C-TOTALLY REAL SUBMANIFOLDS

SEIICHI YAMAGUCHI, MASAHIRO KON & TOSHIHIKO IKAWA

0. Introduction

C. S. Houh [5], S. T. Yau [10], B. Y. Chen and K. Ogiue [3] have studied totally real submanifolds (anti-holomorphic submanifolds) in an almost Hermitian manifold or a Kählerian manifold of constant holomorphic sectional curvature, and obtained many interesting results.

On the other hand, in the recent paper [8] we have investigated the C-totally real submanifolds in a Sasakian manifold with constant ϕ -holomorphic sectional curvature.

In § 1 we recall some basic formulas for submanifolds in Riemannian manifolds. In § 2 we shall state the fundamental property of C-totally real submanifolds in Sasakian manifolds. In the last section, we investigate C-totally real minimal submanifolds M^n in a constant ϕ -holomorphic sectional curvature and show the pinching theorem for the length of the second fundamental form by using the method of J. Simons [7].

1. Preliminaries

Let \overline{M} be a Riemannian manifold of dimension n+p, and M an n-dimensional submanifold of \overline{M} . Let \langle , \rangle be the metric tensor field on \overline{M} as well as the metric induced on M. We denote by \overline{V} the covariant differentiation in \overline{M} , and by \overline{V} the covariant differentiation in M determined by the induced metric on M. Let $\mathfrak{X}(\overline{M})$ (resp. $\mathfrak{X}(M)$) be the Lie algebra of vector fields on \overline{M} (resp. M), and $\mathfrak{X}^{\perp}(M)$ the set of all vector fields normal to M.

The Gauss-Weingarten formulas are given by

(1.1)
$$\bar{\overline{V}}_X Y = \overline{V}_X Y + B(X, Y) ,$$

$$\bar{\overline{V}}_X N = -A^N(X) + D_X N , \quad X, Y \in \mathfrak{X}(M), N \in \mathfrak{X}^{\perp}(M) ,$$

where D is the connection in the normal bundle. Both A and B are called the second fundamental form of M, and satisfy $\langle A^N(X), Y \rangle = \langle B(X, Y), N \rangle$.

The curvature tensors associated with \bar{V} , V and D are defined by

(1.2)
$$\overline{R}(X,Y) = [\overline{V}_X, \overline{V}_Y] - \overline{V}_{[X,Y]},$$

$$R(X,Y) = [V_X, V_Y] - V_{[X,Y]},$$

$$R^{\perp}(X,Y) = [D_X, D_Y] - D_{[X,Y]}.$$

Communicated by K. Yano, June 13, 1974.

If the curvature tensor R^{\perp} of the normal connection D vanishes identically, then the normal connection D is said to be flat.

The Gauss equation is given by

(1.3)
$$\langle \overline{R}(Z,Y)X,W\rangle = \langle R(Z,Y)X,W\rangle - \langle B(Y,X),B(Z,W)\rangle + \langle B(X,Z),B(Y,W)\rangle, \qquad W,X,Y,Z\in\mathfrak{X}(M).$$

Moreover we have the following Ricci equation:

(1.4)
$$(\bar{R}(Z,Y)N)^{\perp} = R^{\perp}(Z,Y)N - B(A^{N}(Y),Z) + B(A^{N}(Z),Y) ,$$

$$Y, Z \in \mathcal{X}(M), N \in \mathcal{X}^{\perp}(M) .$$

where $(\bar{R}(Z, Y)N)^{\perp}$ is the normal projection of $\bar{R}(Z, Y)N$.

Now we define the covariant derivative of the second fundamental form B as follows:

$$(1.5) \qquad \tilde{\mathcal{V}}_X(B)(Y,Z) = D_X(B(Y,Z)) - B(\mathcal{V}_XY,Z) - B(Y,\mathcal{V}_XZ)$$

for any vector fields $X, Y, Z \in \mathfrak{X}(M)$. For the second fundamental form A we define its covariant derivative by setting

(1.6)
$$\overline{V}_X(A)^N(Y) = \overline{V}_X(A^N(Y)) - A^{D_XN}(Y) - A^N(\overline{V}_X Y) ,$$

$$X, Y \in \mathfrak{X}(M), N \in \mathfrak{X}^{\perp}(M) .$$

Clearly we see $\langle \tilde{\mathcal{V}}_X(B)(Y,Z), N \rangle = \langle \mathcal{V}_X(A)^N(Y), Z \rangle$.

The mean curvature vector H is defined by H = (1/n) trace B. A submanifold M is said to be minimal if H = 0 identically. Moreover, M is called a totally geodesic submanifold in \overline{M} if its second fundamental form B is identically zero.

