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A GENERALIZATION OF THE CURVATURE INVARIANT

ROBERT KNAPP

Introduction

Let M be a manifold, and D, a linear connection on T(M). Classically it
has been shown that all local parallel vector fields, i.e., all vector fields X with
D,X = 0, must satisfy X e () ker /'R where the Rimannian curvature tensor

l

R and its covariant derivatives 'R are regarded as linear maps V'R : T(M) —
&R T*(M) ® T(M). See, e.g., [1].

1+2

A related problem is the following: when is a tensor of type [1,1] on a
Riemannian or affinely connected manifold the covariant derivative of a vector
field?

If E is a vector bundle and D, a connection on E, then the analogous ques-
tions can be asked. We study both questions in this general setting. In this
context the maps 'R no longer exist. However, we introduce a set of invariants
O™ which are called higher order curvatures and serve the same purpose in
this context. The definition is completely general ; we associate to any differential

operator E —£> F a sequence of ¢-linear maps O (D): E — G, , where G,
is canonically defined. (E and F are vector bundles.) In the present context
O®(D,) = Ois the classical curvature. It is not true, however, that O = -0
when E = T(M), but they do have a close relationship as we shall see. Moreover,
in the appropriate sense the O (D,) are covariant derivatives of ©® and obey
Bianchi-type identities.

The ©% also play a role in the study of the nonhomogeneous equation
D,f = «. Infact when D, has constant rank, it is shown that if £’ = (M ker O,

l

D, restricts to a flat connection on E’. This allows us to reduce the study of
H(M, »), where o is the sheaf of germs of local solutions of D,f = 0, to the
case where D, is flat. Our preliminary calculation of H(M, w) yields satisfactory
results in two cases.

a) When the base manifold M of E is simply connected.

b) When M is a Riemannian manifold of strictly positive or strictly nega-
tive sectional curvature, and D, is the Riemannian connection on T'(M).

Some of the results of this paper were announced in [3].

Communicated by D. C. Spencer, February 1, 1974. This work was supported in part
by the National Science Foundation. The author wishes to thank Professor D. C.

Spencer who suggested this direction of research to him, and Professor H. Goldschmidt
who made many helpful comments about this paper.
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0. Preliminaries

We shall make use of several notions arising in the theory of overdetermined
systems without defining them in the text. For a full account of the ideas in-
volved one should consult [2a], [6a], or [7]. For easy reference we recall them
here.

Let E be a vector bundle. (We work entirely in the C* category.) Then we
write J,(E) for the bundle of k-jets. The fibre J,(E) over a point x is the
quotient of the sheaf of germs of sections of E by the subset of germs of sec-
tions vanishing to order k£ 4+ 1 at x. We note that J, is a functor from the
category of C~ vector bundles and bundle morphisms into itself. We write j,
for the differential operator

ix: E — J(E)

which takes a germ of a section of E to its quotient.

The jet bundles enjoy a universal property with respect to differential op-
erators. Namely, let D: E — F be a differential operator of order k. Then
there is a unique bundle map p(D): J;(E) — F such that D = p(D)oj,.

Note that we have a natural injection 0 — S*T* Q E N +(E) such that

0—> S*T* QE — > J(E) =5 J,_(E) —> 0

is exact. We define the symbol of an operator D with bundle map p(D) to be
the composition ¢(D) = p(D)oe.

Given an operator D: E — F of order k, the composition j,oD: E — J,(F)
is of order k£ + I. It has a corresponding bundle map p,(D) called the /th pro-
longation of D. It is the unique map such that

D
1en® ™2 1F)

jk+Ll ]'LT
D

E — F

commutes. Similarly the prolonged symbol is the composition ¢,(D) = p,(D)oe
which goes into the sub-bundle S'T* ® F of J,(F), i.e.,

o(D): S*'T* QE - S'T*®F .
Of particular interest are the kernels of these maps. Thus we define
Ry = ker p(D) , Ry, = ker p(D) ,

which are called the equation and prolonged equations, respectively. Further
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g, = kera(D) , 8.1 = ker ¢;(D)

are called the symbol and prolonged symbol, respectively.

