J. DIFFERENTIAL GEOMETRY 11 (1976) 251-257

TOTALLY REAL SUBMANIFOLDS IN A KAEHLER MANIFOLD

MASAHIRO KON

1. Introduction

Let \overline{M} be a Kaehler manifold of dimension $2(n + p)$, $p \ge 0$, and M an *n*dimensional Riemannian manifold. Let *J* be the complex structure of \overline{M} . We call *M* a *totally real* submanifold of \overline{M} if *M* admits an isometric immersion into \overline{M} such that

$$
J(T_m(M))\subset T_m(M)^{\perp} ,
$$

where $T_m(M)$ denotes the tangent space of M at m, and $T_m(M)$ ^{\perp} the normal space at *m*. Denote by $\overline{M}^{n+p}(c)$ a 2(*n* + *p*)-dimensional Kaehler manifold of constant holomorphic sectional curvature *c.* Let *h* be the second fundamental form of *M* in \overline{M} , and denote by *S* the square of the length of the second fundamental form *h*. When $p = 0$, Chen-Ogiue [2] proved

Theorem A. *Let M be an n-dimensional compact totally real minimal submanifold immersed in* $\overline{M}{}^n(c)$ *. If*

$$
S<\frac{n(n+1)}{4(2n-1)}c,
$$

then M is totally geodesic.

Theorem B. *Let M be an n-dimensional totally real minimal submanifold* immersed in $\overline{M}{}^n(c)$. If the sectional curvature of M is constant, then M is *either totally geodesic or has nonpositive sectional curvature. Moreover, if the second fundamental form of the immersiom is parallel, then M is totally geodesic or flat.*

Theorem B is a generalization of Houh's theorem [4]. Moreover, Ludden Okumura-Yano [5] studied an *n*-dimensional totally real minimal submanifold *M* of *CPⁿ* satisfying

$$
(1.1) \t\t\t S = \frac{n(n+1)}{2n-1},
$$

where \mathbb{CP}^n denotes an *n*-dimensional complex projective space of constant holomorphic sectional curvature 4, and gave an example of totally real

Communicated by K. Yano, July 24, 1974, and, in revised form, October 25, 1974.

252 MASAHIRO KON

minimal surface immersed in \mathbb{CP}^2 , which just satisfies the above condition (1.1). Let $S¹$ be a unit sphere of dimension 1. Then $S¹ \times S¹$ is a compact minimal totally real surface immersed in \mathbb{CP}^2 with $S = 2$. Concerning this Ludden Okumura-Yano [5] proved

Theorem C. If M is a compact n-dimensional $(n > 1)$ minimal totally real submanifold of \mathbb{CP}^n satisfying (1.1), then $n = 2$ and $M = S^1 \times S^1$.

The purpose of this paper is to study a compact n -dimensional totally real submanifold M immersed in \mathbb{CP}^n satisfying certain condition on the second fundamental form h of M , which reduces to condition (1.1) if M is minimally immersed in *CPⁿ .* Our method is based on that of Braidi-Hsiung [1].

2. Local formulas

Let \overline{M} be a Kaehler manifold of dimension 2n, and M an n-dimensional totally real submanifold immersed in \overline{M} . Choose a local field of orthonormal frames e_1, \dots, e_{2n} in \overline{M} such that, restricted to M, the vectors e_1, \dots, e_n are tangent to *M* (and hence the remaining vectors e_{n+1}, \dots, e_{2n} are normal to M). Unless stated otherwise, we shall make use of the following convention on the ranges of indices:

$$
1\leq A,B,C,\dots\leq 2n\ ,\quad 1\leq i,j,k,\dots\leq n\ ,\quad n+1\leq a,b,c,\dots\leq 2n\ ,
$$

and when a letter appears in any term as a subscript and a superscript, it is understood that this letter is summed over its range. Denote Je_i by e_{i*} for $i = 1, \dots, n$, and let w^1, \dots, w^{2n} be the field of dual frames with respect to the frame field of \overline{M} chosen above. Then the structure equations of \overline{M} are

$$
(2.1) \t dw^A = -w^A_B \wedge w^B,
$$

(2.2)
$$
w_B^4 + w_A^B = 0, \quad w_j^i = w_{j^*}^{i^*}, \quad w_j^{i^*} = w_i^{j^*},
$$

$$
(2.3) \qquad \begin{array}{l} dw_B^A = -w^A_C \wedge w^C_B + \varPhi^A_B \ , \qquad \varPhi^A_B = \frac{1}{2} K^A_{BCD} w^C \wedge w^D \ , \\ K^A_{BCD} + K^A_{BDC} = 0 \ . \end{array}
$$

Restriction of these frames to M gives

(2.4) *w a* = 0 .

