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RESTRICTIONS ON THE CURVATURES
OF Φ-BOUNDED SURFACES

TILLA KLOTZ MILNOR

1. Introduction

The study of surfaces in the large has often centered on compact surfaces.
(See [17], for example.) This paper is meant as a small contribution to the
growing body of knowledge about complete open surfaces. Samples of work
in this area are [4], [5], [6], [7], [8], [14], [15], [16], [22], [27], [28], [29]
and [30].

Given an oriented surface 5, a Riemann surface R defined on S (see § 2),
and a differential Φ on R, we define in § 3 the notion of Φ-boundedness with
respect to R. Since our basic concern is with surfaces smoothly immersed in a
Riemannian 3-manifold, we use the concept of Φ-boundedness in cases where
Φ or R is connected with the geometry of an immersion. In fact, Φ-boundedness
arises naturally in a substantial number of interesting differential geometric
situations (see Examples 1 and 2 in § 3), and this paper attempts to present
fairly general methods which imitate ad hoc arguments developed in [21],
[10], [12] and [35] for handling surfaces of constant mean curvature. Our
main results (in § 5) place restrictions on the curvatures of complete Φ-bounded
surfaces smoothly immersed in an arbitrary Riemannian 3-manifold. Analogous
results can be formulated for an ambient manifold of arbitrary dimension ( > 3)
so long as one works relative to a fixed choice of a unit normal vector field
on the immersed surface.

We generate differentials of geometric significance on a Riemann surface
R defined on an immersed surface S by associating to any real quadratic form
X on S a. complex quadratic differential Ω on R, and conformal metrics Γ, \Ω\
and Π on R. (See § 2.) We are especially interested in the case in which X is
one of the fundamental forms Xn or skew fundamental forms Xr

n defined on
S for all integral values of n. While some of the material in this paper was
established for surfaces in Euclidean 3-space E3 in [23], we deal here with a
far wider variety of metrics. In addition to the forms Xn and Xf

n on 5, we in-
troduce the metrics Λn (or Λ'J which are complete on a complete immersed
surface so long as Xn (or X'n) is positive definite and sufficiently smooth.
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Hopefully, the techniques developed for handling these metrics will prove
useful even where our results are not directly applicable.

The methods used in this paper are formal in nature. No proof of a theorem
or lemma uses the Codazzi-Mainardi equations [11, p. 78], and only three
corollaries (in § 4) use the Gauss equation (22). But in applications it is often
these very compatibility conditions which must be used to check whether a
given surface satisfies the hypotheses of some result below. (See Example 1
of §3.)

2. Preliminary definitions and results

Let S be an oriented C°° 2-manifold. Our arguments apply to nonorientable
surfaces by lifting all considerations to the universal covering surface. We say
that a Riemann surface R is defined on S if R is a complex 1-manifold on the
underlying topological space of S so that each conformal parameter z = x + ίy
on R yields an oriented Cj coordinate pair x,y on S with ƒ > 1. The coordi-
nates x, y are said to be i?-isothermal on 5, and R is said to be C^-related to
S. Generally any Ck+a Riemannian metric on S defines a Riemann surface
which is C fc+α+1-related to S, where k = 0, 1, • • • and 0 < a < 1. (See [2,
p. 29] or [17, p. 137].) But simpler results often apply. For example, the first
fundamental form of a surface S which is CΛ-immersed in a locally Cfc-con-
formally Euclidean 3-manifold defines a Riemann surface R = Rλ which is
Cfc-related to S, k = 2, 3, • • • ([34] and [3]).

Given i?-isothermal coordinates x, y on S, any real quadratic form
X — Adx2 + 2Bdxdy + Cdy2 has the expression

( 1) X = Qdz2 + Pdzdž + Qdž2 = 2Re{Ω) + Γ ,

where z = x + iy, 4Q = A - C - 2iB, 2P = A + C, Γ = Γ(X, R) =
Pdzdž = P(dx2 + dy2), and Ω = Ω(X, R) = Qdz2. Thus d e t Z = \P\2 - 412| 2,
so that the signs of det X and \P\ — 2\Q\ must match. On R, Ω is a quadratic
differential, while Γ is a conformal metric. One can also associate to X on R
the conformal metrics \Ω\ and Π given by

\Ω\ = \Ω(X,R)\ = \Q\dzdž,

Π = Π(X,R) = y/^ά&X\dzdž = VAC - B2(dx2 + dy2) .

Here \Ω\ is singular only where Q = 0, and Π only where d e t Z = 0. As R
varies on S, one can think of X as generating families of metrics Γ(X, R),
\Ω(X,R)\, Π(X,R) and 2ReΩ(X,R) on S. The metrics so obtained are of
geometric interest on S to the extent that X and R are related to the geometry
on S. Denote by Rx the Riemann surface determined on S by any Riemannian
metric X which is at least Cα-smooth, a > 0. Then
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( 3 ) Ω(X,RJ = O, Γ{X,RX) = X.

Lemma 1. If X is a complete Riemannian metric on a surface S, then
Γ = Γ(X, R) is a complete Riemannian metric on S for any choice of a
Riemann surface R on S.

