MANIFOLDS WITH PLANAR GEODESICS

JOHN A. LITTLE

Theorem. Let M be a connected submanifold of some Euclidean space; dimension $M \geq 2$. If every geodesic of M lies in a 2-plane, then M is either an open subset of an n-plane or is congruent to a dilatation of an open subset of S^n , RP^n , CP^n , QP^n or OP^2 . Here S^n is the unit sphere and the others are particular submanifolds to be described.

This paper is a continuation and in a sense a completion of the work of Sing-Long Hong [3]. Lemmas and propositions numbered 2 through 13 are essentially due to Hong. We have included them in some cases in order to clarify his work and in other cases to make our paper self-contained.

Denote by F either the real R, complex C, or quaternion Q, fields or the algebra of Cayley numbers O. On F the Euclidean inner product may be written $f_1 \cdot f_2 = \frac{1}{2} (f_1 \bar{f}_2 + f_2 \bar{f}_1)$, $f_1, f_2 \in F$. Let $M^n(F)$ be the $n \times n$ matrices over F. It is a Euclidean space with inner product $M_1 \cdot M_2 = \frac{1}{2}$ trace $(M_1 \overline{M}_2^t + M_2 \overline{M}_1^t)$ where M_i^t (i = 1, 2) is the transpose of the matrix M_i . The manifolds FP^n listed in the theorem may be defined as follows: $FP^n = \{M \in M^{n+1}(F) | M = \overline{M}^t, M = M^2, \text{ and rank } M = 1\}$. Note that when F is O we only define OP^2 .

When F is R, C or Q it is well known that the manifolds given are embeddings of the abstractly defined projective spaces FP^n . In the case of the Cayley plane OP^2 , one often takes this as the definition. It is also an embedded submanifold of Euclidean space.

Proposition 1. The submanifolds of \mathbb{RP}^n , \mathbb{CP}^n , \mathbb{QP}^n and \mathbb{OP}^2 given above all have planar geodesics.

Proof. Let F be R, C or Q. Any Hermitian symmetric matrix over F can be put in diagonal form by a change of basis. The diagonal form of a rank 1 matrix has a zero everywhere except for one element on the diagonal. Thus any Hermitian symmetric rank 1 matrix over F can be written $(f_i\bar{f}_j)$ for $f_i \in F$, $1 \le i \le n+1$. $\phi \colon F^{n+1} \to M^{n+1}(F)$, defined by $\phi(f_1, \dots, f_{n+1}) = (f_i\bar{f}_j)$, maps F^{n+1} onto the Hermitian symmetric rank 1 matrices. For a matrix $M = (f_i\bar{f}_j)$ a simple computation shows that $M^2 = (\operatorname{trace} M)M$. Hence $M = \phi(f_1, \dots, f_{n+1})$ satisfies $M^2 = M$ if and only if $\operatorname{trace} (f_i\bar{f}_j) = 1$, which is true if and only if (f_1, \dots, f_{n+1}) lies on the unit sphere in F^{n+1} . Thus ϕ maps the unit sphere in F^{n+1} onto the previously defined FP^n . Also $\phi(f_1, \dots, f_{n+1}) = \phi(f_1w, \dots, f_{n+1}w)$ for any unit vector w in F. Hence ϕ maybe defined on the abstract projective space

over F, $\phi \colon FP^n \to M^{n+1}(F)$. ϕ is an embedding of the abstract FP^n onto the embedded submanifolds previously defined. If $A : F^{n+1} \to F^{n+1}$ is a linear transformation such that $A\bar{A}^t = \bar{A}^tA = I$ we say A is orthogonal (for F). We may check that $\varphi(Av) = A\varphi(v)\bar{A}^t$ for $v \in F^{n+1}$. The mapping which sends $M \in M^{n+1}(F)$ to $AM\bar{A}^t$, where A is orthogonal, preserves the inner product in $M^{n+1}(F)$ and so is a Euclidean motion. Now the orthogonal transformations on F^{n+1} give projective transformations on FP^n . Hence the equation $\varphi(Av) = A\varphi(v)\bar{A}^t$ shows that any projective transformation of $\varphi(FP^n)$ arising from an orthogonal transformation of F^{n+1} can be accomplished by a Euclidean motion of $F^{n+1}(F)$. For this reason φ is said to be equivariant. The identity $\sum_{i,j} (f_i\bar{f}_j) \overline{(f_i\bar{f}_j)} = (\sum_i f_i\bar{f}_i)^2$ and the fact that $\sum_i f_i\bar{f}_i = 1$ show that $\varphi(FP^n)$ lies on the unit sphere about the origin in $M^{n+1}(F)$.

A projective line in the embedded manifold is a sphere of dimension 1, 2, or 4 according as F is R, C, or Q. It suffices using the equivariance to check this for just one projective line, say $\varphi(f_1, f_2, 0, \dots, 0)$. Let $M = (m_{ij})$ be the coordinates in $M^{n+1}(F)$. Then $m_{11} = |f_1|^2$, $m_{12} = f_1\bar{f}_2$, $m_{21} = f_2\bar{f}_1$, $m_{22} = |f_2|^2$, the other $m_{ij} = 0$ and $|f_1|^2 + |f_2|^2 = 1$. So within the linear space $m_{ij} = 0$ for i, j not both 1 or 2, the projective line is the intersection of the sphere

$$|m_{12}|^2 + |m_{21}|^2 + |m_{11} - \frac{1}{2}|^2 + |m_{22} - \frac{1}{2}|^2 = \frac{1}{2}$$

with the linear spaces $m_{11} = \overline{m}_{11}$, $m_{22} = \overline{m}_{22}$, $m_{12} = \overline{m}_{21}$, $m_{11} - \frac{1}{2} = -(m_{22} - \frac{1}{2})$. These linear spaces pass through the center of the above sphere so that the projective line is a sphere of radius $1/\sqrt{2}$.

Since any pair of points lie on a projective line, all the projective lines, i.e., real spheres, through a given point cover all of $\varphi(FP^n)$.

Geodesics of $\varphi(FP^n)$ are the great circles of the projective lines (i.e., real spheres). To see this it suffices to show that a line from the center of any sphere to any point on the sphere meets $\varphi(FP^n)$ normally at that point. By equivariance it suffices to show this for one particular point and one particular projective line through that point.

Let the point be $P = \varphi(1, 0, \dots, 0)$. Let $L_i = \varphi(f_1, 0, \dots, 0, f_i, 0, \dots, 0)$, $i = 2, \dots, n+1$, be a set of projective lines through P. Then the tangent planes of L_i (as real spheres) span (and in fact give a direct sum decomposition of) the tangent space of $\varphi(FP^n)$ at P.

Let span L_i be the plane spanned by L_i , and let T be the tangent to the unit sphere about the origin (which contains $\varphi(FP^n)$) at P. It is not difficult to check that $T\cap \operatorname{span} L_i$ are completely orthogonal spaces meeting just at P. Thus the line from P to the center of L_i is normal to $T\cap \operatorname{span} L_i$. (Consider the components along T and normal to T.) But $T\cap \operatorname{span} L_i$ contains the tangent plane to L_i at P. Hence the line from the center of L_i to P meets each L_i orthogonally at P, and so it meets $\varphi(FP^n)$ orthogonally at P.

As for OP^2 , the Cayley plane, consider first the 3×3 Hermitian matrices over O. They are of the form

$$M=ar{M}^{\iota}=egin{pmatrix} m_{11} & m_{12} & m_{13} \ m_{21} & m_{22} & m_{23} \ m_{31} & m_{32} & m_{33} \end{pmatrix}=egin{pmatrix} a_1 & x_3 & ar{x}_2 \ ar{x}_3 & a_2 & x_1 \ x_2 & ar{x}_1 & a_3 \end{pmatrix},$$

where a_i are real and $x_i \in O$. They form a Jordan algebra J with Jordan product $M_1 \cdot M_2 = \frac{1}{2}(M_1M_2 + M_2M_1)$. The group of automorphisms of J is a real form of an exceptional Lie group F_4 . OP^2 is the set of rank 1 matrices of J such that $M^2 = M$. Defining equations are $a_{ij} = x_k \bar{x}_k$, $a_k \bar{x}_k = x_i x_j$, $a_1 + a_2 + a_3 = 1$, for (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2). F_4 acts transitively on pairs of polar points. Points M_1, M_2 are polar if trace $(M_1M_2 + M_2M_1) = 0$. For any point M_1 there is a projective line, the polar line, which is the locus of all points M_2 such that M_1M_2 are a polar pair. J has real dimension 27 and OP^2 real dimension 16. For the above material concerning OP^2 see Freudenthal [1].

Using the defining equations of OP^2 we see that $\sum_{i,j} m_{ij} \overline{m}_{ij} = (a_1 + a_2 + a_3)^2 = 1$. Hence OP^2 lies on the unit sphere in J about the origin.

For $\varphi \in F_4$ we have $\frac{1}{2}(\varphi(M_1)\varphi(M_2) + \varphi(M_2)\varphi(M_1)) = \frac{1}{2}(M_1M_2 + M_2M_1)$ because φ is a Jordan algebra automorphism. Hence it is surely true that trace $(\varphi(M_1)\varphi(M_2) + \varphi(M_2)\varphi(M_1)) = \operatorname{trace}(M_1M_2 + M_2M_1)$. Hence F_4 preserves polarity, i.e., sends polar points into polar points. Now J, as a set of Hermitian symmetric matrices, is a linear subspace of $M^3(O)$. On J the Euclidean inner product may be written $M_1 \cdot M_2 = \frac{1}{2}\operatorname{trace}(M_1M_2 + M_2M_1)$ because $M = \overline{M}^t$ on J. Hence the elements of F_4 are Euclidean motions on J.

Because F_4 is transitive on polar pairs of points, it is also transitive on "pointed" projective lines. Namely, if L_1, L_2 are any pair of projective lines, and $P_1 \in L_1$, $P_2 \in L_2$ are points on those lines, then there is an element of F_4 sending P_1 to P_2 and L_1 to L_2 . Let P_1' be the polar of L_1 , and P_2' the polar of L_2 . Then the required element of F_4 is the element sending the polar pair P_1P_1' to P_2P_2' .

Using the defining equations of OP^2 we see that the polar line of the point $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is the line $m_{11} = a_1$, $m_{12} = x_3$, $m_{21} = \bar{x}_3$, $m_{22} = a_2$, the other $m_{ij} = 0$, and $a_1 + a_2 = 1$, $a_1a_2 = x_3\bar{x}_3$. As before the projective line is the intersection of the sphere

$$|m_{12}|^2 + |m_{21}|^2 + |m_{11} - \frac{1}{2}|^2 + |m_{22} - \frac{1}{2}|^2 = \frac{1}{2}$$

with the linear spaces $m_{11}=\overline{m}_{11},\,m_{22}=\overline{m}_{22},\,m_{12}=\overline{m}_{21},\,m_{11}-\frac{1}{2}=-(m_{22}-\frac{1}{2}).$ Hence the projective line is a real 8-sphere of radius $1/\sqrt{2}$. Thus because F_4 is transitive on projective lines, every projective line is a real 8-sphere of radius $1/\sqrt{2}$.