Since $0 = dw^a = -w_i^a \wedge w^i$, by Cartan's lemma we may write

(2.5)
$$
w_i^a = h_{ij}^a w^i \ , \qquad h_{ij}^a = h_{ji}^a \ ,
$$

and from (2.2) it follows that

$$
(2.6) \t\t\t h_{jk}^{i*} = h_{ik}^{j*}.
$$

Using these formulas we obtain

TOTALLY REAL SUBMANIFOLDS 253

$$
(2.7) \t dwi = -wji \wedge wj, \t wji + wij = 0
$$

$$
(2.8) \t dw_j^i = -w_k^i \wedge w_j^k + \Omega_j^i, \t \Omega_j^i = \frac{1}{2} R_{jkl}^i w^k \wedge w^l,
$$

(2.9)
$$
R_{jkl}^i = K_{jkl}^i + \sum_a (h_{ik}^a h_{jl}^a - h_{il}^a h_{jk}^a).
$$

The forms (w_j^i) define the Riemannian connection of M. We call $h_{ij}^a w^i w^j e_a$ the second fundamental form of the immersion. Sometimes the second fun damental form is denoted by its components h_{ij}^a . $(\sum_i h_{ii}^a e_a)/n$ is called the mean curvature normal, and an immersion is said to be *minimal* if its mean curvature normal vanishes identically, i.e., if $\sum_i h_{ii}^a = 0$ for all a. Define the covariant derivative h^a_{ijk} of h^a_{ij} , h^a_{ijkl} and the Laplacian Δh^a_{ij} of the second fundamental form h_{ij}^a respectively by

$$
(2.10) \t\t\t h_{ijk}^{a}w^{k} = dh_{ij}^{a} - h_{il}^{a}w_{j}^{l} - h_{lj}^{a}w_{i}^{l} + h_{ij}^{b}w_{b}^{a} ,
$$

$$
(2.11) \t h_{ijkl}^a w^l = dh_{ijk}^a - h_{ijk}^a w_i^l - h_{ilk}^a w_j^l - h_{ijl}^a w_k^l + h_{ijk}^b w_j^a,
$$

(2.12) *Ahfj= Σhfjkk.*

If \overline{M} is locally symmetric, then we have the following equation (Braidi-Hsiung [1, p. 238]):

$$
(2.13) \quad \sum_{a,i,j} h_{ij}^a A h_{ij}^a = \sum_{a,i,j,k} (h_{ij}^a h_{kkij}^a - K_{ijb}^a h_{ij}^a h_{ik}^b + 4K_{0ki}^a h_{jk}^b h_{ij}^a + K_{0ijk}^a h_{ij}^a) - K_{kbk}^a h_{ij}^a h_{ij}^b + 2K_{kik}^m h_{mj}^a h_{ij}^a + 2K_{ijk}^m h_{mk}^a h_{ij}^a) - \sum_{a,b,i,j,k,l} [(h_{ik}^a h_{jk}^b - h_{jk}^a h_{ik}^b)(h_{il}^a h_{jl}^b - h_{jl}^a h_{kl}^b) + h_{ij}^a h_{kl}^a h_{ij}^b h_{kl}^b - h_{ij}^a h_{ik}^a h_{kj}^b h_{kl}^b] .
$$

