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A CLASS OF HYPERSURFACES WITH CONSTANT
PRINCIPAL CURVATURES IN A SPHERE

RYOICHI TAKAGI

Introduction

In a series of papers [1], [2], [3], [4] E. Cartan investigated hypersurfaces
M in a simply connected space form M(c) of constant curvature c such that
all principal curvatures of M are constant. He classified such hypersurfaces
completely for the case c < 0, [1], and partially for the case c > 0, [2], [3], [4].
Recently H. F. Munzner [5] developed Cartan's theory and proved that to
classify such hypersurfaces in a sphere is equivalent to find all homogeneous
polynomials satisfying certain simultaneous differential equation. The purpose
of this paper is to determine a class of M by giving a partial solution of the
equation.

To state our result we shall describe an example of M in a sphere. For an
integer n > 2 we denote by Fn a homogeneous polynomial

/n + 1

Σ

of 2n + 2 variables. Let S2n+1 denote the unit hypersphere in a Euclidean
(2n + 2)-space R2n+2 centered at the origin. For a number t with 0 < t < π/4
we denote by M2n(t) a hypersurface in S2n+1 denned by the equation

Fn(x) = sin2 It , x = (x19 , x2n+2) e S2nΛ1 .

It will be shown that M2n(i) is a connected compact hypersurface in S2n+1 hav-
ing 4 constant principal curvatures with multiplicities 1, 1, n — 1 and n — 1,
and admits a transitive group of isometries. Our result can be stated as

Theorem. Let M be a connected complete hypersurface in S2n+1 having 4
constant principal curvatures. If the multiplicity of one of the principal cur-
vatures is equal to 1, then M is congruent to M2n(t). In particular, M admits
a transitive group of isometries.

We note that, as mentioned above, E. Cartan classified those hypersurfaces
in a sphere which have at most 3 constant principal curvatures or 4 constant
principal curvatures with the same multiplicity. Thus for the case n = 2 the
above theorem is due to E. Cartan. The polynomial F2 was first found by E.
Cartan [3], and Fn by K. Nomizu [6].
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1. Differential equation

In the first place we write up all indices and their ranges used in this paper.
In § 1, a,β= 1, ,2n + 2; u~ 1, > ,2n + 1 /,/ = 1, ,2m0 + mx\

r, s, t = 2ra0 + mλ + 1, , 2n + 1, where m0 + m1 = n. In § 2, u = 1,
• , 2n + 1 ί, / = 1, , 2n — 1 r, s, t = 2n, 2n + 1 a, b, c = 1, , n — 1.

In § 3 , i ι = 1, - ,2n + 1; / , / = 1, •••,«+ 1; r , M = w + 2, •• ,2rc + 1.
Let M be a connected complete hypersurface in S2n+1 having 4 constant

principal curvatures cot θa {a = 1, , 4) with 0 < θγ < θ2 < ^3 < #4 < TΓ.
Let raα be the multiplicity of cot θa. Then by theorems of H. F. Munzner [5,
Theorems 1, 2 and 3] we know that ra0 = m2 and m t = ra3 (so m0 + m1 =
n > 2), and £/ιczί ί/ier^ βxwί a number t with 0 < t < ^π and a homogeneous
polynomial F of degree 4 of 2n + 2 variables xa such that

O i) Σ ( — Y = 16(Σ*1

a 9^ V — R(n Om Λ V r2

<m/ M = {x = (xj eS2n+ι F(JC) = cos 4ί}. Conversely, for every t with 0 <
/ <C Jπ1 and ev^ry homogeneous polynomial F satisfying (1.1) and (1.2), ί/ze
^eί {Λ 6 5 2 n + 1 F(x) = cos 4t] is a connected compact hypersurface in S2n+1

having 4 constant principal curvatures with multiplicites m0, ra0, mι and mx.
Put 2F = ( Σ « 4 ) 2 - F. Then (1.1) and (1.2) are equivalent to

(1.3) Σ(4?-)2 = i β Σ ^ f ,

(1.4)

Thus in order to prove our theorem it is sufficient to prove that if ra0 = 1 or
m0 = n — 1 then every homogeneous polynomial F satisfying (1.3) and (1.4)
is congruent to Fn9 i.e., F(x) = Fn(σ(x)) for an orthogonal transformation σ
of i?27l+2. In the remainder of this section we shall give the general properties
of F. First fix an arbitrary index a. Without loss of generality we may assume
that F\S2n+1 takes its maximum at the point pa = (0, , 1, , 0) (i.e., all
the coordinates JC'S are zero except xa = 1). Then we have at pa

