i ) cni0) = pn and cn(ά) = qn where pn-> p and qn-+ q as n-> oo,
(ϋ) 114(011 < 1 for all n and for all t,
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(iii) {cn(f)} converges for each t.
Then cn(i) —> γ(i) for every t € [0, a] where γ is the unique unit speed geodesic
segment such that γ(0) = p, γ(a) = q.

Proof. Let q(t) = lim cn(t). Then

d(j>, q(f)) = lim d(pn, cn(t)) < lim sup L(cn) | [Oft ] = lim sup Γ || cn(s) \\ ds
ί-»oo n->oo n-*oo J 0

<t

by Assumption (ii). Similarly d(q(t), q) = lim d(cn(t), qn) < a — t. But now

we have a = d(p, q) < dip, q(f)) + d(q(t), q) < a. It therefore follows that
q{i) lies on the geodesic segment joining p to q, and d(p, q(t)) = t. Hence
q(t) = γ(f), and the lemma is proved.

Proof of Theorem 1. All notation is as defined at the beginning of this
section. The curves u = 0 and u = b in Q, i.e., h and k are geodesies of M.
We now show that all of the curves u — constant are geodesies of M. Let tn

be a positive sequence which tends to infinity. We can define a variation rn

with k(tn) as vertex as follows: For each s e [0, b] there is a unique unit vector
Z(s) tangent to M at k(tn) such that the geodesic ray of M determined by Z(s)
passes through γ(s) where γ is the unit speed geodesic segment starting at h(0)
and ending at k(0). Let rn: [0, oo) x [0, &]—>M be given by rn(t,s) =
expfe(ίw) ίZO). Let pn(j) = d(k(tn), γ(s)), and let a > 0. Then for all sufficiently
large n the curve cn: [0, ί>] —> M, where c%(5) = rn(^n(V) — α, ̂ ) is well defined
and smooth. Further,

( i ) cn(0) = /?w, where lim p w = h(a) and cw(b) = k(a),

(ii) by an argument used in the proof of Lemma 1, ||cn(s)\\ < \\f(s)\\ = 1,
(iii) for each fixed s e [0, 6], rw(ί, 5), 0 < ί < ^^(5), is the unit speed geo-

desic segment joining k(tn) to γ(s). Therefore lim cn(s) = gs(a) where gs is the

unit speed geodesic ray such that gs(0) = γ(s) and gs is asymptotic to Λ|[0,oo).
Thus the curves cn satisfy the hypotheses of Lemma 2, and it therefore follows
that lim cn(s) = γa(s) for all s € [0, b] where γa is the unit speed geodesic seg-
ment starting at h(a) and ending at k(a). Combining this with (iii) above, we
see that for t > 0 each curve u = u0 in Q is a geodesic ray of M, namely, the
unit speed geodesic ray which starts at r(0, u0) and is asymptotic to k\ί0iOO). A
similar argument gives the same result for t < 0, and so it follows that for
each u0 the curve u = u0 in Q is a maximal unit speed geodesic of M. Now
the curves t = const, and w = const, in Q are two mutually orthogonal systems.
Also, they are geodesies of M and therefore of Q> since Q bears the metric
induced from M. Hence it follows from the Gauss-Bonnet formula that Q is
flat. Again since the curves u = const, are geodesies of M, the unit vector

field Y(i) = r # — ( ί , u) is a Jacobi field of M for each w. But Eberlein has
du
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shown (see [2, Corollary 3.3]) that a bounded perpendicular Jacobi field on M
must be parallel. Hence Fr*d/dtY = 0 where V is the riemannian connection

on M. Therefore Vr*d/Hr* = 0 and this combined with the fact that the
du

curves t — const, and u — const, are geodesies of M implies that Q is totally
geodesic. This completes the proof of the theorem.

Remark. This result was proved for surfaces without focal points by Green.
See [4, Theorem 4.1].