3. Integral formulas

In this section we assume that \overline{M} is a Kaehler manifold of dimension 2*n* and constant holomorphic sectional curvature *c*. Then the curvature tensor of \overline{M} is given by

$$
(3.1) \tK_{BCD}^4 = \frac{1}{4}c(\delta_{AC}\delta_{BD} - \delta_{AD}\delta_{BC} + J_{AC}J_{BD} - J_{AD}J_{BC} + 2J_{AB}J_{CD}),
$$

where δ_{AC} denotes the Kronecker deltas. Let M be an *n*-dimensional totally real submanifold immersed in $\overline{M}^n(c)$. From the condition on the dimensions of M and \overline{M} it follows that e_{1*}, \cdots, e_{n*} is a frame for $T_m(M)^{\perp}$. Noticing this and using (2.6) and (3.1) we can reduce (2.13) to

$$
\sum_{a,i,j} h_{ij}^a A h_{ij}^a = \sum_{a,i,j,k} h_{ij}^a h_{kkij}^a + \frac{1}{4} (n+1) c \sum_{a,i,j} h_{ij}^a h_{ij}^a - \frac{1}{2} c \sum_a \left(\sum_i h_{ii}^a \right)^2
$$

MASAHIRO KON

(3.2)
$$
+ \sum_{a,b,i,j,k,l} (h_{ij}^a h_{jk}^b h_{ki}^a h_{li}^b - h_{ij}^a h_{ij}^b h_{kl}^a h_{kl}^b) - \sum_{a,b,i,j,k,l} (h_{ik}^a h_{kj}^b - h_{ik}^b h_{kj}^a)(h_{il}^a h_{lj}^b - h_{il}^b h_{ij}^a)
$$

For each a, let H_a denote the symmetric matrix (h_{ij}^a) . Then (3.2) can be written as

$$
\sum_{a,i,j} h_{ij}^a A h_{ij}^a = \sum_{a,i,j,k} h_{ij}^a h_{kkij}^a + \sum_a \left[\frac{1}{4} (n+1)c \operatorname{Tr} H_a^a - \frac{1}{2} c (\operatorname{Tr} H_a)^2 \right] + \sum_{a,b} \left\{ \operatorname{Tr} (H_a H_b - H_b H_a)^2 - [\operatorname{Tr} (H_a H_b)]^2 \right\} + \operatorname{Tr} H_b \operatorname{Tr} (H_a H_b H_a) \right\},
$$

where Tr H_a^2 denotes the trace of the matrix H_a^2 . (3.3) was obtained by Chen Ogiue [2] for a totally real minimal submanifold M^n immersed in $\overline{M}^n(c)$. Now set

$$
S_{ab} = \sum_{i,j} h_{ij}^a h_{ij}^b , \quad S_a = S_{aa} , \quad S = \sum_a S_a ,
$$

so that S_{ab} is a symmetric $(n \times n)$ -matrix and can be assumed to be diagonal for a suitable choice of e_{n+1}, \dots, e_{2n} , and *S* is the square of the length of the second fundamental form h_{ij}^a of M. Since Tr $A^2 = \sum_{i,j} (a_{ij})^2$ is independent of the choice of a frame, for any symmetric $A = (a_{ij})$ we can rewrite (3.3) as

(3.4)
\n
$$
\sum_{a,i,j} h_{ij}^a \Delta h_{ij}^a = \sum_{a,i,j,k} h_{ij}^a h_{kkij}^a + \frac{1}{4} (n+1) cS - \sum_a S_a^2 + \sum_{a,b} \text{Tr}(H_a H_b - H_b H_a)^2 - \frac{1}{2} c \sum_a (\text{Tr} H_a)^2 + \sum_{a,b} \text{Tr} H_b \text{Tr}(H_a H_b H_a) .
$$

For later development we need the following lemma (see [1] and [3]):

Lemma 1. Let A and B be symmetric $(n \times n)$ -matrices. Then

 $-{\text{Tr}}(AB - BA)^2 \leq 2\ {\text{Tr}} \ A^2 \ {\text{Tr}} \ B^2 \ ,$

and the equality holds for nonzero matrices A and B if and only if A and B can be transformed simultaneously by an orthogonal matrix into scalar multiples of \overline{A} *and* \overline{B} *respectively, where*

$$
\bar{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad \bar{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

Moreover, if A_1, A_2, A_3 *are symmetric (n* \times *n)-matrices such that*

$$
-\mathrm{Tr}(A_a A_b - A_b A_a)^2 = 2 \mathrm{Tr} A_a^2 \mathrm{Tr} A_b^2, \quad 1 \le a, b \le 3 , \quad a \ne b ,
$$

then at least one of the matrices A^a must be zero.