(1.5) — cxβ = 0 for a constant c and each β .
dXβ

Here we put F = aax
4

a + Lx\ + Ax\ + Bxa + C, where aa,L,A,B and C
denote homogeneous polynomials of x19 ,Jcβ_1?jcβ+1, ,x2n+2 of degree
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0, 1, 2, 3 and 4 respectively. From (1.5) we have dL/dxβ = 0 for β Φ a at /?α,
and c = 4aa. From (1.3) and (1.5) it follows that c2 = 16aa. These imply
that L = 0, and αα = 0 or aa = 1. Next we shall give the relations which the
polynomials A, B and C must satisfy under the assumption that aa = 1 for
some index α, say 2n + 2. Thus ^4, B and C are polynomials of x19 , JC2 W + 1.
From (1.3) and (1.4) we have respectively

(1.6) ^ φ
u dx\

(1.7) Σ-

(1.8) Σ -fξ- + 2^ = 8(m0 + 1) Σ 4

(1.9)

(1.10)

(1.11) Σ (^-Y + 2 Σ ^ - ~ + 4^2 = 16̂  Σ 4 + 16C
V 9 / » dxu axu «

(1.12)

(1.13) B2 + Σ ( 4 ^ ) = 16C Σ 4
w \ dxu I u

By a suitable choice of orthogonal transformation on x19 , x2n+ι we may set
y4 = 2]^ αw4? ai > * * > α2n+i From (1.6) and (1.9) we have a™ = 4 and
£ w α ς = 4m0 — 2. Hence a = 2 and < = —2.

Decompose B into P r + Q! + R' + S', where P', Q', R' and S' denote
homogeneous polynomials of xt and x r whose degrees with respect to xt are
equal to 3,2,1 and 0 respectively. Then taking account of the degree with
respect to xt in (1.10) and using a relation Σίxi(dPΊdχί) = ?>P', etc. we
know Pf = R' = S' = 0. In other words, B is of the form 4 Σ r χ

rBr, where
Br's denote homogeneous polynomials of xt of degree 2.

Similarly decompose C into P + Q + R + S+T, where P, β, i?, S and Γ
denote homogeneous polynomials of xt and x r whose degree with respect to
jq are equal to 4, 3, 2,1 and 0 respectively. Then we know from (1.11)
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(1.14)

s = o, T =

Hence (1.7), (1.8) and (1.12) are reduced respectively to

(1.15) Σ d*Br = 0 for each r;

i dx\

( L 1 7 )

(1.18)

r dQ _
*

i,r dXi

(1.20) Σ ^

From (1.13) we have

(1.2D Σ fJ^-V + Σ (ψλ - 16P Σ *! = o .

Put Br = 2<,^ bζjXiXj and denote by 5 r the symmetric matrix (6^) of de-
gree 2m0 + /Wi. Then (1.15), (1.17) and (1.20) are reduced to

(1.22) trace Br = 0 for each r ,

(1.23) trace (Br)2 = 2ra0 for each r ,

(1.24) trace £rJ3s = 0 for each distinct r, s ,

(1.25) (Brf = Br for each r ,

(1.26) B BΉ' + B r5 β5 r + 5 r 5 r 5 s = Bs for each distinct r,5 ,

(1.27) (BBrBsBι = 0 for each mutually distinct r, s, t ,
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where © denotes the cyclic sum with respect to r, s and t. (1.27) is significant
only if m1 > 2.

Now we assert that in order to solve (1.3) and (1.4) for m0 = 1 or m0 =
n — 1 it is sufficient to consider the following two cases:

( I ) m0 = n — 1 and aa = 1 for some a ,

(II) ra0 = 1 and aa~\ for each α .

In fact, all the possible cases besides (I) and (II) are (1) m0 = n — 1 and aa

= 0 for each a, (2) ra0 = 1 and αα = 0 for each a, and (3) ra0 = 1 and αα

= 1, flg = 0 for some a, β. In any case we put G = ( ^ α -xD2 — F. Then G
satisfies

= 16 Σ JCΪG , Σ - ^ = 8 ( " - ™o + i) Σ A

This means that each of the cases (1), (2) and (3) is reduced to (I) or (II).
We shall consider the case (I) (resp. (II)) in § 2 (resp. § 3).