Since R;,; C Ji,(E), we can restrict 7, ;to R,,, and have n,,,, \R;,, C
R, ,._,. Hence we can state the important

Definition. An operator D is formally integrable if R, ,, is a vector bundle
for every [ > 0 and 7, ;_,: Ry, — Ry, is surjective for every [ > 1.

We also have

Definition. An operator D is regular if R, ., is a vector bundle for every
1>0.

We will need the operator

D: N'T* @ Iy(E) »> \"H'T* @ J;,_,(E)

which is characterized by the following conditions :
(1) The sequence

D

is exact.
(2) If sis a section of A\?T* ® J,(E), and « is a differential form of degree
q, then D(a N\ s) = da N\ 7y_s + (—1)%a A Ds.

We have D* = 0, D(A\'T* @ Ry,1.0) C A" T*QRy,,, and if 6: A\"T*®
S¥T* Q E — N\7''T* Q S*'T* ® E is the restriction of —D, then

6(/\TT* ® gk+l+1) - /\THT* ® 41 -

This leads to the complexes

) ) '}
8 ——>T*Q8gn s —> N'T*®gpy - —> N'T*Q g, —>
)
. 5 /\m—kT* ® g 5 /\m—k+1T* ®Sk—1T* ® E

where m > k. g; is said to be involutive if these sequences are exact.
Next we construct the second Spencer complex. Let Cj, = (A'T*®
R, D)/0(N\N"'T* ® gn.,). Then the diagram

0—> AT*®8ny —> NT*®Ruy 3 N'T* @ Rpyyy — 0

R o

0— d(AT*®8gni)) —> N""'T* @Ry, — Gt ——0

induces an operator D which factors through C;. and therefore defines an
operator
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D:cr,—>cr.

Thus we obtain the Spencer complex

A A

D D
0 6 % \ﬂ—)C;"‘n—>~--

Suppose R,, is formally integrable and g, = 0. It follows that g,,,, = O,
1>0. Then =;},: A"T*®R,,,; —> N"T* ®R,,,, is an isomorphism, and
the Spencer complex is given by

A A

D D
0 o Ry T*®@ Ry, —> NT* @Ry —> -+,

where D = Doxr;%,. Thus D? = 0, and if fs € R,,,, where f if a function, then
we have D(fs) = D(fr;ls) =df \Ns + fDrrs =df As + {Ds. 1t follows
that a(D) id, i.e., that D is a connection on R,, . Similarly if « e NT*,
then D(a A s) = D(oz AN nm+1s) =da A s+ (—1% A Ds. It follows that
D? = 0 is the curvature of D. Therefore one may choose flat frames s,, - - -, s,
for R,,,,. Now however, since Ds; = 0, we have Dox;1,s; = 0. It follows
that z;;% ;8; = jn..(e;) where e; are sections in E and hence s; = 7, ,j0m,5 108 =
jmsi(e)). The foregoing is a special case of a more general result due to
D. C. Spencer. For details see [6a].

Finally, we recall [2a]

Theorem. Let ¢: J,(F) — F be a linear map with R, = ker ¢. Then it is
formally integrable if

i) Ry, is a vector bundle,

ii) m: Ry, — Ry is surjective,

i) g, is 2-acyclic.

1. Higher order curvature

1.1. Definitions and basic properties. Let E and F be vector bundles and
D a differential operator of order ¥ D: E — F. We define D%“?, [ > 0,
0 < i<+ k — 1 by requiring that the following diagram commute :

D
1B 22 1)

Wi

E— 2 S r2 1)/ DL (E)

where Ji,,(E) is the kernel of z;: J,,, LN J:(E), and @; is the natural pro-
jection. We define (D) = p(D*?oD), and set 0% = @“*(D) when D
is understood. When i = 0, we write O = O%? and call @ the Ith curvature
of D.
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Proposition 1.1. The operator DV o D is a differential operator of order i.

Proof. By construction, o(D*“? o D) = @; o p,(D) which vanishes on J%  ,(E),
establishing the proposition.

In fact the diagram

0 —— Ji ) (BE) —> Ti () —> J,(E) —— 0

@; 0 py(D) EQW)(D)
J z(;'-')/ (D). (E))
induces .a map 2%%(D), and we observe
®(D) = p(D“? o D) = @;0 p(D) = QLV(D) o1, .

