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TOTALLY REAL SUBMANIFOLDS IN
A KAEHLER MANIFOLD

MASAHIRO KON

1. Introduction

Let M be a Kaehler manifold of dimension 2(n -f p), p > 0, and M an n-
dimensional Riemannian manifold. Let / be the complex structure of M. We
call M a totally real submanifold of M if M admits an isometric immersion into
M such that

J(Tm(M)) C Tm(My ,

where Tm(M) denotes the tangent space of M at m, and Tm(M)L the normal
space at m. Denote by Mn+P(c) a 2{n + /?)-dimensional Kaehler manifold of
constant holomorphic sectional curvature c. Let h be the second fundamental
form of M in M, and denote by S the square of the length of the second
fundamental form h. When p = 0, Chen-Ogiue [2] proved

Theorem A. Let M be an n-dimensional compact totally real minimal
submanifold immersed in Mn(c). If

S< n ( n + υ cc ,
4(2n - 1)

then M is totally geodesic.
Theorem B. Let M be an n-dimensional totally real minimal submanifold

immersed in Mn(c). If the sectional curvature of M is constant, then M is
either totally geodesic or has nonpositive sectional curvature. Moreover, if the
second fundamental form of the immersiom is parallel, then M is totally geo-
desic or flat.

Theorem B is a generalization of Houh's theorem [4]. Moreover, Ludden-
Okumura-Yano [5] studied an n-dimensional totally real minimal submanifold
M of CPn satisfying

(1.1) S= n { n + l )

2n-l '

where CPn denotes an rc-dimensional complex projective space of constant
holomorphic sectional curvature 4, and gave an example of totally real
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minimal surface immersed in CP\ which just satisfies the above condition (1.1).
Let Sι be a unit sphere of dimension 1. Then S1 X S1 is a compact minimal
totally real surface immersed in CP2 with S = 2. Concerning this Ludden-
Okumura-Yano [5] proved

Theorem C. // M is a compact n-dimensional (n > 1) minimal totally real
submanifold of CPn satisfying (1.1), then n = 2 and M = S1 X S1.

The purpose of this paper is to study a compact n-dimensional totally real
submanifold M immersed in CPn satisfying certain condition on the second
fundamental form h of M, which reduces to condition (1.1) if Mjs minimally
immersed in CPn. Our method is based on that of Braidi-Hsiung [1].

2. Local formulas

Let M be a Kaehler manifold of dimension 2n, and M an n-dimensional
totally real submanifold immersed in M. Choose a local field of orthonormal
frames e19 , e2n in M such that, restricted to M, the vectors e19 - , en are
tangent to M (and hence the remaining vectors en+19 - - ,e2n are normal to
M). Unless stated otherwise, we shall make use of the following convention
on the ranges of indices:

1 < A, B, C, . < In , 1 <i,j,k, -.. <n , n + 1 < a, 6, c, < In ,

and when a letter appears in any term as a subscript and a superscript, it is
understood that this letter is summed over its range. Denote Jet by et* for
/ = 1, , n, and let w1, , w2n be the field of dual frames with respect to
the frame field of M chosen above. Then the structure equations of M are

(2.1) dwA = -wiΛ wB ,

(2.2) wi + wB

A = 0 , w) = w% , < = wΓ ,

dw| = - ^ Λ wg + Φi , Φi = \KA

BCΏwc A wD ,

K + KBDC — 0

Restriction of these frames to M gives

(2.4) wa = 0 .

Since 0 = dwα = — wf Λ w*, by Cartan's lemma we may write

(2.5) wf = hfjw* , hfj == ΛJ4 ,

and from (2.2) it follows that

(2.6) h% = h£.