Proof. Suppose x, y are 7?-isothermal coordinates and X = Adx2 + 2Bdxdy
+ Cdy2. Then 2Γ — X = Cdx2 — 2Bdxdy + Ady2 is clearly positive definite.
Thus X < 2Γ, and Γ must be complete if X is. (We thank R. Osserman for
an improvement of our original argument.)

If X is a pseudo-Riemannian metric on S (i.e., if det X Φ 0), and X is C2-
smooth, then its curvature K(X) is given by a standard formula [31, p. 112].
Even if X is only C*-smooth, we say that its curvature K(X) is defined so long
as some continuous function K(X) on S satisfies an integrated version of this
formula. (See [9].)

For a conformal metric Σ = σdzdϊ on a Riemann surface R, the curvature
formula simplifies considerably. In case Σ is C2-smooth,

( 4 )

where Δ = 32/dx2 + 32/dy2, and z = x + /y is a conformal parameter on # .
The integrated version of (4) is

( 5 ) J [(log σ)vdx - (log σ)xdy] = 2 ƒƒ^ K(Σ)σdxdy ,

where γ is any C1 Jordan curve in the domain of z, and U the interior region
determined by γ. Thus K(Σ) is defined on i£ if a continuous function K(27)
exists on R which satisfies (5).

Remark 1. By (5), K(Σ) = 0 if log σ is harmonic on R [1, p. 133]. Thus,
if .R is defined on S, Γ = Γ(X, # ) , and log P on # is harmonic, then K(Γ) = 0.

Remark 2. If S is immersed in a Riemannian 3-manifold ^ , the first
fundamental form I on S defines a Riemann surface Rλ on S. If the immersion
is Cfc+α-smooth with k = 3, 4, • • • and 0 < Λ < 1, then / is C f c + α^-smooth,
Rλ is Cfc+α-related to 5, and (4) can be used to compute K(I) on R1Λ It Jί
is locally C3-conformally Euclidean, (4) yields K(I) even if the immersion is
just C3-smooth. When Jί = E\ it is known (see [9], [32] and [33]) that K(I)
is defined and equal to the extrinsic curvature even if S is only C2-immersed.

The following elementary result is a modification of Lemma 1 from [21] or
[23], and the proof in [23] is easily adapted to establish the present version.
For a discussion of subharmonic and superharmonic functions, see [1, p. 135].

Lemma 2. Let Σ = σdzdϊ be a conformal metric on a Riemann surface
R. If K(Σ) < 0 (respectively > 0) is defined, then logσ is subharmonic (re-
spectively superharmonic).

We denote by K the extrinsic curvature on a surface S which is C2-immersed
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in a Riemannian 3-manifold. Given a unit normal vector field on S, mean
curvature H and the principal curvatures kλ and k2 are well defined, with kλk2

= K,kλ + k2 = 2H, and \k2 - k,\ = 2 # ' , where, by definition, # ' = V# 2 - K.
We are interested in the sequence {Zn} of fundamental forms I, II, III, • • • on
S given inductively by Xx = I, X, = II, and

( 6 ) Z w - 2flZ„_! - KXn_2

for n > 3. (See [11, p. 24].) We also work with a companion sequence {AΓQ•
of skew fundamental forms F, IF, ΠF, • • • defined by

( 7 ) H'X'n — Xn + l — HXn

for n > 1 wherever Ή! Φ 0. It is possible (see [25]) to define the skew forms
X'n at some points where H' = 0, but we shall not do so here. Wherever K Φ 0
on S, use (6) and (7) to define the forms Xn and X'n for nonpositive integral
powers of n. Just as we automatically assume that Ή! Φ 0 when working with
the X'n9 we automatically assume that K Φ 0 when dealing with an Xn or Xf

n

for a nonpositive value of the index n. The relationship between the ordinary
and the skew fundamental forms is probably best understood by noting that
in terms of lines-of-curvature coordinates x, y on S, Xn = k?~Έdx2 + k\^Gdy1

and ±X'n = —k?-Έdx2 + k^Gdy\ where I = Edx2 + Gdy\ and ± stands
for the sign of k2 — kλ. Without the use of special coordinates one can compute
that

(k2 - kλ)xn = (*r 1 - krι)iι

\k2 - kλ\X'n = {kl~1 + kΓ`)ll - K(kr2 + kΓ2)I

The forms Xn are positive definite for odd n wherever K Φ 0, and for even
n wherever K > 0 (with the unit normal vector field chosen so that H > 0).
The forms X'n are positive definite only when n is even and K < 0. If S is
immersed so that I and II are at least Cσ-smooth with a > 0, then whenever
they are positive definite, the forms Xn and X'n define Riemann surfaces Rn or
R'n on S. When working on a Riemann surface Rn or R'n on S, we will auto-
matically assume that all conditions necessary for the existence of the Riemann
surface are satisfied, with S so smoothly immersed that the Rn or R'n in ques-
tion is actually O-related to S. This allows us to work with all the fundamental
and skew fundamental forms on the Riemann surface involved.

