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C-TOTALLY REAL SUBMANIFOLDS

SEIICHI YAMAGUCHI, MASAHIRO KON & TOSHIHIKO IKAWA

0. Introduction

C. S. Houh [5], S. T. Yau [10], B. Y. Chen and K. Ogiue [3] have studied
totally real submanifolds (anti-holomorphic submanifolds) in an almost Hermi-
tian manifold or a Kahlerian manifold of constant holomorphic sectional cur-
vature, and obtained many interesting results.

On the other hand, in the recent paper [8] we have investigated the C-totally
real submanifolds in a Sasakian manifold with constant ¢-holomorphic sectional
curvature.

In § 1 we recall some basic formulas for submanifolds in Riemannian mani-
folds. In §2 we shall state the fundamental property of C-totally real sub-
manifolds in Sasakian manifolds. In the last section, we investigate C-totally
real minimal submanifolds M™ in a constant ¢-holomorphic sectional curvature
and show the pinching theorem for the length of the second fundamental form
by using the method of J. Simons [7].

1. Preliminaries

Let M be a Riemanrli_an manifold of dimension n 4+ p, and M an n-dimen-
sional submanifold of M. Let { , > be the metric tensor field on M as well as
the metric induced on M. We denote by 7 the covariant differentiation in M,
and by V' the covariant differentiation in M determined by the induced metric
on M. Let X(M) (resp. X(M)) be the Lie algebra of vector fields on M (resp.
M), and X1(M) the set of all vector fields normal to M.

The Gauss-Weingarten formulas are given by

VY =VyY + BX,Y),

PyN = —AYX) + DyN, X,Y eX¥(M),N e ¥-M),
where D is the connection in the normal bundle. Both 4 and B are called the
second fundamental form of M, and satisfy (4¥(X), Y) = (B(X,Y),N).

The curvature tensors associated with 7,7 and D are defined by

R(X’ Y) - [711', ‘7}'] - VEX,Y] )
(1-2) R(X, Y) = [VXa VY] - V[X,Y] >
RJ‘(X> Y) = [DX9 DY] - D[X,Y] .
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If the curvature tensor R* of the normal connection D vanishes identically,
then the normal connection D is said to be flat.

The Gauss equation is given by
(R(Z,Y)X,W) =<R(Z,Y)X,W) — {B(Y, X), B(Z, W)>

1.3
(1-3) + {B(X,Z2),B(Y,W)) , W,X,Y,ZecX(M) .

Moreover we have the following Ricci equation :

(R(Z,Y)N)* = RHZ,Y)N — B(A™(Y), Z) + B(4¥(2),Y) ,

(1.49)
Y,Z e %(M), N e XL(M) )

where (R(Z, Y)N)* is the normal projection of R(Z, Y)N.
Now we define the covariant derivative of the second fundamental form B
as follows :

1.5) Vx(B)\Y,Z) = Dx(B(Y,Z)) — BWyY,Z) — B(Y,Vx2)

for any vector fields X, Y, Z € X(M). For the second fundamental form 4 we
define its covariant derivative by setting
Vx(A)¥(Y) = V(A7 (Y)) — APN(Y) — AV (VxY) ,

(1.6)
X, YeX(M), NeX+(M) .

Clearly we see {F 3(B)(Y, Z),N)> = (Fy(A)¥(Y), Z).

The mean curvature vector H is defined by H = (1/n) trace B. A submanifold
M is said to be minimal if H = 0 identically. Moreover, M is called a totally
geodesic submanifold in M if its second fundamental form B is identically zero.

2. C-totally real submanifolds

Let M be a Sasakian manifold with structure tensors (¢, &, , { , »). Then the
structure tensors satisfy the following equations :

F=—14+70¢6, ¢=0, 7(¢X)=0, 5@ =1,
Vet =¢X, z)Y =7NX — (X, Y>e, X, YecX(M).

A Sasakian manifold is odd dimensional and orie_ntable. The curvature tensor
R(X,Y) (X,Y e ¥(M)) of a Sasakian manifold M satisfies

@.1) = (Z,WXY, X> — <Z, XXT, W + <$Z, XXW, T>
for any vector fields W,X,Y,Z e ¥(M). When the curvature tensor of
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a (2n 4 1)-dimensional Sasakian manifold M has the following form
4RX,VZ = (k + 3){<Y’, Z))? — (X, Z>Y} + (k — D X)p(Z)Y
(2.2) — X DX + <X, Zy(X)e — X, Zyp(X)¢
+ B, Z)¢X + {$Z, X)¢Y — 2{$X, Y )$Z} ,

then M is called a space of constant ¢-holomorphic sectional curvature. In
such a space, k is necessarily constant if n > 1.

It is well known that an odd dimensional sphere is Sasakian and a Sasakian
manifold is a contact manifold.

Let us recall the definition of a C-totally real submanifold in a Sasakian
manifold. Let M be a (2n + 1)-dimensional contact manifold with contact form
5. The Pfaffian equation 7 = O determines in M a 2n-dimensional distribution,
which is called the contact distribution [6]. A submanifold M in M is said to
be an integral submanifold of the contact distribution if and only if every tangent
vector of M belongs to the contact distribution. We shall call the integral sub-
manifold M of the contact distribution of a Sasakian manifold a C-totally real
submanifold. Then we have known dim M < n, and the following theorem
has been proved [8]:

Theorem A. Let M be an m (m < n) dimensional C-totally real submani-
fold in a Sasakian manifold M*** with structure tensors (¢, &,7,< , »). Then
we have the following.