2. C-totally real submanifolds

Let \overline{M} be a Sasakian manifold with structure tensors $(\phi, \xi, \eta, \langle , \rangle)$. Then the structure tensors satisfy the following equations:

$$\begin{split} \phi^2 &= -I + \eta \otimes \xi \;, \quad \phi \xi = 0 \;, \quad \eta(\phi X) = 0 \;, \quad \eta(\xi) = 1 \;, \\ \bar{V}_{\mathcal{X}} \xi &= \phi \overline{X} \;, \quad (\bar{V}_{\mathcal{X}} \phi) \overline{Y} = \eta(\overline{Y}) \overline{X} - \langle \overline{X}, \overline{Y} \rangle \xi \;, \quad \overline{X}, \overline{Y} \in \mathfrak{X}(\overline{M}) \;. \end{split}$$

A Sasakian manifold is odd dimensional and orientable. The curvature tensor $\overline{R}(\overline{X}, \overline{Y})$ $(\overline{X}, \overline{Y} \in \mathfrak{X}(\overline{M}))$ of a Sasakian manifold \overline{M} satisfies

$$\langle \overline{R}(\overline{Z}, \overline{Y}) \overline{X}, \overline{W} \rangle - \langle \overline{R}(\overline{Z}, \overline{Y}) \phi \overline{X}, \phi \overline{W} \rangle$$

$$= \langle Z, W \rangle \langle Y, X \rangle - \langle \overline{Z}, \overline{X} \rangle \langle \overline{Y}, \overline{W} \rangle + \langle \phi \overline{Z}, \overline{X} \rangle \langle \phi \overline{W}, \overline{Y} \rangle$$

$$- \langle \phi \overline{Y}, \overline{X} \rangle \langle \phi \overline{W}, \overline{Z} \rangle$$

for any vector fields \overline{W} , \overline{X} , \overline{Y} , $\overline{Z} \in \mathfrak{X}(\overline{M})$. When the curvature tensor of

a (2n + 1)-dimensional Sasakian manifold \overline{M} has the following form

$$4\overline{R}(\overline{X}, \overline{Y})\overline{Z} = (k+3)\{\langle \overline{Y}, \overline{Z} \rangle \overline{X} - \langle \overline{X}, \overline{Z} \rangle \overline{Y}\} + (k-1)\{\eta(\overline{X})\eta(\overline{Z})\overline{Y}\}$$

$$- \eta(\overline{Y})\eta(\overline{Z})\overline{X} + \langle \overline{X}, \overline{Z} \rangle \eta(\overline{Y})\xi - \langle \overline{Y}, \overline{Z} \rangle \eta(\overline{X})\xi$$

$$+ \langle \phi \overline{Y}, \overline{Z} \rangle \phi \overline{X} + \langle \phi \overline{Z}, \overline{X} \rangle \phi \overline{Y} - 2\langle \phi \overline{X}, \overline{Y} \rangle \phi \overline{Z}\},$$

then \overline{M} is called a space of constant ϕ -holomorphic sectional curvature. In such a space, k is necessarily constant if n > 1.

It is well known that an odd dimensional sphere is Sasakian and a Sasakian manifold is a contact manifold.

Let us recall the definition of a C-totally real submanifold in a Sasakian manifold. Let \overline{M} be a (2n+1)-dimensional contact manifold with contact form η . The Pfaffian equation $\eta=0$ determines in \overline{M} a 2n-dimensional distribution, which is called the contact distribution [6]. A submanifold M in \overline{M} is said to be an integral submanifold of the contact distribution if and only if every tangent vector of M belongs to the contact distribution. We shall call the integral submanifold M of the contact distribution of a Sasakian manifold a C-totally real submanifold. Then we have known dim $M \leq n$, and the following theorem has been proved [8]:

Theorem A. Let M be an m ($m \le n$) dimensional C-totally real submanifold in a Sasakian manifold \overline{M}^{2n+1} with structure tensors $(\phi, \xi, \eta, \langle , \rangle)$. Then we have the following.

- (i) The second fundamental form of ξ direction is identically zero.
- (ii) If $X \in \mathfrak{X}(M)$, then $\phi X \in \mathfrak{X}^{\perp}(M)$.
- (iii) If m = n, then $A^{\phi X}(Y) = A^{\phi Y}(X)$, $X, Y \in \mathfrak{X}(M)$.