For convenience, we write Ωn = Ω(Xn,R) = Qndz2, Γn = Γ(Xn,R)
= Pndzdž, Ω'n = Ω{X'n, R) = Q!ndz\ and Γ'n = Γ(X'n, R) = ?'ndzd‰ so that on
any given Riemann surface # on 5, Xn = 2Re (Ωn) + Γn and Xr

n = 2Re (Ω'n)
+ Γ'u. We also write \Ωn\ = \Ω(Xn9R)\, \Ω'n\ - \Ω(X'„,R)\, Πn = Π(Xn,R),
and Π'n = Π(X'n, R). Formulas (6), (7) and (8) remain valid if X is consistently
replaced by any one of the symbols Γ, Ω, P or Q.
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Remark 3. On an immersed surface S, (8) yields

( 9 ) det Xn = Kn~λ det Xx = Kn^ det X3 , det X'n =• - d e t Xn

for any integers n and ƒ. In terms of i?-isothermal coordinates for any R on
S, Remark 1 shows that | P n | — 2 \Qn\ > 0 if n is odd, or if K > 0 and n is
even. If K < 0 and n is even, | P n | — 2 | Q Λ | < 0. Similarly, if n is odd, or if
K > 0 and n is even, |P^| - 2|<2'J < 0. If K < 0 and n is even, \Fn\ - 2 \(&\
> 0. These observations aid in proving Lemmas 11 through 14, and in com-
paring the hypotheses of various results in this paper.

The next lemma establishes some basic arithmetic relationships. We use ±
to denote the sign of k2 — kλ.

Lemma 3. Let S be a surface at least O-immersed in a Rίemannian 3-
manijold. If Rn is C2-related to S, then on Rn

(10) 2Γj = (ktn + k{-n)Γn , ± 2Γ; = (ktn - ktn)Γn ,

(11) ± 2Ωj = (ktn - kt«)Ω'n , 2ίϊj = (ktn + k{-"Wn

for all integers j . In particular, Γf

n = Ωn = 0 on Rn, while

(12) H'Γn = 2\Ωn+1\, Γn = 2\Ω'n\.

If R'n is C2-related to S, then on R'n

(13) ± 2Γj = (ktn - kt")Γ'n , 2r, = (k{~* + kl-*)Γ'n ,

(14) 2Ωj = (ktn + k{-*)Ωn , ± 2ff, = (ktn - kt^)Ωn

for all integers j. In particular, Γn = Ωf

n = 0 on R'n, while

(15) i ϊΓ; = 2 l ‰ l , Π = 2|fln | .

Proof. The derivation of (10), (11) and (12) will be outlined. Similar com-
putation yields (13), (14) and (15). Use /^-isothermal coordinates x,y on S,
and let I = Edx2 + 2Fdxdy + Gdy\ II = Ldx2 + 2Mdxdy + Ndy2. Since
Xn = Pn(dx2 + dy2) on Rn, (8) yields

(*»-i _ kr')L - K(Jq-` - kr')E = (k2 - k,)Pn ,

(ifcj-i _ jfc*-i)Af - K(k%~2 - k*-*)F = 0 .

Multiply these equations by G,E and —2F (or by N,L and — 2M) respec-
tively, add and simplify to get

A = (EG - P){ki'1 + Λ?"1) , 2P2P„ = (UV - MO(*5"1 + *?"1) ,
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using 2H(EG - F2) = EN + GL - 2FM and K(EG - F2) = LN - M2.
Division yields an expression for P2 which, when substituted into the equation
for Pf

2 provided by (8), gives Γ'n = 0. This and (7) yield HΓn = Γn+1. Thus,
by (8),

(*2 - K)rn = (kr1 - kr')Γ, - κ(kr2 - * Γ * ) Λ ,
(k2 - kdHΓn = (k% - Λ?)Γ2 -

Cramer's rule now gives ƒ\ and Γ2 in terms of Γn. Place these values into the
equations for Γj and Γ) provided by (8) to get (10). Similarly, because Ωn = 0
on Rn, (7) yields R'ffn = Ωn+1. By (8),

\k2 - k,\ Ω'n = (kΓ1 + kΓλ)Ω2 - K{kr2 + kΓ2)Ωx ,

(k2 - kύHΏf

n - (ΛJ - kξ)Ω2

Here Cramer's rule gives Ω1 and Ω2 in terms of Ω'n. Place these values into
the expressions for Ωs and Ω/

j provided by (8) to get (11). Finally, (3), (9),
Remark 3 and detA^ = \P,\2 - 4\Q,\2 yield P\ = K^\\P,\2 - 4\Q,\2). Sub-
stitute the values obtained from (10) and (11) for Pλ and Qλ. This gives \Pn\
= 2\Q'n\. Now use HΉn = Ωn+1 and H' > 0 to get (12).

Remark 4. Lemma 3 yields various statements of the following sort. On
Rn, Γn is complete if Γn+1 is complete and H Φ 0 bounded, while Γn+ι is
complete if Γn is complete and H > constant > 0. On R'n, Γ

f

n is complete if
Γ'n+1 is complete and Rf Φ 0 bounded, while Γf

n+1 is complete if Γf

n is complete
and H' > constant > 0.

