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A CLASS OF HYPERSURFACES WITH CONSTANT
PRINCIPAL CURVATURES IN A SPHERE

RYOICHI TAKAGI

Introduction

In a series of papers [1], [2], [3], [4] E. Cartan investigated hypersurfaces
M in a simply connected space form M(c) of constant curvature ¢ such that
all principal curvatures of M are constant. He classified such hypersurfaces
completely for the case ¢ < 0, [1], and partially for the case ¢ > 0, [2],[3], [4].
Recently H. F. Miinzner [5] developed Cartan’s theory and proved that to
classify such hypersurfaces in a sphere is equivalent to find all homogeneous
polynomials satisfying certain simultaneous differential equation. The purpose
of this paper is to determine a class of M by giving a partial solution of the
equation.

To state our result we shall describe an example of M in a sphere. For an
integer n > 2 we denote by F, a homogeneous polynomial

n+1 2 n+1 2
(Zl (Xf - x§+n+1)> + 4(21 xtxi+n+1)
i= i=

of 2n + 2 variables. Let $"*! denote the unit hypersphere in a Euclidean
(2n + 2)-space R*™** centered at the origin. For a number ¢ with 0 < ¢t < z/4
we denote by M?"(f) a hypersurface in §***! defined by the equation

F,(x) = sin?2¢ , X = (X}, -+, Xpp,,) €S,

It will be shown that M**(¢) is a connected compact hypersurface in $***! hav-
ing 4 constant principal curvatures with multiplicities 1,1,n — 1 and n — 1,
and admits a transitive group of isometries. Our result can be stated as

Theorem. Let M be a connected complete hypersurface in S**' having 4
constant principal curvatures. If the multiplicity of one of the principal cur-
vatures is equal to 1, then M is congruent to M*(t). In particular, M admits
a transitive group of isometries.

We note that, as mentioned above, E. Cartan classified those hypersurfaces
in a sphere which have at most 3 constant principal curvatures or 4 constant
principal curvatures with the same multiplicity. Thus for the case n = 2 the
above theorem is due to E. Cartan. The polynomial F, was first found by E.
Cartan [3], and F, by K. Nomizu [6].
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1. Differential equation

In the first place we write up all indices and their ranges used in this paper.

In §1, @, p=1,---,2n4+2;u=1,---,2n4+1;i,j=1,---,2my + m;;
r,s,t=2my+m +1,---,2n+ 1, where my + m;=n. In §2, u =1,
«e,2n4+154,j=1,.--,2n—1;r,s,t=2n,2n+1;a,b,c=1,---,n— 1.
In§3,u=1,---,2n+1;i,j=1,---,n+1;r,5,t=n+2,---,2n+ 1.

Let M be a connected complete hypersurface in $*”*! having 4 constant
principal curvatures cotd, (a=1,---,4) with 0< 4, <4,<6, <6, <.
Let m, be the multiplicity of cot §,. Then by theorems of H. F. Miinzner [5,
Theorems 1,2 and 3] we know that m, = m, and m, = m, (so m, + m, =
n > 2), and that there exist a number t with 0 < t < ir and a homogeneous
polynomial F of degree 4 of 2n + 2 variables x,, such that

.2 5 O 80— 2my ¥t
= ox’ "

R

and M = {x = (x,) e §*!; F(x) = cos 4t}. Conversely, for every t with 0 <

t < 1r and every homogeneous polynomial F satisfying (1.1) and (1.2), the

set {x e S, F(x) = cos 4t} is a connected compact hypersurface in S*"*!

having 4 constant principal curvatures with multiplicites my, m,, m, and m,.
Put 2F = (33, x%)* — F. Then (1.1) and (1.2) are equivalent to

(1.3) 5 ( oF ) — 16 3] ©°F ,
« 0x, «
2
(1.4) o —sm+ DT

Thus in order to prove our theorem it is sufficient to prove that if m, = 1 or
my, = n — 1 then every homogeneous polynomial F satisfying (1.3) and (1.4)
is congruent to F,, i.e., F(x) = F,(o(x)) for an orthogonal transformation ¢
of R™*%, In the remainder of this section we shall give the general properties
of F. First fix an arbitrary index «. Without loss of generality we may assume
that F|S$*"*! takes its maximum at the point p, = (0, ---,1, ---,0) (i.e., all
the coordinates x’s are zero except x, = 1). Then we have at p,

(1.5) — —CX, = for a constant ¢ and each .