Making use of Theorem A, (1.3) and (2.2) we can easily prove

Proposition 2.1. Let M be an $m (\leq n)$ -dimensional C-totally real submanifold of a (2n + 1)-dimensional Sasakian manifold \overline{M}^{2n+1} with constant ϕ -holomorphic sectional curvature k. If M is totally geodesic, then M is of constant curvature $\frac{1}{4}(k + 3)$.

In the following, we deal with an *n*-dimensional *C*-totally real submanifold M of a (2n + 1)-dimensional Sasakian manifold \overline{M}^{2n+1} . We shall show

Theorem 2.2. Let M be an n-dimensional C-totally real submanifold of a Sasakian manifold \overline{M}^{2n+1} . Then the normal connection is flat if and only if the submanifold M is of constant curvature 1.

Proof. Using (1.4) and taking account of Theorem A (iii) we can obtain

$$\langle \overline{R}(Z,Y)\phi X, \phi W \rangle = \langle R^{\perp}(Z,Y)\phi X, \phi W \rangle - \langle B(X,Y), B(W,Z) \rangle + \langle B(X,Z), B(W,Y) \rangle . \qquad W, X, Y, Z \in \mathfrak{X}(M) ,$$

which together with (1.3) implies

$$\bar{R}(Z,Y)\phi X - \phi \bar{R}(Z,Y)X + \phi R(Z,Y)X = R^{\perp}(Z,Y)\phi X$$
.

Consequently, regarding to (2.1) we get

$$\langle R(Z,Y)X,W\rangle - \langle Z,W\rangle\langle Y,X\rangle + \langle Z,X\rangle\langle Y,W\rangle = \langle R^{\perp}(Z,Y)\phi X,\phi W\rangle$$

which completes the proof because of

$$\langle \overline{R}(Z,Y)N,\xi\rangle = \eta(Z)\langle Y,N\rangle - \eta(Y)\langle X,N\rangle = 0$$
.

Theorem 2.3. Let M be an n-dimensional C-totally real submanifold in \overline{M}^{2n+1} . If the second fundamental form of M is parallel, then M is totally geodesic.

Proof. Let $X, Y, Z \in \mathfrak{X}(M)$. By (1.5) we have

$$\langle B(X,Y), \phi Z \rangle = -\langle \tilde{V}_{Z}(B)(X,Y), \xi \rangle = 0$$

which shows that M is totally geodesic.

3. C-totally real minimal submanifolds

In this section we assume that $\overline{M}^{2n+1}(k)$ is a (2n+1)-dimensional Sasakian manifold with constant ϕ -holomorphic sectional curvature k, and M is an n-dimensional C-totally real submanifold of $\overline{M}^{2n+1}(k)$. Then the Simons' type formula for the second fundamental form A is given by

$$\nabla^2 A = -A \circ \tilde{A} - A \circ A + \frac{1}{4} \{(n+1)k + 3n - 1\}A$$
,

where the operators \tilde{A} and \tilde{A} are defined by

$$\tilde{A} = {}^{t}A \circ A$$
, $\underline{A} = \sum_{\alpha=n+1}^{2n+1} (\operatorname{ad} A^{\alpha})\operatorname{ad} A^{\alpha}$.

Now we take a frame E_1, \dots, E_n for $T_P(M)$ and a frame $\phi E_1, \dots, \phi E_n, \xi$ for $T_P(M)^{\perp}$, and for simplicity write A^{i*} for $A^{\phi E_i}$. As $A^{\xi} = 0$, we have $A = \sum_{i=1}^{n} (\operatorname{ad} A^{i*}) \operatorname{ad} A^{i*}$. By the method of Simons we can easily derive the inequality:

$$\langle A \circ A, A \rangle + \langle \underline{A} \circ A, A \rangle \leq \left(2 - \frac{1}{n}\right) ||A||^4.$$

If M is compact, then

(3.1)
$$\int_{M} \{\langle \overline{V}A, \overline{V}A \rangle - \|A\|^{2} \}$$

$$\leq \int_{M} \left\{ \left(2 - \frac{1}{n}\right) \|A\|^{2} - \frac{1}{4}(n+1)(k+3) \right\} \|A\|^{2}.$$