Using these formulas we obtain
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The forms (w* ) define the Riemannian connection of M. We call
the second fundamental form of the immersion. Sometimes the second fun-
damental form is denoted by its components hfj. (Σihίiea)/n is called the
mean curvature normal, and an immersion is said to be minimal if its mean
curvature normal vanishes identically, i.e., if Σ* Mi — 0 f°r an* a- Define the
covariant derivative hfjk of hfj9 h^j1cl and the Laplacian Ahfj of the second
fundamental form hfj respectively by

(2.10) h?jkw
k = dhfj - h^w) - hΐjw\ + hljwϊ ,

(2.11) hϊJMwι = dhfjk - hfjkw\ - hΐlkw
ιj - h^wk + h\jkw

a

h ,

(2.12) Ahfj= Σhfjkk.

If M is locally symmetric, then we have the following equation (Braidi-
Hsiung [1, p. 238]):

V ha Λha V (ha ha Ya ha hb _L A.JCa hb ha

Z J nijnnij — ZJ \nijnkkij — ^ijbnijnkTc ~Γ ^^bkίnjknίj
a,i,j a,ί,j,k

- Σ KA.V»5» - h%h"ik)(AftAJ, - ΛJ,AJ«)

4- ha ha hh hh hahahhhhΛ

3. Integral formulas

In this section we assume that M is a Kaehler manifold of dimension 2n and
constant holomorphic sectional curvature c. Then the curvature tensor of M is
given by

(3.1) KBCD — 4C\^AC^BD oADδBc + JAC^BD JAD*BC ~f~ 2JAB'CD) J

where (5̂ ^ denotes the Kronecker deltas. Let M be an ̂ -dimensional totally
real submanifold immersed in Mn(c). From the condition on the dimensions
of M and M it follows that e^, , en* is a frame for Γ^M)-1. Noticing this
and using (2.6) and (3.1) we can reduce (2.13) to
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(3.2)
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+ Σ
b i j

For each α, let ffo denote the symmetric matrix (hfj). Then (3.2) can be written
as

Σ
a,i,j

(3.3)

a,i,j,k

+ Σ
a,b

%Kuj + Σ ίτ(n +
a

ίb - HtHaY - [Ίτ{HaHb)Y

ΎrHbTτ(HaHbHa)},

a)
2]

where Tr H\ denotes the trace of the matrix H\. (3.3) was obtained by Chen-
Ogiue [2] for a totally real minimal submanifold Mn immersed in Mn(c). Now
set

V ha

ab — Z_ι nij
ij

so that Sab is a symmetric (n X rc)-matrix and can be assumed to be diagonal
for a suitable choice of en+1, , e2n, and S is the square of the length of the
second fundamental form hfj of M. Since Tr A2 = J]tJ (aί3)

2 is independent
of the choice of a frame, for any symmetric A = (aί3) we can rewrite (3.3) as

Σ
(3.4)

a,ij,k

+ Σ

α,δ

a,b

ΐjhiw + \{n + l)cS - Σ SI

- HbHaf - \c

For later development we need the following lemma (see [1] and [3]):
Lemma 1. Let A and B be symmetric (n X ή)-matrίces. Then

-Ύτ{AB - BA)1 <2ΎrA2 Tr B2 ,

and the equality holds for nonzero matrices A and B if and only if A and B
can be transformed simultaneously by an orthogonal matrix into scalar multiples
of A and B respectively, where

A =

0

1

1

0

0

0

0

Γl 0
0

00

Moreover, if Aλ, A2, Az are symmetric (n X ή)-matrices such that

-Ίτ(AaAb - AbAa)
2 = 2 ΎτA\ ΎiA\ , \<a,b<3 , aφb ,

then at least one of the matrices Aa must be zero.
By applying Lemma 1 we obtain
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aHb - HbHaY +ΣSI- 1(«
4

(3.5) < 2 Σ SA + Σ SI - -ί(π + DcS

= f (2 - 1 ) 5 - l ( n
n a>b

which, together with (3.4), implies

(3.6) - Σ. hfjJhϊj < W - ^ Σ k hfMuj ,

where we have put

W=\(2- l ) s - Un + l)c]s + λc Σ (TrHay
(3.7) L\ n) 4 12a

Theorem 1. Let M be an n-dimensional compact oriented totally real sub-
manifold immersed in Mn(c). Then