Here we put F = ax + Lx} + Ax: + Bx, + C, where a,,L,A,B and C
denote homogeneous polynomials of x;, - -+, X, 1, X,,1, =+ *» Xan,, Of degree
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0,1,2,3 and 4 respectively. From (1.5) we have L/dx, = O for 8 + « at p,,
and ¢ = 4a,. From (1.3) and (1.5) it follows that ¢* = 16a,. These imply
that L = 0, and a, = 0 or a, = 1. Next we shall give the relations which the
polynomials 4, B and C must satisfy under the assumption that a, = 1 for
some index «, say 2n + 2. Thus 4, B and C are polynomials of x,, - - -, X5, ;.
From (1.3) and (1.4) we have respectively

2
(1.6) Zaaf = 8m, — 4,
o’B

(L.7) z2% o,

5'C .
(1.8) Do 24 = 80m + 1) B
(1.9) z(4) =16z,

u X u
(1.10) 04 9B _ 4p .
u axu axu

1.11) Z(aB )2 y27 04 9C L 44— 164 7 2 + 16C,
u axu u axu axu %

(1.12) hXN 0B oC +24B =8B Y 2 ,
w 0X, 0X, -
2

(1.13) B+ () =tecyn.

u xu m
By a suitable choice of orthogonal transformation on x,, - - -, x,,,; we may set
A=3Y,dx: d > >a,,. From (1.6) and (1.9) we have a? = 4 and
Zu a; = 4mo — 2. Hence a; = 2 and a; = 2.

Decompose B into P’ + Q' + R’ + §’, where P/,Q’,R’ and §’ denote
homogeneous polynomials of x; and x, whose degrees with respect to x; are
equal to 3,2,1 and O respectively. Then taking account of the degree with
respect to x; in (1.10) and using a relation };; x,(@P’/dx;) = 3P/, etc. we
know P = R’ = §’ = 0. In other words, B is of the form 4 }, x.B,, where
B,’s denote homogeneous polynomials of x; of degree 2.

Similarly decompose C into P + Q + R + S + T, where P,Q,R,S and T
denote homogeneous polynomials of x; and x, whose degree with respect to
x; are equal to 4, 3,2, 1 and O respectively. Then we know from (1.11)
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P=_233+(2x§>2,

0B, g 2 2
(1.14) R=y (55 %) —25xyx,
1 r xi [3 T

§S=0, T:(in)z.

Hence (1.7), (1.8) and (1.12) are reduced respectively to

(1.15) 2 a{:BZ’ =0 for each r;
2 'xi
90
1.16 =0,
( ) Zz: ox:
1.17) 5(2 00 x) = sm D s
61 \'r 0x,0X; G
(1.18) 78,92 o,
T 0x,
(1.19) 5 9B, 90, _ g,
Gr 0X; 0X;
(1.20) 9B, B, OB, ), ., gy xyia—0.

“wirst 0X; 0X; 0X;0X; 7 5

From (1.13) we have

1.21) z(i”_)2+;<gQ)2—16P;x§=o.

i ax T d

Put B, = 3}, ; bj;x;x; and denote by B" the symmetric matrix (b];) of de-
gree 2m, + m,. Then (1.15), (1.17) and (1.20) are reduced to

(1.22) trace B" =0 for each r ,

(1.23) trace (B")? = 2m, for each r ,

(1.24) trace B’B* =10 for each distinct r, s ,

(1.25) (B")} = B for each r ,

(1.26) B°B'B" 4+ B"B*B" + B"B"B° = B*® for each distinct r, s ,

(1.27) ©B’BB: =0 for each mutually distinct r, s, ¢ ,
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where © denotes the cyclic sum with respect to r, s and ¢. (1.27) is significant
only if m, > 2.

Now we assert that in order to solve (1.3) and (1.4) for my, = 1 or m, =
n — 1 it is sufficient to consider the following two cases :

(I) my=n—1 and a,=1 for some «,
(II) my=1 and a,=1 foreacha.