Because there are methods available for studying the global properties of a
surface provided with a complete Riemannian metric, it seems worthwhile to
identify as many distinct metrics as possible on an open immersed surface
which are generated by the geometry of the immersion, and complete whenever
I is complete. For this reason we will be concerned with the metrics Λn and
A^ defined wherever K Φθ on a C2-immersed surface S by

(16) 2An = (k\~" + k\-n)Xn , ± 2 4 , = (k\~n - k\-")Xf

n ,

where ± stands for the sign of k2 — kx. On Rn, (3) and (10) yield An = Γ19

so that Λn is complete on S if I is, and if Xn is positive definite on S. Similarly,
on Rf

n, (3) and (13) yield A'n = Γl9 so that An is complete on S if I is, and if
X'n is positive definite on S. In particular, An and Λn are as smooth as I is on
Rn and R'n respectively. (The metrics A2 and A'2 were described in [24]. For
an interesting use of A!2 on R'2, see Appendix 1 of [22].)

Remark 5. Remark 1 shows that just as K(l) = 0 if log Px on Rλ is har-
monic, K(AJ = 0 if log Pi on Rn is harmonic, and K(A'n) = 0 if log?! on 7?̂
is harmonic.

By Š we denote the universal covering surface of S. Any immersion of S
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and all associated structures on S lift easily to Š. Moreover, any Riemann
surface R on S lifts to a Riemann surface R on Š. Clearly, R is just the universal
covering surface of R. Thus R is conformally equivalent to the sphere, or the
disc, or the plane. (See [1, p. 181].) If R is conformally equivalent to the plane,
R is parabolic, and S is said to be R-parabolίc. To avoid the introduction of new
notation Xn, X'n9 Pn, Qn, etc., we speak simply of Xn, X'n, Pn, Qn, etc., on Š
or R (meaning, of course, lifted to Š or R). The following elementary observa-
tion will prove useful.

Remark 6. A subharmonic function bounded from above on a parabolic
Riemann surface must be constant. (See [1, p. 209].) Moreover, if a subhar-
monic function v is bounded from above by a harmonic function u, then v — u
is still subharmonic. Thus on a parabolic Riemann surface a subharmonic
function bounded from above by a harmonic function must itself be harmonic.
Similarly, a superharmonic function bounded from below by a harmonic func-
tion on a parabolic Riemann surface must itself be harmonic.

3. 0-boundedness

Let Φ = FdzndZm be a differential of type (n, m) on a Riemann surface R.
(See [2, p. 222].) The integers n and m need not be positive. Thus, if Φ never
vanishes on R, the differential \\Φ — (1/F)dz~ndž~m is well defined.

We call z a global conformal parameter on a Riemann surface R if z provides
a conformal immersion of R into the plane. (Most authors require that the
immersion be one-one, but this is too strict a requirement for our purposes.)
Since a global conformal parameter is locally a conformal parameter in the
usual sense of that word, one can express any differential Φ on R in terms of
a global conformal parameter z as Φ = FdzndZm, where F is a function onR.

Definition 1. Φ is said to be harmonically bounded on R if there exists a
global conformal parameter on the universal covering surface R of R in terms
of which \F\< eu for some harmonic function u on R. Lemma 4 shows that
this concept does not depend upon the particular choice of the global conformal
parameter z.

Remark 7. To illustrate Definition 1, note that any continuous differential
on a compact Riemann surface of genus one is harmonically bounded. As a
further example, let Φ = Fdz2 be a holomorphic quadratic differential which
never vanishes on a Riemann surface R. Since all such differentials vanish
identically on the sphere [1, p. 325], R is not conformally equivalent to the
sphere. We can thus choose a global conformal parameter z on R. In terms
of z, log | F | is harmonic, so that both Φ and \\Φ are harmonically bounded
on R. Similar reasoning shows that a quadratic differential Φ = Fdz2 which
never vanishes on R is harmonically bounded if there exists a complex valued
function ƒ on R which is bounded away from zero so that fφ is holomorphic
on JR.
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Definition 2. Let S be an oriented C°° surface. Suppose R is a Riemann
surface defined on S, and Φ = Fdzndzm a differential of type (n, m) on R. Then
S is Φ-bounded/R (read as Φ-bounded with respect to i£) if Φ is harmonically
bounded on R.

By Remark 7, a surface S is simultaneously Φ-bounded/# and (1/Φ)-
bounded/# if Φ = Fdz2 Φ 0 is holomorphic oni?. In geometrically interesting
examples, Ω or i? is in some way connected with the geometry of an immer-
sion of the surface.

Example 1. Suppose S is immersed in a 3-manifold Jί of constant sectional
curvature. For simplicity we assume that the immersion is C°°. The proofs of
the following three facts, though originally established for Jί = E\ extend
with little or no modification to cover the present situation. First, Ω2 on Rλ is
holomorphic if H = constant on S, with Ω2 = 0 only where i¥' = 0 [13]. Next,
Ωx on R2 is holomorphic if K = constant > 0 on 5, with Ω1 = 0 only where
# ' z= 0 [18]. Finally, # Ί 0 2 is holomorphic on i?2 and never vanishes if K
= constant < 0 on S. (See [19] or [22, Appendix 1].) There is a unified ex-
planation of these statements. If a + βH + γK = 0 on S for some choice of
constants a, β and γ, then setting ελ = a + βkx + γk\, and ε2 = a + βk2 + γk2

2,
one can find a Riemann surface iΐ* defined on S wherever Jϊ/e1ε2 ^ 0, so that
the quadratic differential φΩλ + ψ β 2 ^ 0 is holomorphic on R* for any functions
φ and ψ on S which satisfy ± s ^ = φ(\ε2\ — \ε^) + ψ ( ^ |ε2| — Λ2 kil).