Henceforth we will identify (D) and 2-*(D) and, where convenient, define
O%9(D): J(E) — J(F)/ p(D)(Ji, (D)) where r > i by ©%? o ;. In particular
M = D% D, and we have

Corollary. O is a zero order differential operator between families of
vector spaces.

Proposition 1.2. If0 <m <land —1 < i < k 4 m, then the diagram

0 0 0

l D Dfc+m
0 ——> REtr —s 1i2m(E) PB nF) 2% i) |0, (D)IEPD)) —> 0

o b,

A ; D) i )
0—> Rty — 1B "B 1) 25 1) 0 D)D) —> 0
(]. -1) Tk+m l”kwn l”m ) l’rm
Pm(D) @; *

0——RL,, — Ji (B) "5 T (F) =25 1 (F) ] pm(DYJE (D)) —> O

| l |

?c+‘m.,[ 0 0 0

=

0

is exact where the top row and right and left columns are induced, and we
have adopted the convention J;X(E) = J,(E).

Proof. Clear by a diagram chase.

The main interest is the case m = | — 1, for it gives us specific information
on the structure of J,(F)/p,(J%.,(E)). Namely we have

Proposition 1.3. The sequence
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0—> ki S'T*®F JF)
k+m,l aL(D)(SHkT* ® E) pL(D)(J}c+L(E))
Ji_(F)

PL_1(D)(J;;+L—1(E))

is exact. When r',,.: R, , — R, is surjective,

SIT* @ F J(F)
o (D)(S*ET* ® F) (D). (E))
Ji_1(F)

PL-1(D)(];;+L—1(E))

is exact.
Proof. 1f suffices to observe that p,(D), jx+:-1z, = ¢,(D) under the identifica-

k+1
tion J¥ Y (E) = S'T* @ E. The rest is a diagram chase of (1.1).
Proposition 1.4. Ifi — k < m < I, we have r,, 0 0% = @™,
Proof. Wehave r,, 0 0“? = 7, 0@; 0 p)(D) = @; 07y 0 p)(D) = @; 0 pp(D) o
Tiym = @(m,i) OMpom = @(m,i).
Proposition 1.5. We have an exact sequence

. L .
0 — m(Ri,) —> JI(E) —> J(F)/ p.(D)J}. . (E))
—> J(F)/ o(D)Ji,(E)) —> O .
Proof. Follows by a diagram chase from the diagram

0 0 0

X . D i )
0— Ry — 1B "B 1,(5) 25 1,(F) [0 D)L, (B)) — O

I l

. . D @i .
0 —— Ri.— 1B "B 1,5) 25 1,(F) /0 D)IL, (D)) —> 0

N A

0—>RI —> Ji(E) 0 0

|

0

Corollary. If 0% = 0, then J,(F)/p(D)J%, (E)) and J,(F)/p (D), (E))
are canonically isomorphic.
Proof. Follows from Proposition 1.5 withi =0, j = —1.



CURVATURE INVARIANT 473

Theorem 1.1. Let R, be the equation of D, and R, ., its prolonged equa-
tions. Then r,(R;,,) = ker 6™ (D).

Proof. Follows from Proposition 1.5 with j = —1.

1.2. Geometric meaning of higher order curvature. a) Bianchi identities.
We expect ©P(D) to have geometric meaning whenever D does. In the re-
mainder of this chapter we explore in some detail the meaning of @ (D,)
where D, is a covariant differential operator. Recall that D, can be thought
of in the following way : Let E be a differential operator, and # a splitting of
the sequence

0—>T*QF —> J(E) > E 0.
«_ Do) ¥ 0

¢ induces a map p(D,): J,(E) — T* ® E with p(D,)oi = id. p(D,), in turn,
defines a first order operator D,: E — T* & E whose symbol ¢(D,): T* Q E
— T* ® E is the identity.

Our first point is the following :

Theorem 1.2. Let © be the classical curvature regarded as a section of
Hom (E, \*T* @ E). Then © = 0“(D,) up to a canonical isomorphism.
Further, up to the same isomorphism

DyY =D,: T*QE —> \T*QE .