(i) The second fundamental form of & direction is identically zero.

(i) If X e X(M), then ¢X e X-(M).

(ili) If m = n, then A**(Y) = A**(X), X, Y ¢ X(M).

Making use of Theorem A, (1.3) and (2.2) we can easily prove

Proposition 2.1. Let M be an m (< n)-dimensional C-totally real submani-
fold of a 2n + 1)-dimensional Sasakian manifold M**** with constant ¢-holo-
morphic sectional curvature k. If M is totally geodesic, then M is of constant
curvature L(k + 3).

In the following, we deal with an n-dimensional C-totally real submanifold
M of a (2n + 1)-dimensional Sasakian manifold M?**!. We shall show

Theorem 2.2. Let M be an n-dimensional C-totally real submanifold of a
Sasakian manifold M*"+'. Then the normal connection is flat if and only if the
submanifold M is of constant curvature 1.

Proof. Using (1.4) and taking account of Theorem A (iii) we can obtain

(R(Z,Y)¢X,¢W) = (RHZ,Y)¢X,¢W) — (BXX,Y), BW, 2))
+<{BX,Z),BW,Y)) . W,X,Y,ZeX(M),
which together with (1.3) implies
R(Z,Y)¢X — ¢R(Z,Y)X + ¢R(Z,Y)X = RH(Z,Y)$X .
Consequently, regarding to (2.1) we get
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(RZ, VX, W) —LZ,WXY,X) +<KZ,X XY, W) =<RHZ,Y)¢X, W) ,
which completes the proof because of
(R(Z,Y)N,&> = n(Z)XY,Ny — n(Y){X,N) =0 .

Theorem 2.3. Let M be an n-dimensional C-totally real submanifold in
M+t If the second fundamental form of M is parallel, then M is totally

geodesic.
Proof. Let X,Y,Z e X(M). By (1.5) we have

(B(X,Y),$Zy = —F,(BYX,Y),) =0,

which shows that M is totally geodesic.

3. C-totally real minimal submanifolds

In this section we assume that M2**'(k) is a (2n + 1)-dimensional Sasakian
manifold with constant ¢-holomorphic sectional curvature k£, and M is an n-
dimensional C-totally real submanifold of M?**!(k). Then the Simons’ type
formula for the second fundamental form A is given by

VA= —Aod —AoA + Hn + Dk + 3n— 1}4,

where the operators 4 and 4 are defined by

A=t404, A= 5 (adA9ad A" .

a=n+1

Now we take a frame E,, - .-, E, for Tp(M) and a frame ¢E,, - - -, ¢E,, &
for Tp(M)+, and for simplicity write A* for A¢%:. As A* = 0, we have
A = Y »  (ad A™)ad A¥. By the method of Simons we can easily derive the
inequality :

Aod, Ay + Ao, Ay < (2= Al
n
If M is compact, then
[ wraray —jap

ER) <[~ Lyar — Lo+ oo+ 9)iar.

Next we shall prove that the left hand side of (3.1) is nonnegative at each
point of M. Owing to (1.6) we have
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FAFAY = 53 oA ED, Vs (A ED)

i, J,k=

1,7=1

+ 5 e (A (E), Vs (AHED)
= 3 Tl A)ED, Vs (AT EDY + | A,

1,7,k

which implies (FA,VA> — ||A|? > 0. Hence

62 o<[ (2= Djar - Lo+ v+ 3)ar.

Therefore we obtain

Theorem 3.1. Let M*"*(k) be a (2n + 1)-dimensional Sasakian manifold
with constant ¢-holomorphic sectional curvature k, and M a compact n-dimen-
sional C-totally real minimal submanifold of M***'(k). If

IAlI? < in(n + Dk + 3)/2n—1),
or equivalently
0> dnn — Dk + 3)/@n — 1),

then M is totally geodesic, where p is the scalar curvature of M.

Theorem 3.2. Let M be an n-dimensional C-totally real minimal submani-
fold of M*+\(k). If the sectional curvature of M is constant, say C, then either
C = i(k + 3) (i.e., M is totally geodesic) or C < 0.

Proof. We calculate (Ao A, A> and (4 o A, A in the following ways. In
the first place, by virtue of (1.3) and (2.2) we have

(Ao d, A5 = 3] (trace AT"AY — trace (2 (Ai*)z)z
(3.3) i 7
=n—-DGEEKk+3) -0 4|F.
On the other hand, using (1.3) we get

B4 —Gk +3) = O 4f = T trace AVA“A¥4" — (Ao 4, 4) .

In the next place, from the definition of A it follows that

(3.5) <{40A4,A4> =2} trace (A")¥(A*")*? — 2} trace A¥"AYA** A" .
k,t k,t

Therefore by virtue of (3.3), (3.4) and (3.5) we obtain

(3.6) {doA,A) =204k + 3) — O)||4]*,
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which means
3.7 FA,FAY — ||A|} = n(n* — DC(C — Lk + 3)) .

This completes our assertion.

The following result is an immediate consequence of (3.6).

Theorem 3.3. Let M be an n-dimensional C-totally real minimal submani-
fold in M***(k). If the sectional curvature of M is constant, and {VA,VA)
= ||A|? holds, then M is either totally geodesic or flat.
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