The geodesics of OP^2 are the great circles of its projective lines. As before

it is enough to show that for any projective line L and any point P on L, the line from P to the center of L, as a real 8-sphere, is a normal line to $\mathbf{O}P^2$ at P. Because F_4 is transitive on "pointed" projective lines, it is enough to show this

when P is the point
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and L is the line $\begin{pmatrix} a_1 & x_3 & 0 \\ \bar{x}_3 & a_2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, where $a_1 + a_2 =$

1, $a_1a_2 = x_3\bar{x}_3$. Let P' be the polar of L and L' the line joining P' and P, and T the tangent to the unit sphere with the origin as center at P. Then it is not difficult to show that $T \cap \operatorname{span} L$ and $T \cap \operatorname{span} L'$ are completely orthogonal spaces meeting just at P. Thus the line from P to the center of L must be orthogonal to the tangent planes of L and L' (as real 8-spheres) at P and hence orthogonal to the tangent plane of OP^2 at P. This completes the proof.

Let $p \in M$, and let γ be a curve on M with tangent vector t at p. Then the component of the second derivative of γ normal to M at p we call $\eta(t)$. (It is well known that this normal component depends only on t and not on the specific parametrized curve γ .) Thus $\eta: T_p \to N_p$ gives a map from the tangent space of M at p to the normal space of M at p, and this map is in fact a quadratic form. We will also use η to denote the associated bilinear form $\eta: T_p \times T_p \to N_p$, (so that $\eta(t,t) = \eta(t)$). We call η (in either sense) the second fundamental form of M at P.

Proposition 2. If all the geodesics through a point of M are planar, then all those geodesics have the same curvature at that point. Here curvature means as a plane curve, not geodesic curvature.

Proof. Let p be the point through which all geodesics are planar. We first show that $\eta(l_1)\cdot \eta(l_1,l_2)=0$ for any orthonormal pair of tangent vectors l_1,l_2 at p. Let $\gamma(s)$ be a geodesic through p in the direction l_1 , s the arc length from p, and let $l_2(s)$ be a parallel (in sense of Levi-Civita) tangent field to M along γ and normal to γ such that $l_2(0)=l_2$. Then $\eta(l_1)=d^2\gamma/ds^2(0)$ and $\eta(l_1,l_2)=dl_2/ds(0)$. Since γ is a geodesic, $d^2\gamma/ds^2$ is normal and therefore $d^2\gamma/ds^2\cdot l_2=0$. If $d^2\gamma/ds^2(0)\neq 0$, then we may write $d^3\gamma/ds^3=a\,d^2\gamma/ds^2+b\,d\gamma/ds$. Thus $d^3\gamma/ds^3\cdot l_2=0$. Now $0=d/ds(d^2\gamma/ds^2\cdot l_2)=d^3\gamma/ds^3\cdot l_2+d^2\gamma/ds^2\cdot dl_2/ds$. Hence $d^2\gamma/ds^2\cdot dl_2/ds=0$ so that $\eta(l_1)\cdot \eta(l_1,l_2)=0$.

As this is true for any orthonormal pair l_1l_2 , we must have

$$\eta(l_1\cos\theta + l_2\sin\theta)\cdot\eta(l_1\cos\theta + l_2\sin\theta, -l_1\sin\theta + l_2\cos\theta) = 0$$

for all θ . From this, using the bilinearity of η and double angle formulas we obtain

$$\frac{1}{2}(\eta(l_1,l_2)^2-\frac{1}{4}(\eta(l_2)-\eta(l_1))^2)\sin 4\theta+\frac{1}{4}(\eta(l_2)^2-\eta(l_1)^2)\sin 2\theta=0$$
.

Hence
$$\eta(l_1, l_2)^2 - \frac{1}{4}(\eta(l_2) - \eta(l_1))^2 = 0$$
 and $\eta(l_1)^2 = \eta(l_2)^2$.

Now using the bilinearity and double angle formulas again

$$\begin{split} (\eta(l_1\cos\theta + l_2\sin\theta))^2 &= (\frac{1}{4}(\eta(l_1) - \eta(l_2))^2 - \eta(l_1, l_2)^2)\cos 4\theta \\ &+ \frac{1}{4}(\eta(l_1)^2 - \eta(l_2)^2)\cos 2\theta + (\frac{1}{2}(\eta(l_1) + \eta(l_2)))^2 \\ &+ \frac{1}{2}(\frac{1}{4}(\eta(l_1) - \eta(l_2))^2 + \eta(l_1, l_2)^2) \;. \end{split}$$

Hence η^2 is constant for all unit vectors in the plane of $l_1 l_2$.

Finally given any unit vectors l_1 , l_2 , not necessarily orthogonal, η^2 is constant on all unit vectors in their plane, so in particular $\eta^2(l_1) = \eta^2(l_2)$.

To finish we note that $|\eta(l_1)|$, l_1 a unit tangent vector, is the curvature of the geodesic through p in the direction l_1 at p.

Proposition 3. Let $\gamma(t)$ be a curve of M, and $\gamma_t(s)$ a 1-parameter family of geodesics of M passing normally through γ , that is, $\gamma_t(0) = \gamma(t)$ and $d\gamma_t/ds(0) \cdot d\gamma/dt(t) = 0$. If the geodesics γ_t are planar, then they all have the same curvature as they cross γ , that is, if s is the arc length then $|d^2\gamma_t/ds^2(0)|$ is constant in t.

Proof. Let $X(s,t)=\gamma_t(s)$ be considered as a surface in M. If we prove the curvature is constant in neighborhoods of points where $d\gamma_t/ds$, $d^2\gamma_t/ds^2$ are independent, that will suffice because the constant will be nonzero. Hence the intervals where $d\gamma_t/ds$, $d^2\gamma_t/ds^2$ are independent will be both open and closed and so all of γ . If there is no point on γ where $d\gamma_t/ds$, $d^2\gamma_t/ds^2$ are independent, then of course the result is true.

Now since X(s,t) is a geodesic parametrized by the arc length for fixed t, we see that X_s is a unit tangent vector, i.e., $X_s \cdot X_s = 1$. By differentiating with respect to t we find that $X_s \cdot X_{st} = 0$. Next $(\partial/\partial s)(X_s \cdot X_t) = X_s \cdot X_{st} + X_{ss} \cdot X_t$. But since X(s,t) is a geodesic for fixed t, X_{ss} is normal so $X_{ss} \cdot X_t = 0$. Thus $(\partial/\partial s)(X_s \cdot X_t) = 0$, and since $X_s \cdot X_t = 0$ for s = 0, it holds for all s, t.

Because the t held constant curves are planar, we may write $X_{sss} = \alpha X_s + \beta X_{ss}$ at a point where X_s, X_{ss} are independent. So using the above we have $X_{sss} \cdot X_t = 0$. Differentiating $X_{ss} \cdot X_t = 0$ with respect to s and using $X_{sss} \cdot X_t = 0$ we obtain $X_{ss} \cdot X_{st} = 0$. Again because $X_{sss} = \alpha X_s + \beta X_{ss}$ we have

$$X_{sss} \cdot X_{st} = \alpha X_s \cdot X_{st} + \beta X_{ss} \cdot X_{st} = 0.$$

Differentiating $X_{ss} \cdot X_{st}$ with respect to s and using $X_{sss} \cdot X_t = 0$ we see that $X_{ss} \cdot X_{sst} = 0$. Hence $(\partial/\partial t)(X_{ss} \cdot X_{ss}) = 2X_{ss} \cdot X_{sst} = 0$. This implies that $(X_{ss}(0,t))^2$, which is the square of the curvature of γ_t at the point where it crosses γ , is constant.

Proposition 4. If all the geodesics of M are planar, then either M^n is contained in an n-plane or else all the geodesics are circles of the same radius.

Proof. Let g(p) be the curvature of any geodesic passing through p at p. By Proposition 2, g is well defined. By Proposition 3, g is constant along curves and hence constant on M. Thus each geodesic has constant curvature and so is either a line or a circle. Furthermore all geodesics have the same curvature, so they are either all lines or all circles of the same radius.

We now suppose that M^n is not contained in an n-plane. We perform a dilatation of the Euclidean space to make all the geodesics circles of radius 1.

We see that for manifolds all of whose geodesics are circles of radius 1, $\eta^2(l_1) = 1$ for any unit tangent vector l_1 . From this, using the fact that $\eta(\lambda l_1) = \lambda^2 \eta(l_1)$ we have $\eta^2(t) = (t^2)^2$ for any tangent vector t.

Lemma 5. $\eta(t)^2 = (t^2)^2$ for any tangent vector t has the following implications. For any orthonormal pair $l_1 l_2$

$$\eta(l_1) \cdot \eta(l_1, l_2) = 0$$
, $\eta(l_1) \cdot \eta(l_2) + 2\eta(l_1, l_2)^2 = 1$,

for any orthonormal triple $l_1l_2l_3$

$$\eta(l_1) \cdot \eta(l_2, l_3) + 2\eta(l_1, l_2) \cdot \eta(l_1, l_3) = 0$$
,

and for any orthonormal quadruple $l_1l_2l_3l_4$

$$\eta(l_1, l_2) \cdot \eta(l_3, l_4) \, + \, \eta(l_1, l_3) \cdot \eta(l_2, l_4) \, + \, \eta(l_1, l_4) \cdot \eta(l_2, l_3) \, = \, 0 \ .$$

Of course the statements can only be made if the dimension is appropriate (i.e., dimension ≥ 4 for quadruple, etc.).

Proof. Let $t = x_1 l_1 + x_2 l_2 + x_3 l_3 + x_4 l_4$, $(x_4 = 0 \text{ for dimension } \le 3, \text{ etc.})$ Then $t^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2$, and $\eta(t) = \sum_{i,j=1}^4 x_i x_j \cdot \eta(l_i, l_j)$ by the bilinearity. Hence

$$\left(\sum_{i,j=1}^4 x_i x_j \eta(l_i l_j)\right)^2 = (x_1^2 + x_2^2 + x_3^2 + x_4^2)^2 .$$

Equating coefficients gives the result.