3. Isometries and the fundamental group

Let M be any riemannian manifold and let / be an isometry of M. We say
that / translates the maximal geodesic h if f(h(f)) = h(t + a) for some a Φ 0
and for all t e R. If h is a length minimizing geodesic, we will call h an axis
of /. The isometry / is said to be of small displacement if it carries each point
into the complement of its cut locus. Then for all p e Af, the geodesic segment
c joining p to /(/?) such that L(c) = d(p, f(p)) is unique. We can lift / to an
isometry / of the universal covering space M as follows. Let π be the covering
projection, let x e π~\p) and let c be the lift of c whose initial point is x. Then
fix) is defined to be the final point of c. It is easily checked that / is an iso-
metry of small displacement, and that d(x, f(x)) = d(πx, f(πx)) for all x e M.
For any isometry / of small displacement, the function δf:M—*R, where
δf(p) = d(p, f(p)), is smooth except at fixed points of /, and δ2

f is smooth
everywhere. Further, p is a critical point of δ2

f if and only if p is a fixed point
of /, or / translates the unique maximal geodesic, which passes through p and
f(p), and is length minimizing between these two points. See [9, Chapter 1].

We will say that a closed subset F of a manifold M is geodesically convex
if for each p,q e F, every geodesic segment joining p to q lies completely in
F. It is known that such subsets are totally geodesic submanifolds (perhaps
with boundary) of M. See [9, Lemma 1.3.2] or [1, Theorem 1.6].

Proposition 5. Let M be a manifold without focal points, and f an isometry
of small displacement. Denote by Crit (/) the set of critical points of δ2

f. Then
(i) Crit(/) is the set of points where δf assumes its absolute minimum,

and is a closed connected totally geodesic submanifold of M possibly with
boundary,

(ii) Crit (/) is isometric to N X R if M is simply connected and f has no
fixed points, where N is a closed connected totally geodesic submanifold of M
possibly with boundary.

Proof. Clearly Fix (/), the set of fixed points of /, is contained in Crit (/).
Let p be a fixed point of /, and suppose that 3 q e Crit (/) — Fix (/). Let / be
the lift of / to M, and let x € π~\p), y e π~ι(q). Then x is a fixed point of /,
and the unique maximal geodesic k, which passes through y and f(y), is an
axis of /. Let h be the geodesic which passes through x and intersects k at
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right angles. Then foh also passes through x, intersects k at right angles, and
fohφh since k is an axis of /. This is impossible since M has no focal points,
and so we can conclude that either

(a) Crit (/) - Fix (/), or
(b) / has no fixed points, and Crit (/) consists of all points q such that /

translates the unique maximal geodesic, which passes through q and f(q) and
is length-minimizing between these two points.

For Case (a) it is immediate that Crit (/) is the set of points where δf assumes
its absolute minimum. Further, if p and q are fixed points of /, and c is any
geodesic segment joining p to q, then we can lift c to a geodesic segment c in
M such that both end points of c are fixed by /. Since M is simply connected
without focal points, it follows that / fixes every point of c, and so by project-
ing back to M we conclude that / fixes every point of c. It follows that Crit (/)
is a closed connected geodesically convex subset of M, and this establishes the
proposition when / has fixed points.

Now suppose that / has no fixed points and that p e Crit (/). Then there is
a unique /-invariant geodesic h which passes through p and f(p) and is length
minimizing between these two points. Lift h to a geodesic h of M. Then h is
an axis of /, and it follows from [8, Lemma 1] that for x e M, d(x, fx) assumes
its absolute minimum on h. Consequently, since d(x, f(x)) = d(π(x),foπ(x)),
δf must assume its absolute minimum at p. Now let q e Crit (/), q Φ p, and
let c be any geodesic segment joining p to q. If c is a segment of the geodesic
h, then it is immediate that δf is constant on c, and so c C Crit (/). If c is not
a segment of ft, let c be a lift of c to M, and let g (resp. k) be the axis of /
which passes through the initial point (resp. final point) of c. Then d(g(t), k(f))
is bounded for all t, and so by Theorem 1, g and k form the boundary of a
flat totally geodesic rectangular strip of surface and this strip is clearly /-
invariant. Therefore d(x, f(x)) must be constant for x ec, and projecting back
to M it follows that δf is constant on c. This shows that when / has no fixed
points, Crit (/) is also a closed connected geodesically convex subset of M, and
completes the proof of Part (i) of the Proposition.