By applying Lemma 1 we obtain

254

$$
-\sum_{a,b} \text{Tr}(H_a H_b - H_b H_a)^2 + \sum_a S_a^2 - \frac{1}{4}(n+1)cS
$$

(3.5)
$$
\leq 2 \sum_{a \neq b} S_a S_b + \sum_a S_a^2 - \frac{1}{4}(n+1)cS
$$

$$
= \left[\left(2 - \frac{1}{n}\right)S - \frac{1}{4}(n+1)c \right]S - \frac{1}{n} \sum_{a > b} (S_a - S_b)^2
$$

which, together with (3.4), implies

(3.6)
$$
- \sum_{a,i,j} h_{ij}^a \Delta h_{ij}^a \leq W - \sum_{a,i,j,k} h_{ij}^a h_{kkij}^a,
$$

where we have put

(3.7)
$$
W = \left[\left(2 - \frac{1}{n} \right) S - \frac{1}{4} (n+1) c \right] S + \frac{1}{2} c \sum_{a} (\text{Tr} H_a)^2 - \sum_{a, b} \text{Tr} H_b \text{Tr} (H_a H_b H_a) .
$$

Theorem 1. *Let M be an n-dimensional compact oriented totally real submanifold immersed in Mⁿ (c). Then*

(3.8)
$$
\int_M \left[W - \sum_a (\operatorname{Tr} H_a) \Delta (\operatorname{Tr} H_a) \right] * 1 \geq 0,
$$

where *1 *denotes the volume element of M. Proof.* First we obtain

$$
\int_{M} \sum_{a,i,j,k} (h_{ijk}^a)^2 * 1 = - \int_{M} \sum_{a,i,j} h_{ij}^a \Delta h_{ij}^a * 1 \geq 0.
$$

On the other hand, we have (Braidi-Hsiung [1, p. 241])

$$
\int_{M} \sum_{a,i,j,k} h_{ij}^a h_{k\kappa ij}^a * 1 = \int_M \sum_a (\operatorname{Tr} H_a) \Delta (\operatorname{Tr} H_a) * 1.
$$

From these equations and (3.6) follows the inequality

$$
(3.9) \qquad \int_M \left[W - \sum_a (\text{Tr} \, H_a) \Delta (\text{Tr} \, H_a) \right] * 1 \ge \int_M \sum_{a, i, j, k} (h_{ijk}^a)^2 * 1 \ge 0 ,
$$

which is just (3.8) .

As a special case of Theorem 1 we have the following theorem which was proved essentially by Chen-Ogiue [2].

Theorem 2. *Let M be an n-dimensional compact oriented totally real minimal submanίfold immersed in M(c). Then*

 \bullet

256 MASAHIRO KON

$$
(3.10) \qquad \int_M \left[\left(2 - \frac{1}{n} \right) S - \frac{1}{4} (n+1) c \right] S * 1 \ge 0 \; .
$$

4. Main theorems

In this section we assume that M is an *n*-dimensional compact oriented totally real submanifold immersed in $\overline{M}{}^n(c)$, $n \geq 1$, and that M is not totally geodesic in \overline{M} but satisfies

(4.1)
$$
\int_M \left[W - \sum_a (\operatorname{Tr} H_a) \Delta (\operatorname{Tr} H_a)\right] * 1 = 0.
$$

Then (3.9) implies that $h^a_{ijk} = 0$, i.e., the second fundamental form of M is covariant constant, so that $\Delta h_{ij}^a = 0$, and all terms on both sides of (3.6) vanish. It follows that inequalities (3.4) and (3.5) imply

(4.2)
$$
\frac{1}{n} \sum_{a > b} (S_a - S_b)^2 = 0,
$$

(4.3)
$$
-\mathrm{Tr}(H_a H_b - H_b H_a)^2 = 2 \mathrm{Tr} H_a^2 \mathrm{Tr} H_b^2
$$

for any $a \neq b$. Then by Lemma 1 we may assume that $H_a = 0$ for $a = n + 3$, \cdots , 2*n*, which shows that $S_a = 0$ for $a = n + 3, \cdots, 2n$. But by (4.2) we can see that $S_a = S_b$ for any a, b. Since M is not totally geodesic, $n = 2$ and therefore by using Lemma 1 we can assume that