Lemma 6. Let l_1, l_2 be orthonormal vectors with the property that $\eta(l_1) \cdot \eta(l_2, l_3) = 0$ for any unit vector l_3 normal to l_1 and l_2 . Then $\eta(l_1) \cdot \eta(l_2) = \frac{1}{2}$ or 1. Proof. Since geodesics are circles of radius 1, the manifold may be written

$$X(r, l_1) = X(p) + (1 - \cos r)\eta(l_1) + l_1 \sin r,$$

where r, l_1 are geodesic polar coordinates, and $l_1 \in TS_p^{n-1}$ is a unit tangent vector at p. Let l_2, \dots, l_n be orthonormal vectors, normal to l_1 , defined in some neighborhood on TS_p^{n-1} .

$$\begin{split} \eta_{l_i}(l_1) &= \frac{d}{d\theta} \eta(l_1 \cos \theta + l_i \sin \theta)|_{\theta=0} \\ &= \frac{d}{d\theta} ((\cos^2 \theta) \eta(l_1) + 2 (\cos \theta \sin \theta) \eta(l_1, l_i) + (\sin^2 \theta) \eta(l_i))|_{\theta=0} \\ &= 2 \eta(l_1, l_i) \qquad \text{for } i = 2, \cdots, n \; . \end{split}$$

$$\begin{split} \eta_{l_2 l_2}(l_1) &= \frac{d^2}{d\theta^2} \eta(l_1 \cos \theta + l_2 \sin \theta) |_{\theta = 0} \\ &= \frac{d^2}{d\theta^2} ((\cos^2 \theta) \eta(l_1) + 2(\cos \theta \sin \theta) \eta(l_1, l_2) + (\sin^2 \theta) \eta(l_2)) |_{\theta = 0} \\ &= 2(\eta(l_2) - \eta(l_1)) \; . \end{split}$$

Hence

$$\begin{split} X_{l_i}(r,l_1) &= (1-\cos r)\eta_{l_i}(l_1) + l_{1l_i}\sin r \\ &= 2(1-\cos r)\eta(l_1,l_i) + l_i\sin r , \\ X_{l_2l_2}(r,l_1) &= (1-\cos r)\eta_{l_2l_2}(l_1) + l_{1l_2l_2}\sin r \\ &= 2(1-\cos r)(\eta(l_2) - \eta(l_1)) - l_1\sin r , \\ X_r(r,l_1) &= (\sin r)\eta(l_1) + l_1\cos r . \end{split}$$

 $X_{l_i}\cdot X_r=0$ for $i=2,\cdots,n$ because $\eta(l_1)\cdot \eta(l_1,l_i)=0$ by Lemma 5. So $X_{l_2l_2}\cdot X_{l_i}=4(1-\cos r)^2\eta(l_1,l_i)\cdot (\eta(l_2)-\eta(l_1)),\ i=2,\cdots,n$. By Lemma 5, $\eta(l_1)\cdot \eta(l_1,l_i)=0$ for $i=2,\cdots,n$ and $\eta(l_1,l_2)\cdot \eta(l_2)=0$. Thus, if $\eta(l_2)\cdot \eta(l_1,l_i)=0$ for $i=3,\cdots,n$ we have $X_{l_2l_2}\cdot X_{l_i}=0$. Since the conclusion of the lemma is symmetric in l_1 and l_2 , we may interchange the roles of l_1 and l_2 throughout the proof. We then require that $\eta(l_1)\cdot \eta(l_2,l_i)=0$ for $i=3,\cdots,n$, which is the hypothesis. Hence $X_{l_2l_2}\cdot X_{l_i}=0$.

$$X_{l_2 l_2} \cdot X_r = 2(1 - \cos r)(\sin r)\eta(l_1) \cdot (\eta(l_2) - \eta(l_1)) - \sin r \cos r.$$

Also $X_r \cdot X_r = 1$ because r is the arc length. Hence $X_{l_2 l_2}^N = X_{l_2 l_2} - (X_{l_2 l_2} \cdot X_r) X_r$. (N means normal component.) Now $\eta(t)^2 = (t^2)^2$ for any tangent vector t. When $t = X_{l_2}(r, l_1)$ we see that $\eta(t) = X_{l_2 l_2}^N$. Thus $(X_{l_2 l_2}^N)^2 - (X_{l_2}^2)^2 = 0$. But $X_{l_2 l_2}^N = X_{l_2 l_2} - (X_{l_2 l_2} \cdot X_r) X_r$, which implies $(X_{l_2 l_2}^N)^2 = X_{l_2 l_2}^2 - (X_{l_2 l_2} \cdot X_r)^2$. From above computations

$$\begin{split} X_{l_2 l_2}^2 &= 4 (1 - \cos r)^2 (\eta(l_2) - \eta(l_1))^2 + \sin^2 r \;, \\ X_{l_2}^2 &= 4 (1 - \cos r)^2 \eta(l_1, l_2)^2 + \sin^2 r \;. \end{split}$$

From Lemma 5, $\eta(l_1) \cdot \eta(l_2) + 2\eta(l_1, l_2)^2 = 1$ so

$$X_{l_2}^2 = 2(1 - \cos r)^2 (1 - \eta(l_1) \cdot \eta(l_2)) + \sin^2 r.$$

Thus

$$\begin{split} 0 &= X_{l_2 l_2}^2 - (X_{l_2 l_2} \cdot X_r)^2 - (X_{l_2}^2)^2 \\ &= 4(1 - \cos r)^2 (\eta(l_2) - \eta(l_1))^2 + \sin^2 r \\ &- (2(1 - \cos r) \sin r (\eta(l_2) \cdot \eta(l_1) - 1) - \sin r \cos r)^2 \\ &- (2(1 - \cos r)^2 (1 - \eta(l_1) \cdot \eta(l_2)) + \sin^2 r)^2 \;. \end{split}$$

This after some simplification gives

$$0 = 4(1 - \cos r)^{3}(1 - \eta(l_{1}) \cdot \eta(l_{2}))(2\eta(l_{1}) \cdot \eta(l_{2}) - 1),$$

which must hold for all r. This concludes the proof.

For any unit tangent vector l_1 let $\alpha(l_1) = \{t \in T_p | \eta(t/|t|) = \eta(l_1) \text{ or } t = 0\}.$

Proposition 7. $\alpha(l_1)$ is a linear subspace of T_p .

Proof. Suppose l_2 is a unit vector such that $l_1 \wedge l_2 \neq 0$. Let l_3 be a unit vector in the plane of l_1l_2 and normal to l_1 . We may write $l_2 = al_1 + bl_3$, $a^2 + b^2 = 1$, $b \neq 0$. Then

$$\eta(l_2) = a^2 \eta(l_1) + 2ab \eta(l_1, l_3) + b^2 \eta(l_3) .$$

By Lemma 5, $\eta(l_1) \cdot \eta(l_1, l_3) = 0$ so $\eta(l_1) \cdot \eta(l_2) = a^2 + b^2 \eta(l_1) \cdot \eta(l_3)$. Because $a^2 + b^2 = 1$, $b \neq 0$ we see that $\eta(l_1) \cdot \eta(l_2) = 1$ if and only if $\eta(l_1) \cdot \eta(l_3) = 1$. Hence $l_2 \in \alpha(l_1)$ if and only if $l_3 \in \alpha(l_1)$. Thus, if any tangent vector $t \in \alpha(l_1)$ then span $(t, l_1) \subset \alpha(l_1)$. Hence it suffices to show that the vectors in $\alpha(l_1)$, which are orthogonal to l_1 , are a linear subspace of T_p .

So suppose l_2 , $l_3 \in \alpha(l_1)$ are unit vectors and $l_2 \cdot l_1 = l_3 \cdot l_1 = 0$. Since l_2 , $l_3 \in \alpha(l_1)$, we have $\eta(l_2) \cdot \eta(l_1) = \eta(l_3) \cdot \eta(l_1) = 1$ and therefore $\eta(l_2, l_1) = \eta(l_3, l_1) = 0$ by Lemma 5. Thus $\eta(al_2 + bl_3, l_1) = a\eta(l_2, l_1) + b\eta(l_3, l_1) = 0$. Let $l_4 = (al_2 + bl_3)/|al_2 + bl_3|$. Then $\eta(l_4, l_1) = 0$ and l_1l_4 are an orthonormal pair. Thus by Lemma 5, $\eta(l_4) \cdot \eta(l_1) = 1$ so that $l_4 \in \alpha(l_1)$. Hence $al_2 + bl_3 \in \alpha(l_1)$ for any a, b, which concludes the proof.

Remark. If X is a point of M and l_1 a unit tangent vector, then the geodesic through X in the direction l_1 is centered at $X + \eta(l_1)$. Thus all geodesics through X tangent to $\alpha(l_1)$ have the same center. Thus all geodesics through a point, which have the same center, fill out a sphere.

Let $S(l_1)$ be the unit vectors in $\alpha(l_1)^{\perp}$, the orthogonal complement of $\alpha(l_1)$. Let $f_{l_1}: S(l_1) \to \mathbf{R}$ be defined by $f_{l_1}(l) = \eta(l_1) \cdot \eta(l)$.

Lemma 8. Let l_2 be a critical point of f_{l_1} . Then

$$\eta(l_1)\cdot\eta(l_2,l_3)=0$$

for all unit vectors l_3 orthogonal to l_1 and l_2 .

Proof. Suppose $l_3 \in \alpha(l_1)$, l_3 a unit vector. Then $\eta(l_1) = \eta(l_3)$, which implies $\eta(l_1) \cdot \eta(l_3) = 1$. Using Lemma 5 we have $\eta(l_1) \cdot \eta(l_3) + 2\eta(l_1, l_3)^2 = 1$ so that $\eta(l_1, l_3) = 0$. Again by Lemma 5, $\eta(l_1) \cdot \eta(l_2 \cdot l_3) + 2\eta(l_1, l_2) \cdot \eta(l_1, l_3) = 0$. Hence $\eta(l_1) \cdot \eta(l_2, l_3) = 0$.

Suppose $l_3 \in \alpha(l_1)^{\perp}$. Then the derivative of $f_{l_1}(l_2 \cos \theta + l_3 \sin \theta)$ with respect to θ at $\theta = 0$ is 0 because l_2 is a critical point of f_{l_1} .

$$\begin{split} f_{l_1}(l_2\cos\theta + l_3\sin\theta) &= \eta(l_1) \cdot \eta(l_2\cos\theta + l_3\sin\theta) \\ &= \eta(l_1) \cdot ((\cos^2\theta)\eta(l_2) + 2(\cos\theta\sin\theta)\eta(l_2,l_3) + (\sin^2\theta)\eta(l_3)) \;. \end{split}$$

So $0 = df_{l_1}/d\theta |_{\theta=0} = 2\eta(l_1) \cdot \eta(l_2, l_3)$.