In fact, all the possible cases besides (I) and (II) are (1) my =n — 1 and a,
= 0 for each &, (2) my = 1 and a, = 0 for each «, and (3) m, = 1 and a,
=1, a; = 0 for some «, 8. In any case we put G = (3], x2)* — F. Then G
satisfies

3G \! 5'G
;(ax ) —165xG, p2T=8n—m+DTal.

a

This means that each of the cases (1), (2) and (3) is reduced to (I) or (II).
We shall consider the case (I) (resp. (II)) in § 2 (resp. § 3).

2. The case (I)

We may assume that a,,,, = 1. From (1.22), (1.23) and (1.25) it follows
that by a suitable choice of orthogonal transformation on xi, - - -, Xx,,_; wWe
may set B,, = Y, X2 — D14 X%, 4.1, OF equivalently

I 0 0
B =10 —I o},
0 O 0

where I denotes the unit matrix of degree n — 1. Denote the transpose of a

matrix J by *J, and put
X Y u
B+l — |ty Z vl ,

w twoow

where Y = (Y,;) is a matrix of degree n — 1, and u = (u,) and v = (v,)
are column vectors. Then by (1.26) we obtain X = Z = 0, w = 0, and

2.1 i 31 YooYie + 2uglty = 04y for each a,b ,
2.2) Suk = v .

Hence from (1.25) it follows that
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(2.3) Ug Z Y,v. + u, Z Ya,cvc =0.
2.4) Vg 2 YoplUe + Uy 23 Yoot =0 for each a, b .

Putting a = b in (2.3) we get u, ). Y,.v. = 0. Then by multiplying (2.3)
by u, and taking the sum over a we have ), u’ >}, Y, v, = O for each b.
Thus we need to divide our discussion into two cases.

(1) The case };, u% = 0. It follows from (2.1) and (2.2) that » = 0 and
Y is an orthogonal transformationon x,,, - « -, X,,_,. Putting y, = > Y 00Xp .01
we have By = 2 Za XaYa> B = Za (sz - y?z) and 4 =2 Za (x5 + yZ)
+ x3,_1 — 21, x2. Since Q is of the form ), O,x,, where Q,’s denote homo-
geneous polynomials of x; of degree 3, we have, in consequence of (1.18),

0 = Z BTQT = Z (x?z - y?z)an + 2 ; xayaQ2n+1 .

Hence Q,, = B,,.,L and Q,,,, = —B,,L for a linear combination L of x,, y,
and x,,_,. Substituting these in (1.16) we get dL/ox, = dL/dy, = 0, i.e., L
= kx,,_, for a constant k. Substituting P in (1.14) and the above Q in (1.21)
we find k* = 16. Clearly we may adopt kK = 4. Thus F must be of the form

oo+ 2(2 04 400 + xh = D),
#4202 = 3 = 2 T Koo
F4Z A N0 — 4T xe) 2362+ D+
+4(2 D xyet + 50— 3 Jon
+2S 0+ — ) T+ (D)

However, an orthogonal transformation (x,, -« -+, X,,,,) — (X1, + + + Xpn_s, (Xon_y
+ xzn)/\/—z—, (Xpn_1 — x2n)/ﬁ> (Xons1 + x2n+2)/\/—i, (Xpn 41 — xzn+2)/\/7) of
R*™** deforms the above polynomial into a polynomial of degree 2 with respect
to each x,. Therefore it should appear in § 3 if it is a solution.

(2) The case >, u% + 0. Since ), Y, v, = O for each b, (2.2) and (2.4)
imply >, Y, u. = O for each a. Multiplying (2.1) by u, and taking the sum
over b we get 2u, ), u; = u, for each a. Hence X, u} = >, v% = . It is
easily seen that by a suitable choice of orthogonal transformation leaving B,,
invariant we may assume that u, , = v,_, = 1/4/2 and all the other u, and

v, vanish. By (2.1), (2.3) and (2.4) we see that Y is of the form [g ' 8],
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Y’ e O(n — 2). Hence
n—2
By, = le =YD+ x5 =y,
n—2
B2n+1 =2 Z:l Xsys + '\/—2—()6”__1 + yn—l)xzn—l .