If / has no critical points, then Part (ii) is vacuously true. If Crit (/) Φ 0 ,
define a vector field X on Crit (/) by setting X(p) equal to the unit tangent
vector at p to the unique length minimizing geodesic segment joining p to f(p).
Since an axis of / passes through each point of Crit (/), it is an easy conse-
quence of Theorem 1 that X is parallel. Therefore, using the de Rham de-
composition theorem, we can split Crit (/) isometrically as N X R, where N is
a closed connected totally geodesic submanifold of M possibly with boundary
and for each z β N, the leaf {z} X R is an axis of /. This completes the proof
of the proposition.

Lemma 3. Let M be a simply connected manifold without focal points, F
a closed connected geodesically convex subset of M, and G a finite group of
isometries of F. Then there is a point qeF such that ψ{q) = q for all ψ e G.
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Proof. Let q0 be any point of F, let G = {φ19 φ2, , ψι}, and consider the
continuous G-invariant function f:F-+R where f(p) = max {d(φiq09 p): 1 <
/ < /}. Since M is simply connected, it follows that for each a > 0, {p e F: f(p)
< a} lies in a compact set, and therefore / assumes its minimum value, a0 say.
Hence f~\a^> the set of points where / assumes it minimum, is nonempty, and

I

we see easily that it is equal to Π B(wtqQ, a0) Π F where for x ζM, B(x, a0)
i = l

is the ball of radius a0 centered at x. Now [3, Lemma 1] states that on any
simply connected manifold without focal points the function y —• d\x, y) is
strictly convex for each x. Consequently the minimal set of / must be a single
point. To see this, suppose that qι and q2 were two distinct points in f~\aQ).
Then there would be some ε > 0 such that c|(0,e), where c: [0,1] —> M is the
constant speed geodesic segment with c(0) = qx and c(l) = q2, would lie in
the interior of each of the balls B^tf^a^, and this would contradict the
minimality of a0. Since f~\a0) is invariant under the action of G on F, the
lemma is established.

Note. This lemma remains valid when G is a compact group of isometries
of M. See [10, Theorem 3.4.1].

The fundamental group. We now study solvable subgroups of the funda-
mental group of a compact riemannian manifold M without focal points, and
show that such groups have a strong influence on the geometry of M. Let M
be the universal covering space of M, and let σ 6 πx{M) be a nontrivial deck
transformation. Since Proposition 5 is valid for any isometry of M and since
σ has no fixed points, it follows that Crit (σ) consists of all points in M through
which an axis of σ passes, and this set is not empty since M is compact.

Theorem 2. Let M be a compact riemannian manifold without focal points,
M its universal covering space, and G a nontrivial solvable subgroup of πx(M).

(i) Then M contains a nonempty closed connected G4nvariant totally
geodesic subspace N which is isometric to Rm X N*9 where Rm is m-dimen-
sional euclidean space and N* may have boundary. Further if σ € G, the
action of σ on N = Rm X N* is given by σ(u, v) = (σu, v), V u e Rm, v e Λf*.

(ii) Then G is torsion free and is a finite extension of a free abelian normal
subgroup of rank m.

Corollary 1. Let Mbea compact riemannian manifold without focal points.
Then there exists a solvable subgroup G of πλ(M) if and only if there exists
an isometric and totally geodesic immersion into M of a compact euclidean
space form Q where πλ(Q) = G.

Corollary 2. Let Mbea compact riemannian manifold without focal points.
Then πλ{M) is solvable if and only if M is flat.