Now in general any l_3 may be written $l_3 = l_4 \cos \theta + l_5 \sin \theta$ for $l_4 \in \alpha(l_1)$, $l_5 \in \alpha(l_1)^{\perp}$. Since $l_1 \cdot l_3 = 0$ and $l_1 \cdot l_5 = 0$, we must have $l_1 \cdot l_4 = 0$. Since $l_2 \cdot l_3 = l_2 \cdot l_4 = 0$, we must have $l_2 \cdot l_5 = 0$. Thus by the previous cases $\eta(l_1) \cdot \eta(l_2, l_i) = 0$, i = 4, 5. Hence

$$\eta(l_1) \cdot \eta(l_2, l_3) = (\cos \theta) \eta(l_1) \cdot \eta(l_2, l_4) + (\sin \theta) \eta(l_1) \cdot \eta(l_2, l_5) = 0.$$

Lemma 9. Let l_1, l_2 be orthonormal tangent vectors. Then $l_2 \in \alpha(l_1)^{\perp}$ if and only if $\eta(l_1) \cdot \eta(l_2) = \frac{1}{2}$.

Proof. Suppose $l_2 \in \alpha(l_1)^{\perp}$. If l_2 is a critical point of f_{l_1} , then Lemma 6 and Lemma 8 show that $\eta(l_1) \cdot \eta(l_2) = \frac{1}{2}$ or 1. But $\eta(l_1) \cdot \eta(l_2) = 1$ implies $\eta(l_1) = \eta(l_2)$ and so $l_2 \in \alpha(l_1)$. So the assumption $l_2 \in \alpha(l_1)^{\perp}$ shows that $\eta(l_1) \cdot \eta(l_2) = \frac{1}{2}$. But the critical points of f_{l_1} include both its maximum and minimum points. Hence $\eta(l_1) \cdot \eta(l) = f_{l_1}(l) = \frac{1}{2}$ for all l in the domain of f_{l_1} which is all unit vectors in $\alpha(l_1)^{\perp}$.

Now suppose $\eta(l_1) \cdot \eta(l_2) = \frac{1}{2}$. Write $l_2 = al_3 + bl_4$, where $l_3 \in \alpha(l_1)$, $l_4 \in \alpha(l_1)^{\perp}$ and $a^2 + b^2 = 1$. Then $\eta(l_1) = \eta(l_3)$ and by the first part $\eta(l_1) \cdot \eta(l_4) = \frac{1}{2}$. Hence

$$\frac{1}{2} = \eta(l_1) \cdot \eta(l_2) = \eta(l_3) \cdot \eta(l_2) = \eta(l_3) \cdot \eta(al_3 + bl_4)
= \eta(l_3) \cdot (a^2 \eta(l_3) + 2ab\eta(l_3, l_4) + b^2 \eta(l_4)) = a^2 + \frac{1}{2}b^2.$$

Here $\eta(l_3) \cdot \eta(l_3, l_4) = 0$ by Lemma 5. So $\frac{1}{2} = a^2 + \frac{1}{2}b^2$ and $a^2 + b^2 = 1$, which give a = 0. Thus $l_2 \in \alpha(l_1)^{\perp}$.

We call a linear subspace L of T_p closed with respect to α if $l \in L$ implies $\alpha(l) \subset L$ for any unit vector l.

Lemma 10. If L is closed with respect to α , then L^{\perp} , the orthogonal complement, is also closed with respect to α .

Proof. Take $l_1 ∈ L^{\perp}$ and $l_2 ∈ α(l_1)$. Then we may write $l_2 = al_3 + bl_4$, $l_3 ∈ L$, $l_4 ∈ L^{\perp}$, $a^2 + b^2 = 1$. $η(l_1) = η(l_2) = a^2η(l_3) + 2abη(l_3, l_4) + b^2η(l_4)$. Since L is closed with respect to α, we have $α(l_3) ⊂ L$, so that $l_1, l_4 ∈ α(l_3)^{\perp}$. By Lemma 9, $η(l_1) · η(l_3) = η(l_4) · η(l_3) = \frac{1}{2}$. Thus $\frac{1}{2} = η(l_1) · η(l_3) = a^2 + 2abη(l_3) · η(l_3) · η(l_3) + \frac{1}{2}b^2$. By Lemma 5, $η(l_3) · η(l_3, l_4) = 0$. So $\frac{1}{2} = a^2 + \frac{1}{2}b^2$, which together with $a^2 + b^2 = 1$ gives a = 0. Hence $l_2 ∈ L^{\perp}$.

Lemma 11. Assume all the orthonormal vectors below satisfy $l_i \in \alpha(l_j)$ or $l_i \in \alpha(l_j)^{\perp}$ for any $i, j, i \neq j$. Then: for any unit vector

$$\eta(l_1)^2 = 1$$
;

for any orthonormal pair

$$\eta(l_1) \cdot \eta(l_2) = \begin{cases} 1 & \text{if } l_1 \in \alpha(l_2) \ , \\ \frac{1}{2} & \text{if } l_1 \in \alpha(l_2)^{\perp} \ , \end{cases}$$

for any orthonormal triple

$$\eta(l_1) \cdot \eta(l_2, l_3) = 0$$
, $\eta(l_1, l_2) \cdot \eta(l_1, l_3) = 0$;

for any orthonormal quadruple

$$\eta(l_1, l_2) \cdot \eta(l_3, l_4) = 0$$

if $l_1 \in \alpha(l_2)$ or $l_3 \in (l_4)$, or if $l_i \in \alpha(l_j)^{\perp}$ for all $i, j, i \neq j$.

Notice that we have not covered all cases for an orthonormal quadruple of vectors.

Proof. $\eta(l_1)^2=1$ if l_1 is a unit vector because geodesics are circles of radius 1. Let l_1, l_2 be orthonormal vectors satisfying the conditions of the lemma. If $l_1 \in \alpha(l_2)$, then $\eta(l_1)=\eta(l_2)$ so $\eta(l_1)\cdot\eta(l_2)=\eta(l_1)^2=1$. If $l_1\in\alpha(l_2)^\perp$, then by Lemma 9, $\eta(l_1)\cdot\eta(l_2)=\frac{1}{2}$. Since $\eta(l_1)\cdot\eta(l_2)+2\eta(l_1,l_2)^2=1$ by Lemma 5, $\eta(l_1,l_2)^2=0$ or $\frac{1}{4}$ according as $l_1\in\alpha(l_2)$ or $l_1\in\alpha(l_2)^\perp$. Also $\eta(l_1)\cdot\eta(l_1,l_2)=0$ by Lemma 5.

Let $l_1l_2l_3$ be an orthonormal triple satisfying the conditions of the lemma. Assume $l_2 \in \alpha(l_1)^{\perp}$. From Lemma 9 we see that $\eta(l_1) \cdot \eta(l) = \frac{1}{2}$ for all unit vectors $l \in \alpha(l_1)^{\perp}$. Hence the function f_{l_1} of Lemma 8 is constant so that every point of its domain is a critical point. But since $l_2 \in \alpha(l_1)^{\perp}$, l_2 is in the domain of f_{l_1} and hence a critical point of f_{l_1} . Thus by Lemma 8, $\eta(l_1) \cdot \eta(l_2, l_3) = 0$. Next assume $l_2 \in \alpha(l_1)$. Use Lemma 5 to write

$$\eta(l_1) \cdot \eta(l_2, l_3) + 2\eta(l_1, l_2) \cdot \eta(l_1, l_3) = 0.$$

From above if $l_2 \in \alpha(l_1)$ then $\eta(l_1, l_2) = 0$ so $\eta(l_1) \cdot \eta(l_2, l_3) = 0$. Now $\eta(l_1, l_2) \cdot \eta(l_1, l_3) = 0$ for any triple satisfying the conditions of the lemma by Lemma 5 and the fact that $\eta(l_1) \cdot \eta(l_2, l_3) = 0$.

Next let $l_1l_2l_3l_4$ be an orthonormal quadruple such that $l_i \in \alpha(l_j)^{\perp}$ for $1 \leq i$, $j \leq 4$. In particular l_1l_2 are in $\alpha(l_3)^{\perp}$ and $\alpha(l_4)^{\perp}$. Hence $(l_1+l_2)/\sqrt{2}$ is in $\alpha(l_3)^{\perp}$ and $\alpha(l_4)^{\perp}$. Using Lemma 9 we see that $l_i \in \alpha(l_j)^{\perp}$ if and only if $l_j \in \alpha(l_i)^{\perp}$. Thus $(l_1+l_2)/\sqrt{2}$, l_3 , l_4 are an orthonormal triple satisfying the conditions of this lemma. Hence $\eta((l_1+l_2)/\sqrt{2})\cdot \eta(l_3,l_4)=0$. Also since $l_1l_3l_4$ and $l_2l_3l_4$ are triples satisfying the conditions of this lemma, we have $\eta(l_1)\cdot \eta(l_3,l_4)=0$ and $\eta(l_2)\cdot \eta(l_3\cdot l_4)=0$. So

$$0 = \eta((l_1 + l_2)/\sqrt{2}) \cdot \eta(l_3, l_4)$$

= $(\frac{1}{2}\eta(l_1) + \eta(l_1, l_2) + \frac{1}{2}\eta(l_2)) \cdot \eta(l_3, l_4) = \eta(l_1, l_2) \cdot \eta(l_3, l_4)$.

If $l_1 \in \alpha(l_2)$ then $\eta(l_1, l_2) = 0$, and if $l_3 \in \alpha(l_4)$ then $\eta(l_3, l_4) = 0$. Hence in these cases also $\eta(l_1, l_2) \cdot \eta(l_3, l_4) = 0$. This finishes the proof of Lemma 11.

Lemma 12. If L_1 and L_2 are completely orthogonal subspaces of T_p both closed with respect to α , then their linear span is also closed with respect to α .

Proof. Let $l \in \text{span}(L_1, L_2)$ be a unit vector, and let l' be a unit vector in $\alpha(l)$, $l' \in \alpha(l)$. Then we may write

$$l' = al_1 + bl_2 + cl_3 ,$$

where $l_1 \in L_1$, $l_2 \in L_2$ and $l_3 \in \text{span}(L_1, L_2)^{\perp}$ are unit vectors and $a^2 + b^2 + c^2 = 1$.

$$\eta(l') = \eta(al_1 + bl_2 + cl_3)
= a^2 \eta(l_1) + b^2 \eta(l_2) + c^2 \eta(l_3) + 2ab \eta(l_1, l_2)
+ 2ac \eta(l_1, l_3) + 2bc \eta(l_2, l_3) .$$

Since L_1 and L_2 are closed with respect to α , $l_3 \in \alpha(l_1)^{\perp}$ and $l_3 \in \alpha(l_2)^{\perp}$. Thus $\eta(l_3) \cdot \eta(l_1) = \frac{1}{2}$ and $\eta(l_3) \cdot \eta(l_2) = \frac{1}{2}$. So

$$\eta(l') \cdot \eta(l_3) = \frac{1}{2}a^2 + \frac{1}{2}b^2 + c^2 = \frac{1}{2} + \frac{1}{2}c^2$$

On the other hand $l \in \text{span}(L_1, L_2)$ can be written $l = rl_4 + sl_5$ where $l_4 \in L_1$, $l_5 \in L_2$ are unit vectors and $r^2 + s^2 = 1$. Thus

$$\eta(l) = \eta(rl_4 + sl_5) = r^2\eta(l_4) + 2rs\eta(l_4, l_5) + s^2\eta(l_5) \ .$$

Again because L_1 and L_2 are closed with respect to α , we must have $l_3 \in \alpha(l_4)^{\perp}$ and $l_3 \in \alpha(l_5)^{\perp}$. Hence

$$\eta(l) \cdot \eta(l_3) = \frac{1}{2}r^2 + \frac{1}{2}s^2 = \frac{1}{2}$$
.