(3.8) j ^ |V - Σ (Tr Ha)A(Ίτ # j ] * 1 > 0 ,

where *1 denotes the volume element of M.
Proof. First we obtain

f Σ ( ^ *) 2* 1 = - f Σ AiVΛfy* 1 > 0 .
J Λf a,i,j,k J M a,i,j

On the other hand, we have (Braidi-Hsiung [1, p. 241])

ί Σ **V&*,*1 = ί Σ(Tr#α)J(Tr#J*l .
J M a,i,j,k J M a

From these equations and (3.6) follows the inequality

(3.9) f I V - Σ (Tr Ha)Δ(Tr Ha)] * 1 > f 2 (/ι^fc)
2* 1 > 0 ,

which is just (3.8).
As a special case of Theorem 1 we have the following theorem which was

proved essentially by Chen-Ogiue [2].
Theorem 2. Let M be an n-dimensional compact oriented totally real

minimal submanίfold immersed in M(c). Then
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(3.10) ί I Ϊ 2 - —)s- — (n + l)c\s*l > 0 .

4. Main theorems

In this section we assume that M is an π-dimensional compact oriented
totally real submanifold immersed in Mn(c), n > 1, and that M is not totally
geodesic in M but satisfies

(4.1) f \w - Σ (Tr Ha)J(Tr Ha)] * 1 = 0 .

Then (3.9) implies that h}Jk = 0, i.e., the second fundamental form of M is
covariant constant, so that Jhfj = 0, and all terms on both sides of (3.6)
vanish. It follows that inequalities (3.4) and (3.5) imply

(4.2) - Σ(Sa- Sb)
2 = 0 ,

Π a>b

(4.3) -Tτ(HaHb - HbHay = 2 Tr HI Tr HI

for any aφb. Then by Lemma 1 we may assume that Ha = 0 for a = n + 3,
• ., 2n, which shows that Sa = 0 for a = rc + 3, , In. But by (4.2) we
can see that Sa = Sj for any 0, fo. Since M is not totally geodesic, n = 2 and
therefore by using Lemma 1 we can assume that

(4.4) ] , „ . - , [ « J ] , «.„ = „ [ ' _ « ] .

From this it follows that M is a minimal surface immersed in M2(c). Since the
second fundamental form h of M2 is covariant constant, the sectional curvature
of M2 is constant and hence M2 is flat by Theorem B. On the other hand, by
using (2.10) we obtain

(4.5) dhfj = h?tw
ιj + hfjw\ - h\jwi .

Setting a = 3, / = 1, j = 2, we see that dλ = dh\2 = 0, which means that λ
is constant. Similarly, setting a = 4 and / = / = 1, we see that μ is constant.
By (4.2) we get λ2 = //, and since S = \c we have Λ2 + μ2 = \c so that λ2

— \c. Since M is not totally geodesic, we may assume that c > 0 and — Λ =
μ = jVc/2. Then (2.5) and (4.4) imply

M;3 — χw2 , w^ = λw1 , w} = //w1 , wi= —μw2 .

On the other hand, setting a — 3, / = j = 1 in (4.5), we have W4 =
= 2>V2 Hence we obtain the following
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λw2
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λw1
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-λw2

-λw1

0

-2wl

— μw1

μw2

2w\

0
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Theorem 3. Let M be an n-dίmensional compact oriented totally real sub-

manifold immersed in Mn(c), n > 1, such that M is not totally geodesic but

satisfies condition (4.1). Then M is a flat surface minimally immersed in

M\c), and with respect to an adapted dual orthonormal frame field w1, w2, w3,

w\ the connection form (wi) of M2(c), restricted to M, is given by

i 1 Ic
— χ = n = — A / —

Now we take an n-dimensional complex projective space CPn of constant
holomorphic sectional curvature 4 as an ambient space. Then Theorem 3 im-
plies

Theorem 4. Let M be an n-dίmensional compact oriented totally real sub-
manifold immersed in CPn, n > 1, such that M is not totally geodesic but
satisfies condition (4.1). Then n — 2 and M = S1 X S\
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