Proof of Theorem 2. G must be torsion free since otherwise there would
exist closed geodesies on M. We first prove the theorem for the case where G
is abelian. If σx e G, then Crit (σj is nontrivial, ^-invariant and isometric to
R X N1 where the action of ax on R x Nι is given by ax(u, v) = (u + t19 v)
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for some constant tx and for all u e R, v e Nl9 Since G is torsion free and
abelian, G is free. Hence, if G has rank 1, we can choose σλ to be a generator
of G, and the theorem is proved. Otherwise, 3 σ2 e G such that {σ19 σ2} is a
subgroup of G with rank 2. Since G is abelian, Crit fa) is invariant under the
action of σ2 on M, and so σ2 is an isometry of Crit fa). Let a = inf {d(x, σ2x): Λ:
β Crit fa)}. We claim that 3 z € Crit ((JO such that d{z, σ2z) = α. To see this

let xw be any sequence in Crit fa) such that d(xn, σ2xn) —> α?. Let F be a com-
pact fundamental domain in M. Then there are sequences yn e F and rw e TΓ^M)
such that jtw = τnyn. Since the yw all lie in a compact set, we may assume that
yn -> y. Since d(yw, τ-Λσ2τnyr) = d(xn, σ2xn) —• a, it follows easily from the
triangle inequality that all of the points τ~V2rw)> lie within a ball of finite
radius centered at y. Consequently, since π^M) acts freely and properly dis-
continuously on M, there is a subsequence of the τn such that τ~ισ2τ is inde-
pendent of the choice of τ in this subsequence. By passing to the subsequence,
we may assume that r~V2rTO is independent of n, and since yn —> y we get
d(y, r~V2rwy) = a for all n. Since an axis of σ1 passes through each point xn9

d(xn, σλxn) = β for all n, where β = inf {d(x, σxx): x e M). Hence d(yn, τ~λσγτny^)
= β, and by repeating the above argument we arrive at a subsequence of the
τn such that τ~xσxτ is independent of the choice of τ in this subsequence. Then
for any member τ of the subsequence we have d(y, τ"ισλτy) = d(τy, σλτy) = j8,
and therefore τy β Crit (α j . But rf(τj, (72̂ )̂ = d(y, τ~ισ2τy) = α:, and so if we
put z = τy, our claim is established. Now Crit (σλ) is totally geodesic and σ2-
invariant, so the geodesic segments which join z to σ2z and σ2z to σ\z both lie
completely in Crit fa). They must be part of the same maximal geodesic since
otherwise the triangle inequality would give d(y, σ2y) < d(z, σ2z) for any point
y in the interior of the segment which joins z to σ2z, and this would contradict
the minimality of a. Therefore an axis of σ2 passes through z, and we have
shown that Crit fa) Π Crit fa) is not empty. Denote this set by Crit fa, σ2),
and let [σ19 σ2] be the subgroup of G generated by σλ and σ2. Crit fa, σ2) is
obviously invariant by [σ19σ2], and since the intersection of two geodesically
convex sets is again geodesically convex, we can conclude that Crit fa, σ2) is
a closed connected totally geodesic submanifold of M possibly with boundary.
For / = 1,2 we can define a vector field Vt on Crit fa, σ2) by setting V^x)
equal to the unit tangent vector at x to the unique geodesic segment joining x
to OiX. Let x be in the interior of Crit fa, σ2), X a unit vector perpendicular to
Vx(x) and tangent to Crit fa, σ2), and c a geodesic segment which lies com-
pletely in Crit fa, σ2) with c(0) = X. Then by Theorem 1 the strip of surface
obtained by considering all axes of σλ which intersect c is totally geodesic, and
therefore by Synge's lemma the vector field Vx is parallel along c. Thus Vλ