Next we shall prove that the left hand side of (3.1) is nonnegative at each point of M. Owing to (1.6) we have

$$egin{aligned} raket{ar{V}A,ar{V}A} &= \sum\limits_{i,j,k=1}^n raket{ar{V}_{E_i}(A)^{j*}(E_k),ar{V}_{E_i}(A)^{j*}(E_k)} \ &+ \sum\limits_{i,j=1}^n raket{ar{V}_{E_i}(A)^{\epsilon}(E_j),ar{V}_{E_i}(A)^{\epsilon}(E_j)} \ &= \sum\limits_{i,j,k} raket{ar{V}_{E_i}(A)^{j*}(E_k),ar{V}_{E_i}(A)^{j*}(E_k)} + \|A\|^2 \ , \end{aligned}$$

which implies $\langle VA, VA \rangle - ||A||^2 \ge 0$. Hence

$$(3.2) 0 \le \int_{M} \left\{ \left(2 - \frac{1}{n} \right) ||A||^{2} - \frac{1}{4} (n+1)(k+3) \right\} ||A||^{2}.$$

Therefore we obtain

Theorem 3.1. Let $\overline{M}^{2n+1}(k)$ be a (2n+1)-dimensional Sasakian manifold with constant ϕ -holomorphic sectional curvature k, and M a compact n-dimensional C-totally real minimal submanifold of $\overline{M}^{2n+1}(k)$. If

$$||A||^2 < \frac{1}{4}n(n+1)(k+3)/(2n-1)$$
,

or equivalently

$$\rho > \frac{1}{2}n^2(n-2)(k+3)/(2n-1) ,$$

then M is totally geodesic, where ρ is the scalar curvature of M.

Theorem 3.2. Let M be an n-dimensional C-totally real minimal submanifold of $\overline{M}^{2n+1}(k)$. If the sectional curvature of M is constant, say C, then either $C = \frac{1}{4}(k+3)$ (i.e., M is totally geodesic) or $C \leq 0$.

Proof. We calculate $\langle A \circ \tilde{A}, A \rangle$ and $\langle \underline{A} \circ A, A \rangle$ in the following ways. In the first place, by virtue of (1.3) and (2.2) we have

(3.3)
$$\langle A \circ \tilde{A}, A \rangle = \sum_{i,j} (\operatorname{trace} A^{i*} A^{j*})^2 = \operatorname{trace} \left(\sum_i (A^{i*})^2 \right)^2$$
$$= (n-1)(\frac{1}{4}(k+3)-C) \|A\|^2.$$

On the other hand, using (1.3) we get

(3.4)
$$-(\frac{1}{4}(k+3)-C)\|A\|^2 = \sum_{k,t} \operatorname{trace} A^{k*}A^{t*}A^{k*}A^{t*} - \langle A \circ \tilde{A}, A \rangle$$
.

In the next place, from the definition of A it follows that

(3.5)
$$\langle \underline{A} \circ A, A \rangle = 2 \sum_{k,t} \operatorname{trace} (A^{t^*})^2 (A^{k^*})^2 - 2 \sum_{k,t} \operatorname{trace} A^{k^*} A^{t^*} A^{k^*} A^{t^*}$$
.

Therefore by virtue of (3.3), (3.4) and (3.5) we obtain

(3.6)
$$\langle \underline{A} \circ A, A \rangle = 2(\frac{1}{4}(k+3) - C) ||A||^2,$$

which means

$$(3.7) \langle \nabla A, \nabla A \rangle - ||A||^2 = n(n^2 - 1)C(C - \frac{1}{4}(k+3)).$$

This completes our assertion.

The following result is an immediate consequence of (3.6).

Theorem 3.3. Let M be an n-dimensional C-totally real minimal submanifold in $\overline{M}^{2n+1}(k)$. If the sectional curvature of M is constant, and $\langle VA, VA \rangle = \|A\|^2$ holds, then M is either totally geodesic or flat.

References

- [1] S. Braidi & C. C. Hsiung, Submanifolds of spheres, Math. Z. 115 (1970) 235-251.
- [2] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
- [3] B. Y. Chen & K. Ogiue, On totally real manifolds, Trans. Amer. Math. Soc. 193 (1974) 257-266.
- [4] S. S. Chern, M. do Carmo & S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, Springer, Berlin, 1970, 59-75.
- [5] C. S. Houh, Some totally real minimal surfaces in CP², Proc. Amer. Math. Soc. 40 (1973) 240-244.
- [6] S. Sasaki, Almost contact manifolds, Lecture notes I, Tôhoku University, 1965.
- [7] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968) 62-105.
- [8] S. Yamaguchi & T. Ikawa, On compact minimal C-totally real submanifolds, Tensor 29 (1975) 30-34.
- [9] K. Yano & S. Ishihara, Submanifolds with parallel mean curvature vector, J. Differential Geometry 6 (1971) 95-118.
- [10] S. T. Yau, Submanifolds with constant mean curvature. I, Amer. J. Math. 96 (1974) 346-366.

SCIENCE UNIVERSITY OF TOKYO