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C-TOTALLY REAL SUBMANIFOLDS

SEIICHI YAMAGUCHI, MASAHIRO KON & TOSHIHIKO IKAWA

0. Introduction

C. S. Houh [5], S. T. Yau [10], B. Y. Chen and K. Ogiue [3] have studied
totally real submanifolds (anti-holomorphic submanifolds) in an almost Hermi-
tian manifold or a Kahlerian manifold of constant holomorphic sectional cur-
vature, and obtained many interesting results.

On the other hand, in the recent paper [8] we have investigated the C-totally
real submanifolds in a Sasakian manifold with constant ^-holomorphic sectional
curvature.

In § 1 we recall some basic formulas for submanifolds in Riemannian mani-
folds. In § 2 we shall state the fundamental property of C-totally real sub-
manifolds in Sasakian manifolds. In the last section, we investigate C-totally
real minimal submanifolds Mn in a constant ^-holomorphic sectional curvature
and show the pinching theorem for the length of the second fundamental form
by using the method of J. Simons [7].

1. Preliminaries

Let M be a Riemannian manifold of dimension n + p, and M an π-dimen-
sional submanifold of M. Let <( , > be the metric tensor field on M as well as
the metric induced on M. We denote by V the covariant differentiation in M,
and by V the covariant differentiation in M determined by the induced metric
on M. Let X(M) (resp. 3£(M)) be the Lie algebra of vector fields on M (resp.
M), and 9E^(M) the set of all vector fields normal to M.

The Gauss-Weingarten formulas are given by

(l l) VχΎ = VχY + B ( x ' Y ) '
FXN = -AN(X) + DXN , X,Ye 3E(M), N € 3cL(M) ,

where D is the connection in the normal bundle. Both A and B are called the
second fundamental form of M, and satisfy <AN(X), Y> = <#(X, Y),N`).

The curvature tensors associated with F, V and D are defined by

= \PZ, Dγ] -
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If the curvature tensor RL of the normal connection D vanishes identically,
then the normal connection D is said to be flat.

The Gauss equation is given by

<R(z, γ)χ, wy = <Λ(Z, Y)x, wy - <B(y, x), B(Z, w)y
,z),B{Y, wy> , ^ i j , z e

Moreover we have the following Ricci equation:

(Λ(Z, Y)ΛO-1- = i^(Z, Y)N - B(A"(Y), Z) + B(AN(Z), Y) ,

Y,Ze%(M), Ne

where (R(Z, Y)N)1 is the normal projection of R(Z, Y)N.
Now we define the covariant derivative of the second fundamental form B

as follows:

(1.5) FAB)(Y, Z) = DAB(Y, Z)) - B(FXY, Z) - B(Y, VXZ)

for any vector fields X, Y, Z e 9£(M). For the second fundamental form A we
define its covariant derivative by setting

Vx{AY{Y) FAAOO) - AD*N(Y) - AN{VXY) ,

Z , y € 3E(Λf), TV e

Clearly we see <F^(5)(y, Z), N> = <yx{A)N(J), Z>.
The mean curvature vector H is defined byH = (l/ή) trace 5. 4̂ submanifold

M is said to be minimal if H = 0 identically. Moreover, M is called a totally
geodesic submanifold in M if its second fundamental form B is identically zero.

2. C-totally real submanifolds

Let M be a Sasakian manifold with structure tensors (0, ξ, 37, < , )). Then the
structure tensors satisfy the following equations :

f = - / + , (x) £ , # = 0 , ?(0A3 = 0 , 9(f) = 1 ,

VΣξ = φX , φΣφ)Y = η(Ÿ)X - <Γ, F>f , Γ, F € 3E(M) .

A Sasakian manifold is odd dimensional and orientable. The curvature tensor
Ά(X, Y) (X, Y e dί(M)) of a Sasakian manifold M satisfies

<Λ(Ž, F)Γ, ίT> - <Λ(Ž, F)^Γ,

(2. l) - <z, wy<Y, xy - <ž, ž><F, wy + <^ž, ž > < ^ , F>

-(φY,xy(φW,2y
for any vector fields W, X, F, Ž € ϊ(M). When the curvature tensor of
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a (2n + l)-dimensional Sasakian manifold M has the following form

4R(Γ, F)Ž = (k + 3){<F, Ž>X - <Γ, Ž>F} + (k - \){η(X)η(2)Ÿ

(2.2) - η{Ÿ)η{2)X + <Γ, Ž>?(F)f - <F, Ž}η(X)ξ

, Z}φX + <φž, X`}φY - 2{φX, 7)φZ} ,

then M is called a space of constant 0-holomorphic sectional curvature. In
such a space, k is necessarily constant if n > 1.

It is well known that an odd dimensional sphere is Sasakian and a Sasakian
manifold is a contact manifold.

Let us recall the definition of a C-totally real submanifold in a Sasakian
manifold. Let M be a (2n + l)-dimensional contact manifold with contact form
η. The Pfafϊian equation η = 0 determines in M a 2π-dimensional distribution,
which is called the contact distribution [6]. A submanifold M in M is said to
be an integral submanifold of the contact distribution if and only if every tangent
vector of M belongs to the contact distribution. We shall call the integral sub-
manifold M of the contact distribution of a Sasakian manifold a C-totally real
submanifold. Then we have known dim M < n, and the following theorem
has been proved [8]:

Theorem A. Let M be an m (m < n) dimensional C-totally real submani-
fold in a Sasakian manifold M2n+1 with structure tensors (φ, ξ, η, <( , » . Then
we have the following.