As in the case (1), from (1.18) we have Q,, = B,,,,L and Q,,,, = —B,,L
for a linear combination L of x,,y, and x,,_,. Then taking account of the
coefficients of x%, and x,,%X,,,, in (1.19) we find QO = 0. But substituting the
first equation of (1.14) in (1.21) we can easily see » = 2. In fact, the coefli-
cient of x,,x,,,, does not vanish if » > 2. Since a, =1 for 1 < a < 6, our
polynomial should appear in § 3 if it is a solution.

3. The case (II)
We put

F =Xy, + AX3n s + Bxgnyy + C,

where 4, B and C denote homogeneous polynomials of x,, - - -, x,,,, of degree
2,3 and 4 respectively. It follows from (1.22), (1.23) and (1.25) that by a
suitable choice of orthogonal transformation on x,, - - -, x,,, we may set

0 0 1
B*** =10 0 Of,
1 0 0

where the central O denotes the zero matrix of degree n — 1. For eachr > n 4 2

we put
x" pr w’
Br — t pr Yr q'r s
WT t qr zr
where Y” is a symmetric matrix of degree n — 1. Putting r = n + 2 in (1.26)

and s = n + 2 in (1.26) we get, respectively, x* + 22 =0, w* =0, Y* =0
for each s > n + 2, and

(3.1) WP+ IPF 1P =1, D+ qp =0

for each r > n + 2. From (1.25) it follows that

(32 () +2pf-=D=0, ()+I[p—Dp =0
foreachr >n + 2. If n > 2weputt =n + 2 in (1.27) so that
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(3.3) P+t g+ g =0,
(3.4 pp+igq +xx*=0 for each distinct r,s > n + 2 .

Lemma. For eachr > n + 2, either |p"| =1, ¢ =0 and x” =0, or
pr=20,/q9"| = 1and x = 0.

Proof. 1t follows from (3.1) and (3.2) that for each r > n + 2, (1) |p7|
=1, q :O’ x7 :0, or(2) pr =0, Iqu = 1> xT:050I(3)pr:07 quO,
x" = x1. Suppose that case (3) occurs, or equivalently B = +(x — x%,,).
Then such an r is unique by (1.24). Hence the polynomial P (and so also F)
does not involve the term xi{. Since this is not the case, by the symmetry of
p" and g” we may assume that p” = O for some r > n + 2. Then from (3.3)
we have ¢°p” = 0 for each s > n + 2 since g” = 0 by (1). Thus ¢* = O for
each s. q.e.d.

Owing to this lemma and (3.4) we may set B, = 2x,x,_, for each r. Then,
since >3, (0P/ox,)* = 16 >, x%, we have 3, (9Q/0x,)? =0 from (1.21).
This implies that Q = 0. It is easily seen that the following polynomial which -
we just determine satisfies (1.3) and (1.4) for m, = 1:

Mo+ 234 D= D+ B0 DA s
2 2
+(a+ mea—za) + 4T ann)
This is nothing but F, in the introduction.

4. Homogeneity of M

Let M be a hypersurface in $?"*! satisfying the condition of our theorem.
Then by § 1 there exist a number ¢ with 0 < ¢ < 1z and a homogeneous poly-
nomial F satisfying (1.3) and (1.4) such that M = {x € §*"*'; F(x) = sin’ 21},
and vice versa. In § 2 we prove that every homogeneous polynomial F satis-
fying (1.3) and (1.4) is congruent to F,, i.e., F(x) = F,(ox) for some ¢ € 0(2n
+ 2). On the other hand, it is known [6] that a hypersurface M**(f) = {x ¢
§2n+1; F,(x) = sin? 24} in $?»*! admits a transitive group G = SO(n) X SO(2)
of isometries, which can be considered as an analytic subgroup of 0(2n + 2).
Thus M admits a transitive group ¢™'Goe of isometries.

Remark. There are more examples of connected compact hypersurfaces
in $?**! having 4 constant principal curvatures with multiplicities m,, m,, m,
and m, (m, + m, = n) (cf. [7]). We shall mention only the pairs (m,, m,):
2,2n—1) (n>12), 4,4n — 5) (n > 2), (4,5) and (6,9). Each of these
examples admits a transitive group of isometries.
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