Example 2. If 5 is immersed in a 3-manifold so that H = 0, then 5 is
called a minimal surface. On R19 ΓλH = Γ2, so that 5 is minimal if and only
if Γ2 = 0 on Rλ. S is said to be R-minimal in case there is a Riemann surface
R defined on S on which Γ2 = 0, and Ωx is holomorphic. Of course, S is
minimal if and only if it is /?rminimal by (5). The properties of #-minimal
surfaces are remarkably much like those of ordinary minimal surfaces. (See
[20] or [26].)

Remark 8. Since no global conformal parameter exists on the sphere, R
must be conformally equivalent to the disc or the plane in case any Φ is har-
monically bounded on R. Thus S is not compact with genus zero if S is Φ-
bounded/i^ for some choice of R and Φ.

The following lemma shows that Definition 1 is independent of the special
choice of a global conformal parameter on R. It also shows that when n + m
Φ 0, Φ-boundedness and F-boundedness, as defined in § 2 of [23], are equiv-
alent. Our proof of Lemma 4 was influenced by a lemma due to Osserman.
(See [28, p. 78].)

Lemma 4. Suppose R is a Riemann surface whose universal covering sur-
face is not conformally equivalent to the sphere. Let Φ = Fdzndϊm be a dif-
ferential of type (n, m) on R. Then statements (i) and (ii) are equivalent, and
if n + m Φ 0, all three statements (i), (ii) and (iii) are equivalent.

( i ) There is a global conformal parameter z on R in terms of which
\F\ < eu for some harmonic function u on R.
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(ii) For each global conjormal parameter zon R there is a harmonic junc-
tion u on R such that \F\ < eu.

(iii) There is a global conformal parameter z on R in terms of which
\F\<ί.

Proof. Let z and w be global conformal parameters on R. Then locally,
φ = FdzndZm = Fdwndwn where F = F{dz/dw)n{dž/dw)m. Here z = z{w) is
locally biholomorphic, so that log\dz/dw\ = log\dž/dw\ is harmonic on R.
Statement (ii) follows from (i) because

(\l\ \ft\ < ) log] dz/dw \

Since (i) follows trivially from (ii), the two statements are equivalent.
Assume now that n + m Φ 0 and that (i) is valid. Then for some global

conformal parameter z on R there is a harmonic function u on R such that
\F\ < eu. We need a complex valued function w on R so that the locally in-
duced function w = w{z) is biholomorphic with \eu{dz\dw)n{dž/dw)m\ = 1, or
equivalently, with u + {n + m)Re\og{dw/dz) = 0. On the simply connected
Riemann surface R, we can find a harmonic conjugate function v for u. Set

(18) w= ϊ e{u+ίυ)/{n+m)dz

on R. Although w need not be one-one from R to the plane, the integral is
well defined on R because R is simply connected. Since w is a global conformal
parameter on R in terms of which \F\ < 1, statement (iii) follows from (i) if
n + m Φ 0. But (i) follows trivially from (iii) by taking u = 0. Thus the proof
of Lemma 4 is complete.

Remark 9. If Φ = F dzndž~n is harmonically bounded on R, then by (17)
there is a single harmonic function u on R such that \F\ < eu for any choice
of a global conformal parameter z on R. In particular, if F is bounded for any
one global conformal parameter on Ry it is bounded for any other global con-
formal parameter on R.

The next lemma is most often applied with Σ = Γ{X, R) where i? is a
Riemann surface C2-related to an immersed surface R, and X is some quadratic
form on S.

Lemma 5. Suppose the curvature K{Σ) of the conformal metric Σ = σdzdž
on a parabolic Riemann surface R is defined. If Σ is harmonically bounded on
R and K{Σ) < 0, or if 1 /Σ is harmonically bounded on R and K{Σ) > 0, then
K{Σ) = 0.

Proof. Suppose Σ is harmonically bounded on R, and K{Σ) < 0. Use a
global conformal parameter on R so that log a < u for some harmonic function
u on R. By Lemma 2 and Remark 6, log<7 must itself be harmonic. Thus
Remark 1 yields K{Σ) = 0. A similar argument gives K{Σ) = 0 if 1 /Σ if har-
monically bounded and K{Σ) > 0.
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Corollary to Lemma 5. Let Rbe a Riemann surface O-related to a surface
S, and let X be a complete Riemannίan metric on S with Γ = Γ{X, R). If S
is (1 /T)-bounded/R and K{Γ) > 0 is defined, then S is R-parabolic and
K{Γ) = 0.

Proof. By Remark 8, S is not compact with genus zero since it is (1/Γ)-
bounded/i?. If K{Γ) > 0, S is not compact with genus greater than one, by
the Gauss-Bonnet theorem. But Γ is complete since X is by Lemma 1. The
theorem of Blank-Fiala-Huber implies that S must be #-parabolic [15]. Thus
by Lemma 5, K{Γ) = 0.

Lemma 6. Suppose Σ = σdzdž is a complete, continuous, positive definite,
conformal metric on a Riemann surface R. Any global conformal parameter
z on R in terms of which σ is bounded yields a conformal homeomorphism of
R onto the plane.