But $\eta(l)=\eta(l')$ so $\frac{1}{2}=\frac{1}{2}+\frac{1}{2}c^2$ giving c=0 and $l'=al_1+bl_2$. Thus $l'\in \text{span}(L_1,L_2)$ which concludes the lemma.

Proposition 13. For any unit tangent vector l_1 at any point p, the dimension of $\alpha(l_1)$ is the same. We call it a.

Proof. Let $a(l_1)$ be the dimension of $\alpha(l_1)$. We will show that

$$\eta(l_1) \cdot H = \frac{1}{2} + \frac{1}{2}a(l_1)/n$$
,

where H is the mean curvature vector. The result follows from this because $\eta(l_1) \cdot H$ is continuous on the unit tangent bundle and $a(l_1)$ is integer-valued.

Choose orthonormal tangent vectors l_1, \dots, l_n so that l_1, \dots, l_a span $\alpha(l_1)$. Then $H = (1/n) \sum_{i=1}^n \eta(l_i)$ so that

$$\eta(l_1) \cdot H = \frac{1}{n} \sum_{i=1}^{n} \eta(l_1) \cdot \eta(l_i) + \frac{1}{n} \sum_{i=q+1}^{n} \eta(l_1) \cdot \eta(l_i).$$

Now $\eta(l_1) = \eta(l_i)$ for $i = 1, \dots, a$ so $\eta(l_1) \cdot \eta(l_i) = 1$. For $i = a + 1, \dots, n$, $l_i \in \alpha(l_1)^{\perp}$ we have $\eta(l_1) \cdot \eta(l_i) = \frac{1}{2}$ by Lemma 9. Hence

$$\eta(l_1)\cdot H=\frac{a}{n}+\frac{n-a}{2n},$$

which concludes the proof.

The quadratic form $\eta: T_p \to N_p$ sends a linear space of dimension a, say $\alpha(l)$, into a line, the line through $\eta(l)$. Hence the rank of the Jacobian of η must fall by a-1 at every point of T_p .

Now if L is a linear space of T_p closed with respect to α , then the restriction $\eta: L \to N_p$ of η to L also sends linear spaces of dimension a into lines. Hence the Jacobian of the restriction of η to a linear space closed with respect to α falls by a-1 in rank.

According to Lemma 10 if $l_2 \in \alpha(l_1)^{\perp}$ is a unit vector then $\alpha(l_2) \subset \alpha(l_1)^{\perp}$. We choose vectors $l_i \in \bigcap_{j=1}^{i-1} \alpha(l_j)^{\perp}$ by induction. This decomposes T_p into a direct sum

$$T_p = \alpha(l_1) \oplus \cdots \oplus \alpha(l_k)$$
,

where of course $\alpha(l_i) \subset \alpha(l_i)^{\perp}$, $i \neq j$.

Since the dimension of $\alpha(l_i)$ is a, we see that ak = n so that a divides n.

Let us choose an orthonormal basis $l_1 \cdots l_n$ of T_p in agreement with the direct sum decomposition of T_p given above, namely, each basis vector is in one of the summands. Such a basis has the property that either $l_i \in \alpha(l_j)$ or $l_i \in \alpha(l_j)^{\perp}$ for any $i, j, i \neq j$. Any basis with this property we call a basis which respects α .

Lemma 14. Suppose a=2. Let L_1 , L_2 be completely orthogonal α -closed subspaces of dimension 2. Let l_1l_2 be a basis of L_1 and l_3l_4 of L_2 , both orthonormal. Then in this basis or the one obtained by reflection in L_2 (sending $l_3 \rightarrow -l_3$) we have

$$\eta(l_1, l_3) = \eta(l_2, l_4), \qquad \eta(l_1, l_4) = -\eta(l_2, l_3).$$

Furthermore, if L_1, L_2, L_3 are completely orthogonal α -closed subspaces of dimension 2, and l_1l_2, l_3l_4, l_5l_6 are respective orthonomal bases such that the above relations hold on $L_1 \oplus L_2$ and $L_1 \oplus L_3$, then they also hold on $L_2 \oplus L_3$.

Proof. By Lemma 12 and the comment after Proposition 13 the restriction of the Jacobian of η to $L_1 \oplus L_2$ falls in rank by 1. The restriction is

$$\eta(x_1l_1 + \cdots + x_4l_4) = \sum_{i,j=1}^4 x_i x_j \eta(l_i, l_j)$$
,

with derivatives

$$\eta_{x_i} = 2 \sum_{j=1}^{4} x_j \eta(l_i, l_j) ,$$

evaluated at $l_1 + l_3$, which are

$$\eta_{x_1} = 2(\eta(l_1) + \eta(l_1, l_3)), \qquad \eta_{x_2} = 2\eta(l_2, l_3),
\eta_{x_3} = 2(\eta(l_3, l_1) + \eta(l_3)), \qquad \eta_{x_4} = 2\eta(l_4, l_1).$$

Because the Jacobian falls in rank by 1, these four vectors must be dependent. But $\eta(l_1)$, $\eta(l_3)$ are orthogonal to $\eta(l_i, l_j)$, $i \neq j$, and independent. Hence we must have $\eta(l_2, l_3)$ and $\eta(l_4, l_1)$ linearly dependent. Since they are the same length, we must have $\eta(l_2, l_3) = \pm \eta(l_1, l_4)$. We now reverse the sign of l_3 if necessary to achieve $\eta(l_2, l_3) = -\eta(l_1, l_4)$. Use Lemma 5 to write

$$\eta(l_1, l_2) \cdot \eta(l_3, l_4) + \eta(l_1, l_3) \cdot \eta(l_2, l_4) + \eta(l_1, l_4) \cdot \eta(l_2, l_3) = 0.$$

Because $\eta(l_1, l_2) = 0$ we have

$$\eta(l_1, l_3) \cdot \eta(l_2, l_4) = -\eta(l_1, l_4) \cdot \eta(l_2, l_3)$$
.

But $\eta(l_i, l_j)$, i=1 or 2, j=3 or 4, are all the same length and $\eta(l_2, l_3)=-\eta(l_1, l_4)$. Hence $\eta(l_1, l_3)=\eta(l_2, l_4)$ and the first part of the lemma is completed. Now this same argument applied to $L_1 \oplus L_3$ shows that (perhaps after sending l_5 to $-l_5$)

$$\eta(l_1, l_5) = \eta(l_2, l_6)$$
, $\eta(l_1, l_6) = -\eta(l_2, l_5)$.

When we apply this argument to $L_2 \oplus L_3$ we find that

$$\eta(l_3, l_5) = \lambda \eta(l_4, l_6), \qquad \eta(l_3, l_6) = -\lambda \eta(l_4, l_5),$$

where $\lambda = \pm 1$. We must show that $\lambda = +1$.

On $L_1 \oplus L_2 \oplus L_3$ the Jacobian of η falls in rank by 1. We evaluate the derivatives η_{x_i} , $i=1,\cdots,6$, at the point $l_1+l_3+l_5$. η_{x_1} , η_{x_3} , η_{x_5} have respectively the term $\eta(l_1)$, $\eta(l_3)$, $\eta(l_5)$. Because these vectors are independent (they are of length 1 and the inner product of any two is $\frac{1}{2}$) and orthogonal to $\eta(l_i,l_j)$, $i\neq j$, we see, much as before, that η_{x_2} , η_{x_4} , η_{x_6} given by

$$\begin{split} \eta_{x_2} &= 2(\eta(l_2,l_3) + \eta(l_2,l_5)) \;, \\ \eta_{x_4} &= 2(\eta(l_4,l_1) + \eta(l_4,l_5)) \;, \\ \eta_{x_6} &= 2(\eta(l_6,l_1) + \eta(l_6,l_3)) \;, \end{split}$$

must be dependent. We use the above relations and those on $L_1 \oplus L_2$ to obtain

$$\eta_{x_2} = -2(\eta(l_1, l_4) + \eta(l_1, l_6)) ,
\eta_{x_4} = 2(\eta(l_1, l_4) - \lambda \eta(l_3, l_6)) ,$$

$$\eta_{x_6} = 2(\eta(l_1, l_6) + \eta(l_3, l_6))$$

Hence

$$0 = \eta_{x_2} \wedge \eta_{x_4} \wedge \eta_{x_8} = -8(1-\lambda)\eta(l_1, l_4) \wedge \eta(l_3, l_6) \wedge \eta(l_1, l_6) .$$

Using Lemma 11 and the fact that $\eta(l_3, l_6) = -\lambda \eta(l_4, l_5)$, $\lambda = \pm 1$ we see that $\eta(l_1, l_4)$, $\eta(l_3, l_6)$ and $\eta(l_1, l_6)$ are orthogonal. Because they are nonzero, they are independent and so $\lambda = +1$.

Remark. Quaternion multiplication on a basis $l_1l_2l_3l_4$ may be defined by $-l_jl_i=l_il_j=l_k$ for i,j,k any cyclic permutation of 2, 3, 4 and $l_il_1=l_1l_i=l_i$ for all i and $l_i^2=-l_1$ for i=2,3,4. The conjugation is defined by $\bar{l}_1=l_1,\bar{l}_i=-l_i,i=2,3,4$.

Lemma 15. Suppose a=4. Let L_1, L_2 be two completely orthogonal subspaces of dimension 4, both closed with respect to α . Let $l_1l_2l_3l_4$ be an orthonormal basis of L_1 . Then for either this basis or its reflection (sending $l_1 \rightarrow -l_1$) there is an orthonormal basis $l_5l_6l_7l_8$ of L_2 such that $\eta(l_i, l_{j+4}) = \pm \eta(l_k, l_{m+4})$ if and only if $l_i\bar{l}_j = \pm l_k\bar{l}_m$ in the quaternion multiplication. Here both signs are taken as positive or both negative and the indices range from 1 to 4.