(4.4)
$$
H_{n+1} = \lambda \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad H_{n+2} = \mu \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
$$

From this it follows that M is a minimal surface immersed in $\overline{M}^2(c)$. Since the second fundamental form h of M^2 is covariant constant, the sectional curvature of M^2 is constant and hence M^2 is flat by Theorem B. On the other hand, by using (2.10) we obtain

(4.5)
$$
dh_{ij}^a = h_{il}^a w_j^l + h_{lj}^a w_i^l - h_{ij}^b w_i^a.
$$

Setting $a = 3$, $i = 1$, $j = 2$, we see that $d\lambda = dh_{12}^3 = 0$, which means that λ is constant. Similarly, setting $a = 4$ and $i = j = 1$, we see that μ is constant. By (4.2) we get $\lambda^2 = \mu^2$, and since $S = \frac{1}{2}c$ we have $\lambda^2 + \mu^2 = \frac{1}{4}c$ so that λ^2 $\frac{1}{8}c$. Since *M* is not totally geodesic, we may assume that $c > 0$ and $-\lambda =$ $\mu = \frac{1}{2}\sqrt{\frac{c}{2}}$. Then (2.5) and (4.4) imply

$$
w_1^3 = \lambda w^2 \ , \quad w_2^3 = \lambda w^1 \ , \quad w_1^4 = \mu w^1 \ , \quad w_2^4 = - \mu w^2 \ .
$$

On the other hand, setting $a = 3$, $i = j = 1$ in (4.5), we have $w_4^3 = \frac{2\lambda}{\mu}w_1^3$ $= 2w_2^1$. Hence we obtain the following

Theorem 3. *Let M be an n-dίmensional compact oriented totally real submanifold immersed in* $\overline{M}^n(c)$ *,* $n > 1$ *, such that M is not totally geodesic but satisfies condition* (4.1). *Then M is a flat surface minimally immersed in* $\overline{M}^2(c)$, and with respect to an adapted dual orthonormal frame field w^1, w^2, w^3 , w^* , the connection form (w_B^A) of $\overline{M}^2(c)$, restricted to M, is given by

$$
\begin{bmatrix} 0 & w_2^1 & -\lambda w^2 & -\mu w^1 \\ -w_2^1 & 0 & -\lambda w^1 & \mu w^2 \\ \lambda w^2 & \lambda w^1 & 0 & 2w_2^1 \\ \mu w^1 & -\mu w^2 & -2w_2^1 & 0 \end{bmatrix}, \qquad -\lambda = \mu = \frac{1}{2} \sqrt{\frac{c}{2}}.
$$

Now we take an *n*-dimensional complex projective space \mathbb{CP}^n of constant holomorphic sectional curvature 4 as an ambient space. Then Theorem 3 im plies

Theorem 4. *Let M be an n-dίmensional compact oriented totally real submanifold immersed in* \mathbb{CP}^n *,* $n \geq 1$ *, such that M is not totally geodesic but satisfies condition* (4.1). *Then* $n = 2$ *and* $M = S^1 \times S^1$.

References

- [1] S. Braidi & C. C. Hsiung, *Submanifolds of sphere*,* Math. Z. **115** (1970) 235-251.
- [2] B. Y. Chen & K. Ogiue, *On totally real submanifolds,* Trans. Amer. Math. Soc. **193** (1974) 257-266.
- [3] S. S. Chern, M. do Carmo & S. Kobayashi, *Minimal submanifolds of a sphere with second fundamental form of constant length,* Functional analysis and related fields, Springer, Berlin, 1970, 57-75.
- [4] C. S. Houh, Some totally real minimal surface in \mathbb{CP}^2 , Proc. Amer. Math. Soc. 40 (1973) 240-244.
- [5] G. D. Ludden, M. Okumura & K. Yano, A totally real surface in CP² that is *not totally geodesic,* Proc. Amer. Math. Soc. **53** (1975) 186-190.
- [6] J. Simons, *Minimal varieties in riemannian manifolds,* Ann. of Math. 88 (1968) 62-105.

SCIENCE UNIVERSITY OF TOKYO