Proof. Because \σ\ < c in terms of z for some constant c, the ̂ -length of
an arc on A is less than c times the length induced by its immersion in the
plane by z. If D is the image of R under z, any arc in D lifts to an arc in R.
Otherwise an arc γ: [0,1] —> D of finite length would exist whose restriction
to [0,1] lifts to a divergent arc on Ά of finite Σ'-length, contradicting the as-
sumption that Σ is complete. Similarly, D can have no finite boundary point
p. Otherwise, an arc γ: [0,1] —> D of finite length would exist with γ{\) = p
and f([O, 1)) C D whose restriction to [0,1) lifts to a divergent arc on Ά of
finite length, giving the same contradiction. Thus z yields a covering of the
whole plane by R, which is possible only if z is one-one.

The next result shows, for example, that a complete surface S with global
Tchebychev coordinates x, y is R-parabolic with respect to the Riemann surface
R defined on S by the conformal parameter z = x + iy. For another applica-
tion of Lemma 6, see Corollary 2 to Lemma 3 in [23]. (The hypotheses of
that corollary are meant to include the assumption that Rx is defined on S, a
fact which is not automatic on a surface CMmmersed in E3, as shown in [3].)

Corollary to Lemma 6. Let R be a Riemann surface C2-related to a surface
S, and let X be a quadratic form on S such that Γ = Γ{X, R) is a complete
Riemannian metric. If S is Γ-bounded/R, then S is R-parabolic.

Proof. By Lemma 4, there is a global conformal parameter z on R in
terms of which P is bounded, where Γ = P dzd‰ Lemma 6 shows that S is
/?-parabolic.

4. Auxiliary results

Throughout this section we assume that S is at least CMmmersed in a
Riemannian 3-manifold Jί. (Only in the corollaries to Lemmas 11, 12 and
13 is any restriction placed on Jt.`) We also assume that any Riemann surface
mentioned is defined, and C2-related to S. Finally, in any result involving the
curvature of a metric, we assume that the curvature is defined. Note that
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Lemma 7 places no condition on the sign of K unless n is even.
Lemma 7. Let j — n > 0 be odd, and Xn complete. Suppose S is ΩΓ

bounded/Rn or Γ'rbounded/Rn with Hf bounded away from zero, or Γr

bounded/Rn or unbounded/Rn with H bounded away from zero. Then S is
Γ abounded I Rn and Rn-parabolic.

Proof. On Rn, Γn = Xn, and by Lemma 3,

in terms of any global conformal parameter on Rn. If j — n > 0 is odd, //'
= \k2- k,\β> constant > 0 yields \k{~n - k{~n\ > constant > 0, while
H = \k, + K\β> constant > 0 yields \ktn + k{~n\ > constant > 0. Given
the stated hypotheses, (19) shows that S must be 7Vbounded/‰ By the
corollary to Lemma 6, S is i^-parabolic.

Lemma 8. Let j — n> 0 be odd, and X'n complete. Suppose S is Ωr

bounded/R'n or Γf

n-bounded\Rf

n with H bounded away from zero, or Γn-
bounded/`R'n or Ω'j-bounded/Rf

n with Hf bounded away from zero. Then S is
Γ'n-bounded IRn and Rn-parabolic.

Proof. On R'n, Γ'n = X'n, and by Lemma 3,

in terms of any global conformal parameter z on R!n. Now follow the reasoning
which established Lemma 7.

Lemma 9. Suppose S is Rn-parabolic with K(Xn) > 0. If S is (1/Ωn+1)•
bounded/Rn or (\\Γr

n+^-bounded\Rn with Hf bounded or (l/Ω'n+1)-bounded/Rn

or (l/Γn+1)-bounded/Rn with H bounded, then K(Xn) = 0. If j — n> 0 is
odd with both H and Hf bounded, and S is (1 /Ωj)-bounded/Rn or (1 /re-
bounded /Rn or (l/Ω'j)-bounded/Rn or (1 /Γ^-bounded/Rn, then K(Xn) = 0.

Proof. Use a global conformal parameter z on Rn which maps Rn one-one
onto the plane. By (19), if S is (1/β,)-bounded/i^ or (1/Γ;)-bounded/]?„ or
(1/β;)-bounded/Λ„ or (l/Γ^)-bounded/Λn for j-n>O odd, bounds on
H and Hf force log Pn to be bounded from below by a harmonic function.
(When j = n + 1, Rf bounded is enough in the first two cases, and H bounded
is enough in the last two cases.) Since K(Xn) = K(Γn) > 0 on Rn, Lemma 2
and Remarks 1 and 6 yield K(Xn) = 0.

Similar reasoning based upon (20) yields the following.
Lemma 10. Suppose S is R!n-parabolic with K(X'J > 0. If S is (1/Ωn+1)-

bounded\Rf

n or (1 /T'n+1)-bounded/'R'n with H bounded or (1 /Ω'n+1)-bounded/R'n
or (I IΓn+ι)-boundedIR'n with Hr bounded, then K(X'n) = O.Ifj-n>O is
odd with both H and Hr bounded, and S is (1 / Ωj)-bounded/R'n or (1/Γ;>
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bounded IK or (1 / Unbounded / R'n or (1 / Γ j)-bounded / R'n, then K(X'n) = 0.
Remark 10. One cannot conclude that Xn in Lemma 9 or X'n in Lemma

10 is complete. For a positive definite metric Σ = σdzdž on the x, y-plane
need not be complete even if log \σ\ > v, where v is harmonic. As an example,
let Σ = exdzdž. This metric assigns finite length to the nonpositive Λ:-axis. The
metric Xn or X'n in Lemmas 10 and 11 is complete if and only if the global
conformal parameter w associated with the uniformizing parameter z by (18)
is one-one. Thus Lemmas 6, 7, and 8 in [23] must be suitably corrected.