Proof. Let $l_1l_2l_3l_4$ be the given basis of L_1 , and $l_5l_6l_7l_8$ any orthonormal basis of L_2 . We may restrict η to $L_1 \oplus L_2$ and the Jacobian must still fall in rank by 3. The restriction is

$$\eta(x_1l_1 + \cdots + x_8l_8) = \sum_{i,j=1}^8 x_ix_j\eta(l_i, l_j)$$
.

We now compute the Jacobian of η at $l_k + l_5$, $1 \le k \le 4$. Since

$$\eta_{x_i} = 2 \sum_{j=1}^{8} x_j \eta(l_i, l_j),$$

we have, at $l_k + l_5$,

$$\begin{split} &\eta_{x_k} = 2\eta(l_k) \, + \, 2\eta(l_k,l_{\flat}) \, ; \quad \eta_{x_i} = 2\eta(l_i,l_{\flat}) \; , \qquad 1 \leq i \leq 4, \; i \neq k \, ; \\ &\eta_{x_{\flat}} = 2\eta(l_{\flat}) \, + \, 2\eta(l_k,l_{\flat}) \, ; \quad \eta_{x_i} = 2\eta(l_k,l_{i}) \; , \qquad i = 6,7,8 \; . \end{split}$$

Now $\eta(l_k) = \eta(l_1)$ and $\eta(l_5)$ are independent and both are orthogonal to $\eta(l_i, l_5)$, $i \leq 4$, and $\eta(l_k, l_i)$, $i \geq 5$. The reason for this and for many similar such statements in this proof is Lemma 11. Also $\eta(l_i, l_5)$, $i \leq 4$, are orthogonal to each other and nonzero. $\eta(l_k, l_i)$, $i \geq 5$, are orthogonal to each other and nonzero. Since the rank is 5, the sets $\{\eta(l_i, l_5), i \leq 4\}$ and $\{\eta(l_k, l_i), i \geq 5\}$ span the same space, k = 1, 2, 3, 4.

In order to render the remainder of the proof easier to follow we write out the relations to be proved in the following tableau:

$$\begin{split} & \eta(l_1, l_5) = \eta(l_2, l_6) & = \eta(l_3, l_7) & = \eta(l_4, l_8) \;, \\ & \eta(l_1, l_6) = -\eta(l_2, l_5) = \eta(l_3, l_8) & = -\eta(l_4, l_7) \;, \\ & \eta(l_1, l_7) = -\eta(l_2, l_8) = -\eta(l_3, l_5) = \eta(l_4, l_6) \;, \\ & \eta(l_1, l_8) = \eta(l_2, l_7) & = -\eta(l_3, l_6) = -\eta(l_4, l_5) \;. \end{split}$$

We will not keep track of the signs but come back to them at the end.

Now $\eta(l_1, l_5)$, $\eta(l_1, l_6)$, $\eta(l_1, l_7)$, $\eta(l_1, l_8)$ are orthogonal and $\eta(l_2, l_5)$, $\eta(l_2, l_6)$, $\eta(l_2, l_7)$, $\eta(l_2, l_8)$ are orthogonal and span the same space as the first set. Also $\eta(l_1, l_5)$ is orthogonal to $\eta(l_2, l_5)$. We leave $l_1 l_2 l_3 l_4 l_5$ alone and rotate $l_6 l_7 l_8$ among themselves in order to make $\eta(l_2, l_6)$ coincide with $\eta(l_1, l_5)$. We are still free to rotate l_7 , l_8 among themselves. From Lemma 5 we obtain

$$\eta(l_1, l_5) \cdot \eta(l_2, l_6) + \eta(l_1, l_2) \cdot \eta(l_5, l_6) + \eta(l_1, l_6) \cdot \eta(l_2, l_5) = 0$$
.

Since $\eta(l_1, l_2) = 0$ and $\eta(l_1, l_5) \cdot \eta(l_2, l_6) = \eta(l_1, l_5)^2 = \frac{1}{4}$, we have $\eta(l_1, l_6) \cdot \eta(l_2, l_5) = -\frac{1}{4}$. So $\eta(l_2, l_5) = \pm \eta(l_1, l_6)$. Thus $\eta(l_2, l_7), \eta(l_2, l_8)$ being orthogonal to $\eta(l_2, l_5)$ and $\eta(l_2, l_6)$ are also orthogonal to $\eta(l_1, l_6), \eta(l_1, l_6)$ and hence in the same plane as $\eta(l_1, l_7), \eta(l_1, l_8)$. Since $\eta(l_1, l_8)$ and $\eta(l_2, l_7)$ are both orthogonal to $\eta(l_1, l_7), \eta(l_1, l_8) = \pm \eta(l_2, l_7)$. This leaves $\eta(l_1, l_7) = \pm \eta(l_2, l_8)$. We have done the first two columns of the tableau except for signs. We are still free to rotate $l_7 l_8$ in their plane.

Now $\eta(l_3, l_7)$ is orthogonal to $\eta(l_2, l_7)$, hence to $\eta(l_1, l_8)$, and also to $\eta(l_1, l_7)$. Hence it lies in the plane of $\eta(l_1, l_5)$ and $\eta(l_1, l_6)$. Also $\eta(l_3, l_8)$ is orthogonal to $\eta(l_2, l_8)$, hence to $\eta(l_1, l_7)$, and also to $\eta(l_1, l_8)$. Hence it lies in the plane of $\eta(l_1, l_5)$ and $\eta(l_1, l_6)$.

We now perform a rotation of l_7l_8 which leaves $\eta(l_1, l_5)$ and $\eta(l_1, l_6)$ alone and rotates $\eta(l_3, l_7)$, $\eta(l_3, l_8)$ so that $\eta(l_3, l_7)$ coincides with $\eta(l_1, l_5)$. We then have $\eta(l_3, l_8)$ and $\eta(l_1, l_6)$ in the same direction.

Now $\eta(l_4, l_8)$ is orthogonal to $\eta(l_3, l_8)$ and so to $\eta(l_1, l_6)$. It is orthogonal to $\eta(l_2, l_8)$ and so to $\eta(l_1, l_7)$. Since it is also orthogonal to $\eta(l_1, l_8)$, it must lie along $\eta(l_1, l_5)$. Also $\eta(l_4, l_7)$ is orthogonal to $\eta(l_3, l_7)$ and so to $\eta(l_1, l_5)$. It is orthogonal to $\eta(l_2, l_7)$, so to $\eta(l_1, l_8)$, and of course to $\eta(l_1, l_7)$. Hence $\eta(l_4, l_7)$ must lie along $\eta(l_1, l_8)$. We have now completed the first two rows of the tableau as well.

From Lemma 5 we know

$$\eta(l_1, l_8) \cdot \eta(l_3, l_5) + \eta(l_1, l_3) \cdot \eta(l_5, l_8) + \eta(l_1, l_5) \cdot \eta(l_3, l_8) = 0$$
.

Hence using what we have proved so far we have $\eta(l_1, l_8) \cdot \eta(l_3, l_5) = 0$. So $\eta(l_3, l_5)$ is orthogonal to $\eta(l_1, l_8)$, to $\eta(l_2, l_5)$ and so to $\eta(l_1, l_6)$, and to $\eta(l_1, l_5)$. Hence $\eta(l_3, l_5)$ must lie along $\eta(l_1, l_7)$. The remainder now fills in easily to obtain the entire set of relations up to signs.

To compute the signs we use

$$\eta(l_i, l_i) \cdot \eta(l_k, l_m) + \eta(l_i, l_k) \cdot \eta(l_i, l_m) + \eta(l_i, l_m) \cdot \eta(l_i, l_k) = 0$$

from Lemma 5. The choices of i, j, k, m which are not already zero are 1256, 1278, 3478, 3456, 1357, 1368, 2468, 2457, 1458, 2358, 1467, 2367. In addition we may reflect sending $l_1 \rightarrow -l_1$ or $l_i \rightarrow -l_i$, i=5,6,7,8, if we wish. In this way we obtain a basis which satisfies the relations of the lemma exactly.

Lemma 16. Suppose a=4. Let L_1, L_2, L_3 be completely orthogonal subspaces of dimension 4, closed with respect to α . Any basis of $L_1 \oplus L_2$ which respects α in which the relations of Lemma 15 are satisfied may be extended to a basis of $L_1 \oplus L_2 \oplus L_3$ so that the relations are satisfied on $L_1 \oplus L_3$. Furthermore in any basis of $L_1 \oplus L_2 \oplus L_3$ which respects α , if the relations of Lemma 15 are satisfied on $L_1 \oplus L_2$ and $L_1 \oplus L_3$ they are also satisfied on $L_2 \oplus L_3$.

Proof. Let l_9 be a unit vector in L_3 , $l_1l_2l_3l_4$ a basis for L_1 , and $l_5l_6l_7l_8$ a basis for L_2 chosen so that the relations of Lemma 15 are satisfied on $L_1 \oplus L_2$. Since l_5 , $l_9 \in L_1^{\perp}$, $l_5 \cos \theta + l_9 \sin \theta \in L_1^{\perp}$. Let $L(\theta) = \alpha(l_5 \cos \theta + l_9 \sin \theta)$. By Lemma 10, $L(\theta)$ and L_1 are completely orthogonal. By Lemma 12, $L(\theta) \oplus L_1$ is closed with respect to α . By applying Lemma 15 to $L(\theta) \oplus L_1$, we see that the basis provided by the lemma is continuous in θ . Hence no reflection in L_1 can occur. Thus we may find a basis $l_9l_{10}l_{11}l_{12}$ so that on $L_1 \oplus L_3$ the relations of Lemma 15 are satisfied in the basis $l_1l_2l_3l_4l_9l_{10}l_{11}l_{12}$.

Now we show that in the basis l_5, \dots, l_{12} the relations of Lemma 15 are satisfied on $L_1 \oplus L_3$. First, as in the proof of Lemma 15, by computing the rank at $l_5 + l_9$, we see that

$$egin{aligned} \eta(l_{5},l_{9}) & \wedge \eta(l_{5},l_{10}) \wedge \eta(l_{5},l_{11}) \wedge \eta(l_{5},l_{12}) \ &= \lambda \eta(l_{5},l_{9}) \wedge \eta(l_{6},l_{9}) \wedge \eta(l_{7},l_{9}) \wedge \eta(l_{8},l_{9}) \end{aligned}$$

for $\lambda \neq 0$. Then on $L_1 \oplus L_2 \oplus L_3$ the rank of the Jacobian of η falls by 3. Thus among η_{x_i} , $i=1,\cdots,12$, any ten are dependent. We evaluate the Jacobian at $l_1+l_5+tl_9$, $t\neq 0$. The vectors $\eta_{x_1},\eta_{x_5},\eta_{x_9}$ are independent from each other and from all the other η_{x_i} . This is because they have, respectively, terms $\eta(l_1)$, $\eta(l_5),\eta(l_9)$ and η_{x_i} , $i\neq 1,5,9$, are sums of terms of the form $\eta(l_i,l_j)$, $i\neq j$. Since $\eta(l_1),\eta(l_5),\eta(l_9)$ are orthogonal to all these vectors, they must be independent of them. Furthermore, $\eta(l_1),\eta(l_5),\eta(l_9)$ are all unit vectors and the inner product of any two is $\frac{1}{2}$. Since no such triple of vectors can be linearly dependent, among η_{x_2} , η_{x_3} , η_{x_4} , η_{x_6} , η_{x_7} , η_{x_8} , $\eta_{x_{10}}$, $\eta_{x_{11}}$, $\eta_{x_{12}}$ any seven are dependent.