(and, by a similar argument, V2) is a parallel vector field on Crit Ox, σ2).
Further, V^x) and V2{x) are linearly independent at each point x of Crit fa, σ2),
since fa, σ2] has rank 2. It now follows, via the de Rham decomposition
theorem, that Crit fa, σ2) is isometric to R2 X N2 where for each v e N2 the
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leaf R2 x {v} is the flat totally geodesic [σ19 σ2] -invariant plane obtained by
taking the union of all axes of σx which intersect the axis of σ2 passing through
the point (0, v). It is clear that [σ19 σ2] acts on each leaf by euclidean trans-
lations. If G has rank 2, we obtain the theorem by choosing σx and σ2 so that
G = [σl9 σ2]. Otherwise, we can continue this argument inductively, and show

k

that if H = {σ19 σ2, , σk} is a subgroup of G of rank k, then P) Crit fa) is
ί = l

nonempty and isometric to Rk x Nk, and further that this subspace is invariant
under the action of H on M, with σ e H mapping (u, v) e Rk X Nk into
(w + u19 v) where &! e 2?fc depends only on σ. Therefore G must be finitely
generated with rank m < dim M. We now obtain the theorem for the case
where G is abelian by choosing {σ19 σ2, , σm) to be a generating set for G

m

and considering Π Crit

Nonabelian solvable subgroups. Once the theorem is established for abelian
subgroups of the fundamental group of a compact manifold without focal points,
the proof of [11, Theorem 1] can be used to show that a solvable subgroup
G of πλ(M) is a Bieberbach group of rank m < dim M. Let A be an abelian
normal subgroup of G such that G/A is finite, and let W = Rm X W* be the
^4-invariant subspace of M constructed above. Let τ be a nontrivial element
of G, σ a nontrivial element of Av and let zeW. Since 4̂ is normal in G, an
axis of τ~ιστ passes through z, and so an axis of σ passes through τz. There-
fore τz e W9 and W is G-invariant. Let Vτ be the vector field on W defined by
setting Vτ(z) equal to the unit tangent vector at z to the geodesic segment
joining z to τz. Now for σ e A, Vσ(z) is tangent to the euclidean leaf Rm which
passes through z, and the set of all such Vσ(z) generates the tangent space to
this leaf. Since A is normal in G and τ*Vσ = Vτa~

x, the action of G on W
preserves the splitting W = Rm X W*. In other words, for τ e G, u e Rm and
v € W*, τ(w, v) = (τλu, τ2v), where τx is an isometry of Rm and τ2 is an iso-
metry of W*. In particular, G acts by isometries on W*, and since .4 acts
trivially on this space, we can regard G/A as a finite group of isometries of
W*. Let N* = {v e W*: φv = vy φ <ε G/A}. By Lemma 3, TV* is nonempty,
and since M is simply connected, N* must contain the geodesic segment join-
ing any two of its points. It is now easy to checked that the subspace N =
Rm x N* of W is a closed connected totally geodesic G-invariant subspace of
M, and that τ(u, v) = (τu, v) for all τ £ G, u € i?m and v e N*. This completes
the proof of the theorem.

Proof of Corollary 1. Let / : Q —> M be such an immersion. Since M has
no conjugate points, there is only one geodesic segment joining each pair of
points in its universal covering space. Therefore there is a unique (not neces-
sarily smoothly) closed geodesic segment in each homotopy class at any point
p of M. Consequently, the induced homomorphism ί: π^Q) —> πλ(M) is in-
jective. Conversely, let G be a solvable subgroup of π^M), and let Rm be any



RIEMANNIAN MANIFOLDS WITHOUT FOCAL POINTS 333

euclidean leaf of the G-invariant subspace of M constructed in Theorem 2.

Then π(Rm), where π: M —> M is the covering map, is an isometrically and

totally geodesically immersed compact euclidean space form with fundamental

group G.

Proof of Corollary 2. If πx{M) is solvable, it is a Bieberbach group. There-

fore there is a riemannian covering of M by a compact manifold whose fun-

damental group is abelian, and it follows from [8, Theorem A] that M is flat.

The converse is immediate.

Added in proof. A recent result of M. S. Goto {Manifolds without focal

points, to appear in J. Differential Geometry) shows that on any manifold

without focal points the length of a nontrivial initially vanishing Jacobi field

is unbounded. Consequently, the results of this paper, except for Theorem 2

and its corollaries, are valid for all manifolds without focal points. The results

of the paper have also been obtained independently by J. H. Eschenburg

{Manifolds with bounded asymptotes, to appear).
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