Lemma 11. Suppose S is either (1 /77j)-bounded/Rn or (1 /unbounded/`Rn

with j>n,K bounded, and Xn complete. If K(Xn) > 0 then K(Xn) = 0. The
same result holds if Rn is replaced by R'n, and Xn by X'n.

Proof. On Rn, (9) yields

(21) |detZ,| = |detZ;.| = \K^\P\ ,

since Γn = Xn. Thus, if K is bounded and S is either (1/Z7^)-bounded/i^ or
(l//7'fc)-bounded/i^, S is (1/ΓJ-bounded/7?^. By the corollary to Lemma 5,
K(Xn) = 0 if K(Xn) > 0. Similar reasoning applies if we replace Rn by R'n
and Xn = Γn by X'n = Γn.

Corollary to Lemma 11. Suppose S is a complete surface C2-immersed in
E3 with K = K(I) bounded. If S is either (1 /Π))-bounded/R, or (1/Π'j)-
bounded/Rι for some j > 1, then K = K(I) < 0 on S.

Proof. On R19 we use (21) with n = 1. Thus, if S is either (1/Πj)••
bounded//^! or (1 /Π^-bounάcά/R,, K = K(I) never vanishes on S. If K(I) > 0
anywhere on S, it follows that K(I) > 0 over all of S, and Lemma 11 yields
K(I) = 0, a contradiction. It follows that K(I) < 0 on S.

Lemma 12. Suppose S is either (1 /Πj)-bounded/Rn or (1 /Π'j)-bounded/Rn

with j < n, K bounded away from zero, and Xn complete. If K(Xn) > 0, then
K(Xn) = 0. The same result holds if Rn is replaced by R'n and Xn by X'n.

Proof. Since ƒ < n and K is bounded away from zero, (21) shows that S
must be (l/Γn)-botmded/Λn if it is either (1/77^)-bounded/Λ„ or (1/77;.)-
bounded/7?n. Again, the corollary to Lemma 5 yields K(Xn) = 0 if K(Xn) > 0,
since Xn = Γn on Rn. Similar reasoning applies if we replace Rn by R'n and

Xn by X'n.
Corollary to Lemma 12. Suppose S is a complete surface C2-immersed in

a 3-manifold with sectional curvature X < constant < 0. If S is (1/Πj)-
bounded/R, or (I IΠ'3)-boundedIRx for some j < 1, then K(I) > 0 implies
K(I) = 0.

Proof. The Gauss equation [30, p. 527] states that

(22) K(I) -JΓ = K.

Thus, if K(I) >O,Kis bounded away from zero since X < constant < 0, and
Lemma 12 with n = 1 yields K(I) = 0.
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Lemma 13. Suppose S is either Π^bounded/Rn or Π'rbounded/Rn with
j >n, K bounded away from zero and Xn complete. If K(Xn) < 0 then
K(XJ = 0. The same result holds if Rn is replaced by R'n and Xn by Xf

n.
Proof. Since j > n and K is bounded away from zero, (21) shows that S

must be Γn-bounded/jRn if it is either Πrbounded /Rn or /7^-bounded/i^.
By the corollary to Lemma 6, S is i^-parabolic since Γn = Xn is complete
on Rn. Thus Lemma 5 yields K(Xn) = 0 if K(Xn) < 0. Similar reasoning
applies if we replace Rn by R'n and Xn by Xr

n.

Corollary to Lemma 13. Suppose S is a complete surface O-immersed in
a 3-manifold with sectional curvature X` > constant >O.IfS is Unbounded\RX

or Π'j-bounded/Rλ for some j > 1, then K(I) < 0 implies K(I) = 0.
Proof. Here (22) shows that K is bounded away from zero if K(I) < 0

since Jf` > constant > 0, and Lemma 13 with n = 1 yields K(I) = 0.
Lemma 14. Suppose S is either Πrbounded/Rn or Π]-bounded/Rn with

j <n,K bounded and Xn complete. If K(Xn) < 0 then K(Xn) = 0. The same
result holds if Rn is replaced by R'n and Xn by X'n.

Proof. Since j < n and K is bounded, (21) shows that S must be Γn-
bounded/#w if it is either i7 rbounded/,Rw or /7y-bounded/Rn. Now follow
the reasoning which established Lemma 13.

5. Main results

Theorems 1 through 4 generalize results due to Klotz and Osserman [21],
Hawley [10], Hoffman [12], and Yau [35]. These theorems can be used,
therefore, to characterize all complete surfaces of constant mean curvature in
a 3-manifold of constant sectional curvature. (See Example 1 of § 3.) When
applied to surfaces in £ 3 , Theorems 1 through 4 check special cases of a con-
jecture due to John Milnor. (See [21] or [22].) Thus, for example, Theorem
1 verifies the conjecture for all ^-bounded//^ surfaces in E3 with K < 0. The
remaining Theorems 5 through 8 are meant to facilitate use of the metrics Λn

and A'n denned by (16) in the study of global properties of open complete im-
mersed surfaces.