Let $\Lambda(t)=\eta_{x_2}\wedge\eta_{x_3}\wedge\eta_{x_4}\wedge\eta_{x_6}\wedge\eta_{x_7}\wedge\eta_{x_8}$ evaluated at $l_1+l_5+tl_9$ and let

$$arLambda_{10} = arLambda(t) \wedge \eta_{x_{10}} \; , \quad arLambda_{11} = arLambda(t) \wedge \eta_{x_{11}} \; , \quad arLambda_{12} = arLambda(t) \wedge \eta_{x_{12}} \; .$$

Then Λ_{10} , Λ_{11} , Λ_{12} must be identically zero. Ostensibly they are of sixth degree in t; however by computing the rank at $l_5 + l_9$ we see that the highest degree term is 0 because $\eta(l_5, l_{10})$, $\eta(l_5, l_{11})$, $\eta(l_5, l_{12})$ lie in the span of $\eta(l_6, l_9)$, $\eta(l_7, l_9)$, $\eta(l_8, l_9)$ as was stated above. Then compute the 5th degree terms of Λ_{10} , Λ_{11} , Λ_{12}

using the fact that the relations of Lemma 15 are satisfied on $L_1 \oplus L_2$ and $L_1 \oplus L_3$. By equating these terms to zero we find that

$$\eta(l_5, l_{10}) = -\eta(l_6, l_9), \quad \eta(l_5, l_{11}) = -\eta(l_7, l_9), \quad \eta(l_5, l_{12}) = -\eta(l_8, l_9).$$

This does not give us quite enough information, so we now evaluate the Jacobian at $l_1 + l_5 + t l_{10}$ and proceed as before. This time we may disregard $\eta_{x_1}, \eta_{x_5}, \eta_{x_{10}}$ and of the remaining, any seven must be dependent. We choose $\eta_{x_2} \wedge \eta_{x_3} \wedge \eta_{x_4} \wedge \eta_{x_5} \wedge \eta_{x_7} \wedge \eta_{x_8} \wedge \eta_{x_{11}}$. We compute the fifth degree term in t and equate it to 0 obtaining

$$\eta(l_5, l_{11}) = \eta(l_8, l_{10})$$
.

We next use

$$\eta(l_i, l_j) \cdot \eta(l_k, l_m) + \eta(l_i, l_k) \cdot \eta(l_j, l_m) + \eta(l_i, l_m) \cdot \eta(l_j, l_k) = 0$$

from Lemma 5 and the fact that if $\eta(l_i, l_j) \cdot \eta(l_k, l_m) = \pm \frac{1}{4}$ then $\eta(l_i, l_j) = \pm \eta(l_k, l_m)$, respectively because $|\eta(l_i, l_j)| = |\eta(l_k, l_m)| = \frac{1}{2}$. This enables us to complete the proof that all relations of Lemma 15 are satisfied on $L_2 \oplus L_3$.

As an example of the computations we show that $\eta(l_5, l_{10}) = -\eta(l_6, l_9)$. Taking into account that the relations of Lemma 15 are satisfied on $L_1 \oplus L_2$ and $L_1 \oplus L_3$ we obtain η_{x_i} evaluated at $l_1 + l_5 + tl_9$:

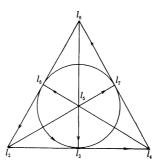
$$\begin{split} \eta_{x_2} &= -\eta(l_1, l_6) - t \eta(l_1, l_{10}) \;, \qquad \eta_{x_3} = -\eta(l_1, l_7) - t \eta(l_1, l_{11}) \;, \\ \eta_{x_4} &= -\eta(l_1, l_8) - t \eta(l_1, l_{12}) \;, \qquad \eta_{x_6} = \eta(l_1, l_6) \,+ \, t \eta(l_6, l_9) \;, \\ \eta_{x_7} &= \eta(l_1, l_7) \,+ \, t \eta(l_7, l_9) \;, \qquad \eta_{x_8} = \eta(l_1, l_8) \,+ \, t \eta(l_8, l_9) \;, \\ \eta_{x_{10}} &= \eta(l_1, l_{10}) \,+ \, \eta(l_5, l_{10}) \;. \end{split}$$

We write $\eta(l_5, l_{10}) = a\eta(l_6, l_9) + b\eta(l_7, l_9) + c\eta(l_8, l_9)$. The t^5 term of the wedge of the above seven vectors after simplification is

$$\eta(l_1, l_{10}) \wedge \eta(l_1, l_{11}) \wedge \eta(l_1, l_{12}) \wedge \eta(l_6, l_9) \wedge \eta(l_7, l_9) \wedge \eta(l_8, l_9) \\
\wedge \left[\eta(l_1, l_6) + a \eta(l_1, l_6) + b \eta(l_1, l_7) + c \eta(l_1, l_8) \right].$$

Now $\eta(l_1, l_6)$, $\eta(l_1, l_7)$, $\eta(l_1, l_8)$, $\eta(l_1, l_{10})$, $\eta(l_1, l_{11})$, $\eta(l_1, l_{12})$, $\eta(l_6, l_9)$, $\eta(l_7, l_9)$, $\eta(l_8, l_9)$ are all nonzero and orthogonal to each other. Use Lemma 5 and the relations of Lemma 15 satisfied on $L_1 \oplus L_2$ and $L_1 \oplus L_3$ to show orthogonality. Since this must be zero we see that 1 + a = b = c = 0 and $\eta(l_5, l_{10}) = -\eta(l_6, l_9)$.

Remark. Cayley multiplication on a basis l_1, \dots, l_8 of E^8 may be defined as follows. Let l_2, \dots, l_8 be the seven points of a projective plane over Z_2 with cyclic ordering of each line given as in the figure:



Define $-l_j l_i = l_i l_j = l_k$ in case $l_i l_j l_k$ has the given cyclic ordering. Define further $l_i^2 = -l_1$, $i \neq 1$, and $l_i l_i = l_i l_1 = l_i$ for all i. For this definition see Freudenthal [1]. Conjugation is defined by $\bar{l}_1 = l_1$, $\bar{l}_i = -l_i$, $i = 2, \dots, 8$.

Lemma 17. Suppose a=8. Let L_1, L_2 be two completely orthogonal subspaces of dimension 8 closed with respect to α . Then there are bases $l_1 \cdots l_8$ of L_1 and $l_9 \cdots l_{16}$ of L_2 so that $\eta(l_i, l_{j+8}) = \pm \eta(l_k, l_{m+8})$ if and only if in the Cayley product given above $l_i \bar{l}_j = \pm l_k \bar{l}_m$. Here both signs are taken as positive or both as negative, and the indicies range from 1 to 8.

Proof. Let $l_1 \cdots l_8$ be an orthonormal basis of L_1 and $l_9 \cdots l_{16}$ of L_2 . By Lemma 12, η falls in rank by 7 on $L_1 \oplus L_2$. Now

$$\eta_{x_i} = 2 \sum_{j=1}^{16} x_j \eta(l_i, l_j)$$
.

Fix $k \le 8$ and $m \ge 9$. At $l_k + l_m$

$$\begin{split} & \eta_{x_i} = 2\eta(l_i, l_m) \;, \qquad i \leq 8, \, i \neq k \;, \\ & \eta_{x_i} = 2\eta(l_i, l_k) \;, \qquad i \geq 9, \, i \neq m \;, \\ & \eta_{x_k} = 2\eta(l_k) \,+\, 2\eta(l_k, l_m) \;, \\ & \eta_{x_m} = 2\eta(l_m) \,+\, 2\eta(l_k, l_m) \;. \end{split}$$

Now $\eta(l_k)$, $\eta(l_m)$ are orthogonal to η_{x_i} , $i \neq k, m$, and to $\eta(l_k, l_m)$. They are unit vectors and independent since $\eta(l_k) \cdot \eta(l_m) = \frac{1}{2}$. Thus η_{x_k}, η_{x_m} are not dependent on η_{x_i} , $i \neq k, m$, and therefore any 8 of η_{x_i} , $i \neq k, m$, must be dependent. But $\eta(l_i, l_m)$ for $i \leq 8$, $i \neq k$, are orthogonal and hence independent. Thus $\eta(l_i, l_k)$ for $i \geq 9$, $i \neq m$ depends on $\{\eta(l_i, l_m), i \leq 8, i \neq k\}$. Similarly $\eta(l_i, l_m), i \leq 8, i \neq k$, depends on $\{\eta(l_i, l_k), i \geq 9, i \neq m\}$. Hence the sets

$$\{\eta(l_i, l_m), i \leq 8\}$$
 and $\{\eta(l_i, l_k), i \geq 9\}$,

for any $m \ge 9$, $k \le 8$, all span the same space.

We write out the relations to be proved to make it easier to follow the arguments. Because the list is large we abbreviate $\eta(l_i, l_j)$ by i, j and $-\eta(l_i, l_j)$ by

-i, j. We also leave out the equal signs because we understand that the vectors in each row are equal. The tableau of relation is:

 $\{\eta(l_2,l_i),\ i=9,\cdots,16\}$ and $\{\eta(l_1,l_i),\ i=9,\cdots,16\}$ are each sets of orthogonal vectors spanning the same space. Furthermore $\eta(l_1,l_9)$ and $\eta(l_2,l_9)$ are orthogonal. As l_{10},\cdots,l_{16} rotate among themselves, $\eta(l_2,l_{10})$ is carried into any vector orthogonal to $\eta(l_2,l_9)$. In particular we may rotate so that $\eta(l_1,l_9)=\eta(l_2,l_{10})$. Then using Lemma 5 we find $\eta(l_1,l_{10})=-\eta(l_2,l_9)$. During this proof each use of Lemma 5 refers to the formula:

$$\eta(l_i, l_i) \cdot \eta(l_k, l_m) + \eta(l_i, l_k) \cdot \eta(l_i, l_m) + \eta(l_i, l_m) \cdot \eta(l_i, l_k) = 0$$

where we use i, j, k, m = 1, 2, 9, 10.