( i ) The second fundamental form of ξ direction is identically zero.
(ii) IfXe X(M), then φX e %+-(M).
(iii) Ifm = n, then A*X(Y) = A*Y(X), X, Y g £(M).
Making use of Theorem A, (1.3) and (2.2) we can easily prove
Proposition 2.1. Let Mbeanm (<n)-dimensional C-totally real submani-

fold of a (2n + l)-dimensional Sasakian manifold M2n+1 with constant φ-holo-
morphic sectional curvature k. If M is totally geodesic, then M is of constant
curvature \(k + 3).

In the following, we deal with an π-dimensional C-totally real submanifold
M of a (2n + l)-dimensional Sasakian manifold M2n+1. We shall show

Theorem 2.2. Let M be an n-dimensional C-totally real submanifold of a
Sasakian manifold M2n+1. Then the normal connection is flat if and only if the
submanifold M is of constant curvature 1.

Proof. Using (1.4) and taking account of Theorem A (iii) we can obtain

, Y)φx, φwy = <#-Kz, Y)φx, φwy - <JS(X, Y), B(W, Z)>

+ <5(X, Z), B(W, Y)> . W,X,Y,Ze

which together with (1.3) implies

R(Z, Y)φX - φR(Z, Y)X + φR(Z, Y)X = R^-(Z, Y)φX .

Consequently, regarding to (2.1) we get
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<Λ(Z, γ)x9 wy - <z, wy<j, xy + <z, Z><Γ, JF> = </̂ -(z, Y)φx,

which completes the proof because of

<Λ(Z, Y)N, ξ> = ?(Z)<Γ, N> - ?(Y)<Z, iV> = 0 .

Theorem 2.3. Let M be an n-dimensional C-totally real submanifold in
M2n+1. If the second fundamental form of M is parallel, then M is totally
geodesic.

Proof. Let X, Y, Z e X(Af). By (1.5) we have

, Y), φZy = -<yz{B){X, Y), f > = 0 ,

which shows that M is totally geodesic.

3. C-totally real minimal submanifolds

In this section we assume that M2n+1(k) is a (2n + l)-dimensional Sasakian
manifold with constant 0-holomorphic sectional curvature k, and M is an n-
dimensional C-totally real submanifold of M2n+1(k). Then the Simons' type
formula for the second fundamental form A is given by

F2A = -AoA-AoA + \{{n + ϊ)k + 3n - \}A ,

where the operators A and A are defined by

2TO + 1

A = *A oA , 4 = 2 (ad^«)ad^α .
α=W + l

Now we take a frame E19 • • •, En for TP(M) and a frame 0E1? • • •, ̂ £ n , ξ
for Γp(M)-1, and for simplicity write A1* for Λl^*. As Aζ = 0, we have
A = 2?=i (ad^4^*)ady4^*. By the method of Simons we can easily derive the
inequality:

(AoA,Ay + (AoA,Ay < {l - ^)\\A\\* .

If M is compact, then

f {<VA,VAy-\\A\f}
J M

- L { ( 2 " D M " 2 " τ ( n + m + 3 ) } M " 2 •
Next we shall prove that the left hand side of (3.1) is nonnegative at each

point of M. Owing to (1.6) we have
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Σ <yEi{Ay\Ek),vEi{Ay\Ek)y
i,j,k = l

+ Σ (PEt(Λy(βj

= Σk<yEiuy\Ek),pEi(Ay\Ek)y + \\A\\2 ,

which implies (PA, PA} — \\A\\2 > 0. Hence

(3.2) 0 < f ί(2 - -)\\A\\2 - Un + l)(k + 3)}\\A\\2 .
v 7

 JM W n) 4 J

Therefore we obtain
Theorem 3.1. Let M2n+ί(k) be a (2n + lydimensional Sasakian manifold

with constant φ-holomorphic sectional curvature k, and M a compact n-dimen-
sional C-totally real minimal submanίfold of M2n+1(k). If

\\A\\2 <\n(n + l)(k + 3)/(2n - 1),

or equivalently

p > ίnχn _ 2)(k + 3)/(2n - 1) ,

then M is totally geodesic, where p is the scalar curvature of M.
Theorem 3.2. Let M be an n-dimensional C-totally real minimal submani-

fold of M2n+1(k). If the sectional curvature of M is constant, say C, then either
C = \(k + 3) (i.e., M is totally geodesic) or C < 0.

Proof. We calculate (AoA,Ay and (A o A, Ay in the following ways. In
the first place, by virtue of (1.3) and (2.2) we have

(A o A, Ay = Σ (trace A'*A^)2 = trace (Σ
(3.3) ij \ i

= (n- \)(\(k + 3)-C)\\A\\2 .

On the other hand, using (1.3) we get

(3.4) -(\(k + 3) - C) \\A ||2 = Σ trace A**AWA* -(AoA,Ay.
k,t

In the next place, from the definition of A it follows that

(3.5) (AoA,Ay = 2Σ trace (A**)\A*y - 2Σ trace A**A**A**A1* .
k,t k,t

Therefore by virtue of (3.3), (3.4) and (3.5) we obtain

(3.6) <ΛoA,Ay = 2(\(k + 3) - C) \\A\\2 ,
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which means

(3.7) <FA, FA} - \\A ||2 = n(rΐ - l)C(C - \{k + 3)) .

This completes our assertion.

The following result is an immediate consequence of (3.6).

Theorem 3.3. Let M be an n-dίmensίonal C-totally real minimal submani-

jold in M2n+1(k). If the sectional curvature of M is constant, and (FA, FA}

= \\A ||2 holds, then M is either totally geodesic or flat.
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