Throughout this section, we assume that S is a complete surface CMmmersed
in a Riemannian 3-manifold. As in § 4, we assume that any Riemann surface
mentioned is defined, and C2-related to S. Similarly, if the curvature of a
metric is referred to, we assume it is denned.

Theorem 1. Suppose that H' is bounded away from zero and that S is
either Ωrbounded/Rι or Γ^-bounded jRλ where ƒ > 1 is even. Then K(I) = 0
if K(I) <OonS.

Proof. By Lemma 7, S is /^-bounded//?! a n d /^rpaiabolic. By Lemma 5,
K(I) Ξ 0 if K(I) < 0 on S, since Γ1 = I on R,.

Corollary to Theorem 1. Suppose that W is bounded away from zero and
that fΩj is holomorphic on Rx where f is a complex valued function bounded
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away from zero, and ƒ > 1 is even. Then K(I) = 0 if K(I) < 0 on S.
Proof. By (11) and (12), we have 4\Ωj\ = \kt1 ~ * ί " Ί Λ • Since Γλ is

positive definite on Rx and j is even, β̂ • vanishes only if kλ — k2, an impos-
sibility here since Hr > constant > 0. By Remark 7, we conclude that S is
^-bounded//?! since \f\ > constant > 0. Theorem 1 thus yields K(I) = 0 if
K(I) < 0 on S.

Theorem 2. Suppose H is bounded away from zero and that S is either
Γj-bounded/R, or unbounded/R, where j > 1 is even. Then K(I) = 0 if K(I)
< 0 on S.

Proof. By Lemma 8, S is T^-bounded/T^ and iVparabolic. By Lemma 5,
K(I) = 0 if K(I) < 0 on S.

Theorem 3. Suppose K(I) > 0 while H and Rf are bounded. If S is
(1/Ωj)-bounded/R, or (1 /Γ'j)-bounded/R, or (1 / Ω])-bounded/Rλ or (1 /Γ))-
bounded I Rx for an even ƒ > 1, then K(I) = 0. (7ƒ ƒ — 2, 7/ bounded is not
needed in the first two cases, and Hr bounded is not needed in the last two
cases.)

Proof. Use n = 1 in (19) and apply the corollary to Lemma 5.

Theorem 4. Suppose H and Hr are bounded while fΩ3• φ. 0 is holomorphic
on Rλ for a bounded complex valued function f and an even integer j . Then
K(I) = 0 if K(I) > 0 on S. (If j = 2, the bound on H is not needed.)

Proof. Since holomorphic quadratic differentials on the sphere vanish
identically [1, p. 325], S is not compact with zero. If K(I) >O,S cannot be
compact with genus greater than 1 by the Gauss-Bonnet theorem. Thus a
theorem of Blank-Fiala-Huber [15] states that S is /^-parabolic. Using a global
conformal parameter on &19 (19) with n = 1 yields \f\H'\k(-2 + • • • + k{~2\Pι

= |2ƒβ,|, so that logP, = log|2ƒβ, | - \og\f\H'\k{-` + • • • + k{~\ where
log|2ƒ<27| is harmonic except at the isolated zeros of fQj where log |2ƒβ^| =
— oo. Because ƒ, H and H' are bounded, there is a constant c such that
log Px>u where u = log \2fQj\ — c is harmonic except at the isolated points
where u = — oo. (If j = 2, we get this with no bound on H.) It follows [1,
p. 135] that logPi is superharmonic, so that the difference u — log Pλ < 0 is
subharmonic. By Remarks 1 and 6, u — log Px is constant, so that u is always
finite, and log Px is itself harmonic. By Remark 5, K(I) = 0 on S.

The remaining results involve the metrics Λn and A!n discussed in § 2, and
denned by (16).

Theorem 5. If S is ΓΓbounded\R!n, then K(Λ'n) = 0 if K(Λ'n) < 0.
Proof. On Rf

n, An = Γλ is complete. By the corollary to Lemma 6, S is
i?;-parabolic, and by Lemma 5, K(Af) = 0 if X ( O < 0.

Theorem 6. If S is (\\Γ^-bounded\R!n, then K(Λ'n) = 0 /ƒ X ( O > 0.
Proof. Again, Λ'n = Γ x on 7?̂  is complete. Here the corollary to Lemma

5 yields K(Λf) = 0 if K(Λ') < 0.
Theoren 7. If S is (1 /Γ\)-bounded/Rn, and K(An) > 0, then K(Λn) = 0.
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Proof. On Rn, Λn = Γι is complete. By the corollary to Lemrna 5, K(Λn)
= 0 if K(ΛJ > 0.

Theorem 8. // S is Γ\-bounded/Rn, and K(Λn) < 0, then K(Λn) = 0.
Proof. Again, Λn = Γ1 on Rn is complete. The corollary to Lemma 6

shows that S is #w-parabolic. By Lemma 5, K(ΛJ = 0 if K(ΛJ < 0.
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