2. The case (I)

We may assume that a2n+2 = 1. From (1.22), (1.23) and (1.25) it follows

that by a suitable choice of orthogonal transformation on x19 , x2n-\ we

may set B2n = Σa A. ~ Σa A+n-i, or equivalently

B2n =

7 0
0 - /
0 0

where / denotes the unit matrix of degree n — 1. Denote the transpose of a

matrix / by ιJ, and put

where Y = (Yα6) is a matrix of degree n — 1, and w = (wα) and v =

are column vectors. Then by (1.26) we obtain X = Z = 0, w = 0, and

(2.1) : Σ YacYbc + 2uaub = δab for each a, b ,
c

(2.2) Σ < = Σ < .
a a

Hence from (1.25) it follows that
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(2.3) Ua Σ YbcVc + «» Σ YacVc = 0 .
c c

(2.4) ^ α Σ ^cδwc + vb Σ Ycauc = 0 for each α, 6 .
c c

Putting a = b in (2.3) we get ιια Σc Yacvc = 0. Then by multiplying (2.3)
by wα and taking the sum over a we have Σaul Σc YbCvc = 0 for each fo.
Thus we need to divide our discussion into two cases.

(1) The case Σa K = 0. It follows from (2.1) and (2.2) that v = 0 and
Yis an orthogonal transformation on xn, , x2n_2. Putting ya = Σ δ Yabχb+n-i>
we have B2n+1 = 2 Σ α χ

aya, B2n = Σa (χl - Λ) a n d A = 2 Σ α ( 4 + Λ)
+ Άn-\ — Σrχ\> Since β is of the form Σ r Qr

χr, where 2 r ' s denote homo-
geneous polynomials of xt of degree 3, we have, in consequence of (1.18),

0 = Σ BrQr = Σ (Xl ~ Λ)Q%n + 2 Σ ^αJαβ2n + i

Hence Q2n = B2n+1L and 62^+1 = —B2nL for a linear combination L of jcα, yα

and x>n-i Substituting these in (1.16) we get dL/dxa = dL/dya = 0, i.e., L
= ^2n-i f° r a constant /:. Substituting P in (1.14) and the above Q in (1.21)
we find k2 = 16. Clearly we may adopt & = 4. Thus F must be of the form

X2n + 2 I M 2-1 \Xa ~Γ Jα/ T" %2n-l 2_ι Xr)X2n + 2

\ a r /

T 41 2 J v ̂ α Jα/^rz ^ 2 J ^Wα ^n + l j ^n + Σ
\ α a /

+ 4 Σ 4 Σ yi - 4 ( Σ ^ α ) 2 + 2 Σ (4 + yi)-4.-i + *»-,
α α \ a / a

+ 4(2 Σ ^^α^Ti + Σ ( 4 - yi)̂ 2n
\ α α

(4 + Λ) - ΛΪ»-I) Σ 4 +

However, an orthogonal transformation (xl9 , x2n+2) —> (Λ:1? , x^_2, (^2n-i
+ x>J/\/T, (Λ2n_! - x2J/VT, (x2n+1 + x2n+2)l*f~2, (x2n+1 - x2n+2)/VT) of
β2n+2 d e f o r m s the above polynomial into a polynomial of degree 2 with respect
to each xa. Therefore it should appear in § 3 if it is a solution.

(2) The case Σa < Φ 0. Since Σ c Ybcvc = 0 for each b, (2.2) and (2.4)
imply Σ c YCa

uc = 0 f° r e a c h a. Multiplying (2.1) by uh and taking the sum
over b we get 2ua Σa " ! = w« f° r e a c n fl Hence Σ « Ml = Σa K = έ It is
easily seen that by a suitable choice of orthogonal transformation leaving B2n

invariant we may assume that un_x = vn_λ = 1/\Λ2~ and all the other wα and

va vanish. By (2.1), (2.3) and (2.4) we see that Y is of the form I T ' Q I ,
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y € 0 ( w - 2). Hence

TO-2

β2n — 2 ] (jCg — Jg) + JC^_! — ^ _ !
S = l

w-2

B2n + \ — 2 2 ] •**}'« + V 2 (Λ:TO_! + Jn-i)-^27z-i

As in the case (1), from (1.18) we have Q2n = B2n+1L and Q2n+ι = —B2nL
for a linear combination L of xa, ya and x27l_i. Then taking account of the
coefficients of x\n and x2nXin+\ in (1.19) we find Q = 0. But substituting the
first equation of (1.14) in (1.21) we can easily see n = 2. In fact, the coeffi-
cient of x2nx2n+ι does not vanish if n > 2. Since αα = 1 for 1 < # < 6, our
polynomial should appear in § 3 if it is a solution.