Now $\{\eta(l_1,l_i),\ i=11,\cdots,16\}$ and $\{\eta(l_2,l_i),\ i=11,\cdots,16\}$ are orthogonal sets spanning the same space. Furthermore $\eta(l_1,l_{11})$ and $\eta(l_2,l_{11})$ are orthogonal. Hence by rotating l_{12},\cdots,l_{16} among themselves we may achieve $\eta(l_1,l_{11})=-\eta(l_2,l_{12})$. By Lemma 5, $\eta(l_1,l_{12})=\eta(l_2,l_{11})$. Again $\{\eta(l_1,l_i),\ i=13,\cdots,16\}$ and $\{\eta(l_2,l_i)\ i=13,\cdots,16\}$ are orthogonal vectors spanning the same space. Since $\eta(l_1,l_{13})$ and $\eta(l_2,l_{13})$ are orthogonal, rotating l_{14},l_{15},l_{16} among themselves we achieve $\eta(l_1,l_{13})=-\eta(l_2,l_{15})$. By Lemma 5, $\eta(l_1,l_{15})=\eta(l_2,l_{13})$. This leaves $\{\eta(l_1,l_{14}),\ \eta(l_1,l_{16})\}$ and $\{\eta(l_2,l_{14}),\ \eta(l_2,l_{16})\}$ spanning the same plane. But $\eta(l_1,l_{14})$ and $\eta(l_2,l_{14})$ are orthogonal. Hence by changing l_{16} to $-l_{16}$ if necessary we may achieve $\eta(l_1,l_{14})=\eta(l_2,l_{16})$ and by Lemma 5, $\eta(l_1,l_{16})=-\eta(l_2,l_{14})$. Thus the first two columns of the tableau are equal.

Since $\eta(l_1, l_{12}) = \eta(l_2, l_{11})$ we see that $\{\eta(l_i, l_{11}), i = 3, \cdots, 8\}$ and $\{\eta(l_1, l_i), i = 9, 10, 13, 14, 15, 16\}$ span the same space. We rotate l_3, \cdots, l_8 among themselves to make $\eta(l_1, l_9) = \eta(l_3, l_{11})$. Apply Lemma 5 to $\eta(l_1, l_9) = \eta(l_2, l_{10}) = \eta(l_3, l_{11})$ to see that $\eta(l_2, l_{11}) = -\eta(l_3, l_{10})$ and $\eta(l_1, l_{11}) = -\eta(l_3, l_9)$. Hence $-\eta(l_2, l_{12}) = -\eta(l_3, l_9)$ and Lemma 5 applied to this gives $-\eta(l_2, l_9) = \eta(l_3, l_{12})$.

The conditions $\eta(l_1, l_{14}) = \eta(l_2, l_{16})$ and $\eta(l_1, l_{16}) = -\eta(l_2, l_{14})$ are preserved by a rotation of l_{14} , l_{16} in their plane. Hence we may yet rotate l_{14} , l_{16} and not change any of the relations so far established. But $\eta(l_3, l_{14})$ and $\eta(l_3, l_{16})$ lie in the plane spanned by $\eta(l_1, l_{13})$ and $\eta(l_1, l_{15})$. Thus performing a rotation of l_{14} , l_{16} we may

achieve $\eta(l_1, l_{13}) = \eta(l_3, l_{16})$. By Lemma 5, $\eta(l_1, l_{16}) = -\eta(l_3, l_{13})$. So the first three columns of the tableau are equal.

Now $\{\eta(l_i, l_{12}), i = 4, \cdots, 8\}$ and $\{\eta(l_1, l_i), i = 9, 13, 14, 15, 16\}$ both span the same space. Hence by rotating l_4, l_5, \cdots, l_8 we may achieve $\eta(l_1, l_9) = \eta(l_4, l_{12})$. Using the fact that $\eta(l_1, l_9) = \eta(l_2, l_{10}) = \eta(l_3, l_{11}) = \eta(l_4, l_{12})$ and applying Lemma 5 we see that $\eta(l_1, l_{12}) = -\eta(l_4, l_9), -\eta(l_2, l_{12}) = \eta(l_4, l_{10})$ and $\eta(l_3, l_{12}) = -\eta(l_4, l_{11})$. But now $\{\eta(l_4, l_i), i = 13, \cdots, 16\}$ and $\{\eta(l_1, l_i), i = 13, \cdots, 16\}$ span the same space. Because $\eta(l_1, l_{15}) = -\eta(l_3, l_{14})$ and $\eta(l_1, l_{16}) = -\eta(l_2, l_{14})$ we see that $\eta(l_4, l_{14})$ is orthogonal to $\eta(l_1, l_i), i = 14, 15, 16$. Hence $\eta(l_1, l_{13}) = -\lambda \eta(l_4, l_{14}), \lambda = \pm 1$. By Lemma 5 because $\eta(l_1, l_{13}) = -\eta(l_2, l_{15}) = \eta(l_3, l_{16}) = -\lambda \eta(l_4, l_{14})$ we see that $\eta(l_1, l_{14}) = \lambda \eta(l_4, l_{13}), -\eta(l_2, l_{14}) = \lambda \eta(l_4, l_{15})$ and $-\eta(l_3, l_{14}) = -\lambda \eta(l_4, l_{16})$. Hence except for the determination of λ , the first four columns of the tableau are equal.

Now $\{\eta(l_i, l_{13}), i = 5, 6, 7, 8\}$ lies in the span of $\{\eta(l_1, l_i), i = 9, 10, 11, 12\}$. By rotating among $l_5l_6l_7l_8$ we may assume that $\eta(l_1, l_9) = \eta(l_5, l_{13})$. We apply Lemma 5 successively to a list of relations each of which is true by an application of Lemma 5 to an earlier member of the list and use of the fact that the first four columns in the tableau are equal, except for λ . The list is $\eta(l_1, l_9) = \eta(l_5, l_{13})$; $\eta(l_3, l_{11}) = \eta(l_5, l_{13})$; $-\eta(l_2, l_{14}) = \eta(l_5, l_{11})$; $-\eta(l_4, l_9) = \eta(l_5, l_{14})$; $\eta(l_1, l_{12}) = \eta(l_5, l_{14})$; $-\eta(l_3, l_{10}) = \eta(l_5, l_{14})$; $\eta(l_1, l_{16}) = \eta(l_5, l_{11})$; and $\eta(l_1, l_{15}) = -\eta(l_5, l_{10})$. The result is that $\lambda = +1$ and the first five columns of the tableau are equal.

Now $\{\eta(l_i, l_{14}), i = 6, 7, 8\}$ and $\{\eta(l_1, l_i), i = 9, 10, 11\}$ span the same space. Hence by rotating $l_6l_7l_8$ we may make $\eta(l_1, l_9) = \eta(l_6, l_{14})$. We apply Lemma 5 to the relations of the first row as far as we know them and then to $\eta(l_1, l_{16}) = \eta(l_4, l_{15}) = \eta(l_6, l_{10})$ to conclude that the first six columns of the tableau are equal.

Again $\{\eta(l_i, l_{15}), i = 7, 8\}$ and $\{\eta(l_1, l_9), \eta(l_1, l_{12})\}$ span the same plane. Thus rotating l_7l_8 we may achieve $\eta(l_1, l_9) = \eta(l_7, l_{15})$. Applying Lemma 5 to the relations of the first row as far as we know them and then to $\eta(l_1, l_{16}) = -\eta(l_7, l_{12})$ we conclude that the first seven columns of the tableau are equal.

By sending l_8 to $-l_8$ if necessary we see that $\eta(l_1, l_9) = \eta(l_8, l_{16})$. Applying Lemma 5 to the relations of the first row finishes the proof.

Proof of the theorem. We may assume by Proposition 4 that all the geodesics of M are circles of radius 1. The unit tangent sphere TS_p^{n-1} is fibred by great spheres of dimensions a-1. Namely the point $l \in TS_p^{n-1}$ lies on the great sphere $\alpha(l) \cap TS_p^{n-1}$. By Proposition 13 they all have the same dimension a-1. But it is a theorem of topology that an (n-1)-sphere can be fibred by spheres of dimension a-1 only if a=1,2,4,8, or n. For a=1,2 or a=1,2 o

If a=n then M is a unit n-sphere because all the geodesics through a point have the same center. (See the remark after Proposition 7.) For the other cases where $\alpha=1,2,4$ or 8 we use Lemma 11 and Lemmas 14–17 to find a basis l_i of T_p such that $\eta(l_i,l_j)\cdot \eta(l_k,l_m)$ are known for all i,j,k,m.

In the cases where a = 1, 2, 4 or 8 let V be the given embeddings of $\mathbb{R}P^n$, $\mathbb{C}P^n$, $\mathbb{C}P^n$, $\mathbb{C}P^n$, $\mathbb{C}P^n$, $\mathbb{C}P^n$ respectively. Perform a dilatation of the Euclidean space so that the geodesics of V have radius 1, and assume V and M lie in the same Euclidean space.

Now V is a manifold with planar geodesics. Hence by our previous calculations we may find a basis l_{iV} of T_pV such that the quantities $\eta_V(l_{iV},l_{jV})\cdot\eta_V(l_{kV},l_{mV})$ have the calculated values.

Perform a translation to make M and V coincide at one point. Then perform a rotation about that point to make the tangent planes of M and V coincide at that one point. Let l_i be the basis in the common tangent plane in which $\eta(l_i, l_j) \cdot \eta(l_k, l_m)$ were computed, and l_{iV} the corresponding basis for V. Rotate and reflect about the common point until l_i coincides with l_{iV} .

Now if two sets of vectors have identical inner products (for corresponding pairs), we may perform a rotation and reflection about the origin to make them agree. Using this fact we may perform a rotation and reflection in the normal space, leaving the common tangent plane pointwise fixed to make $\eta_V(l_i, l_j) = \eta(l_i, l_j)$. This implies that $\eta = \eta_V$ at that point. Hence the geodesics of each manifold through that point coincide so that the manifolds coincide locally. By analytic continuation M is either an open subset of an n-plane or congruent to a dilatation of an open subset of a manifold in the list.

References

- [1] H. Freudenthal, Sur ebenen Oktaven Geometrie, Nederl. Akad. Wetensch. Proc. Ser. A, 15 (1953) 195-200.
- [2] —, Oktaven, Ausnahme Gruppen und Oktaven Geometrie, Math. Inst. Univ. Utrecht, 1951.
- [3] S. Hong, Isometric immersions of manifolds with plane geodesics into Euclidean space, J. Differential Geometry 8 (1973) 259-278.

RR#1, Box 307 Milan, Ohio 44846