3. The case (II)

We put

Z7 — -v-4 I A -v 2 [ D -v I /^

where ^4, β and C denote homogeneous polynomials of JC15 , JC2W+1 of degree
2,3 and 4 respectively. It follows from (1.22), (1.23) and (1.25) that by a
suitable choice of orthogonal transformation on x19 , xn+1 we may set

ro o η
B*+*= 0 0 0 ,

Li o oj

where the central 0 denotes the zero matrix of degree n — 1. For each r > n + 2
we put

\xr pr ^

Br = tpr Yr qΎ

\wr ιqr zr

where Yr is a symmetric matrix of degree n — 1. Putting r = n + 2 in (1.26)
and s = n + 2 in (1.26) we get, respectively, xs + zs = 0, ws = 0, Ys = 0
for each s > n + 2, and

(3.1) (xr)2 + \pr\2 + \qr\2 = 1 , ^ r V + qrpr = 0

for each r > n + 2. From (1.25) it follows that

(3.2) * r (0t r ) 2 + 2 \pr\2 - 1) = 0 , (0t r)2 + |p^|2 - \)pr = 0

for each r > n + 2. If n > 2 we put t = n + 2 in (1.27) so that
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(3.3) V V + ιps ιqr + qrps + qspr = 0 ,

(3.4) pr ιps + tqrqs + xrxs = 0 for each distinct r, s > n + 2 .

Lemma. For each r > n + 2, either \pr\ = 1, qr = 0 and xr = 0, or
p* = 0, \qr\ = 1 andxr = 0.

Proof. It follows from (3.1) and (3.2) that for each r > n + 2, (1) \pr\
= l,qr = 0, xr = 0, or (2) pr = 0, |<f | = 1, x* = 0, or (3) pr = 0, qr = 0,
xr — ± 1 . Suppose that case (3) occurs, or equivalently Br = ±(x\ — x2

n+ι).
Then such an r is unique by (1.24). Hence the polynomial P (and so also F)
does not involve the term x\. Since this is not the case, by the symmetry of
pr and qr we may assume that pr Φ 0 for some r > n + 2. Then from (3.3)
we have qspr = 0 for each s > n + 2 since qr = 0 by (1). Thus qs = 0 for
each s. q.e.d.

Owing to this lemma and (3.4) we may set Br = 2jt1xr_7l for each r. Then,
since Σ t t @ P / 3 * J 2 = 1 6 Σ ; t t * L , we have Σ r @β/9* r)

2 = 0 from (1.21).
This implies that Q = 0. It is easily seen that the following polynomial which
we just determine satisfies (1.3) and (1.4) for mQ — 1:

%2n+2 T ^ U i T 2 J ^r 2_J ^r-n)^2n + 2 ~Γ O ̂ i 2-i ^r^r~n^2n + 2
\ r r / r

+ (A + Σ A-n - Σ AJ + 4 ( Σ XrXr-nJ

This is nothing but Fn in the introduction.

4. Homogeneity of M

Let M be a hypersurface in S2n+1 satisfying the condition of our theorem.
Then by § 1 there exist a number t with 0 < t < \π and a homogeneous poly-
nomial F satisfying (1.3) and (1.4) such that M = {x <= S2n+1 F(JC) = sin2 2t}9

and vice versa. In § 2 we prove that every homogeneous polynomial F satis-
fying (1.3) and (1.4) is congruent to Fn, i.e., F(x) = FTO((7x) for some σ 6 0(2rc
+ 2). On the other hand, it is known [6] that a hypersurface M2n(t) = {x €
S2n+1 Fn(x) = sin2 2t} in 52w+1 admits a transitive group G = SO(rc) X SO(2)
of isometries, which can be considered as an analytic subgroup of 0(2n + 2).
Thus M admits a transitive group σ~ιGσ of isometries.

Remark. There are more examples of connected compact hypersurfaces
in S2n+1 having 4 constant principal curvatures with multiplicities m^m^mι

and mx (ra0 + mί = ή) (cf. [7]). We shall mention only the pairs (ra0, m x ) :
(2,2n - 1) (n > 2), (4, 4π - 5) (n > 2), (4,5) and (6,9). Each of these
examples admits a transitive group of isometries.
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