We need
Lemma 1.1. The sequence

1a® PP 11 @ E) %5 1,(T* ® E) | oD (I 1(E)) —> 0

is exact

Proof. We first must show that p,(D,): J},,(E) - J(T* ® E) is defined,
i.e., that p,(D,)(J}.1(E)) C J)(T* @ E). Let a € J},,(E)(x,) and choose fe E,,
such that j,,,f = «. Then, since D, is first order, (D,f)(x,) = 0. We have
[o:(Dp)al(xy) = [j; o Dofl(x,) and hence [zy(p.(Dy)a))(x)) = [7,(ji o DoH1(x,) =
(D,H(x;) = 0 which is to say p,(D,)x € JY(T* ® E).

It is clear by definition of the maps involved that @,o p,(D,) = 0. We now
show that @, is surjective. Namely let B e [J,(T* ® E)/p(D,)(J}.,(E))],, and
let @ € J,(T* ® E),, be a representative of 8. Since the symbol of D, is an iso-
morphism, we can find f € E,, with f(x,) = 0 and (D,f)(x,) = ma. Since j,,.,f ¢
J?+1(E)zo’ we have @,(j, o Dof)(x,) = (@0 Pl(Da) ©j1.1)(%) = 0 and hence @y
— D)) = dyfe) = B. Since a — (D, € J(T* @ E),,, this estab-
lishes surjectivity of @,.

It remains to establish exactness at J)(T* & E). Suppose e JY(T* Q E),,
and B e ker @, This means that 8 = p(D,)a for some «eJ), ,(E),,. Let
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ji.1f = « where f e E,, and note that f(x,) = 0. Further, (D,f),,, = 7,8 = 0.
But observe that [a(D,) 0 jif1(x)) = [p(Dy) o jifl(x)) = (D,H)(x,) = O so, since
a(D,) is injective, (j,f)(x,) = 0. It follows that « € J},,(E).

Corollary. The sequence

ST*®E —> T* @ T*  E > J(T* ® E) | 0x(D,)JXE)) — 0

is exact, inducing an isomorphism h: \*T* @ E — J,(T* ® E)/p,(D,)UXE)).
If & is the projection §: T* @ T* Q E — N T* QE, anda e [T* ® T* Q E],
is a representative of § = d(«), then h(B) = @(a).

Proof of Theorem 1.2. 1t is enough to show that D{® = ho D, where
D,: T*®E — N T* ® E, since it immediately follows that OV (D) =
Dy oD, = hoD,oD, = ho®. Recall that D,: T* ®E — /\ZT* ®E may
be defined in the following manner. Namely, if a ® ee T* ® E,,, then
Dja®e) =da®e — a N\ De. Accordingly, let a @eec T*Q E,. We
choose e with e(x,) = 0. Since the symbol of D, is the identity, we can choose
f-e e E,, suchthat f(x,) = Oand D,(f-e)(x,) = (« @ e)(x,). Since f(x,) = 0, we
have D{-” o Dy(f- €)(x)) = O (f-€e)(x,) = 0. Hence a(j,(a ® e — D,(f-e)))(x,)
= @0 J(a @ e)(x,). We have ji(a ® e — Dy(f-€))(x) = ji(a ® e — df ® e)(x,)
— L(fDse)(xy) = ji((@ — df) ® e)(x,) — ji(fD,e)(x,). Since 7(fDye)(x,) and
(@ ®e — D,(f-e))(x,) liein T* @ T* QE, j,((a — df) ®e)(x) e T*RT*RE.
It follows that (@« — df)(x,) = 0.

Notice now that for any 8 ® e ¢ T* ® E with §(x,) = 0, we have 50 (8 ®
e)(x,) = dp & e(x,). It follows that 4(j,(« ® €) — D,(f-e))(x,) = 30 j,((«¢ — df)
® e)(x)) — d0j(fDse)(xy) = (da ® e)(x)) — df N\ Dye(x) = da ® e(x,) — «a
A D,e(x,) establishing the theorem.

D, is extended to A T* @ E in the following manner. Let « ® e ¢ A\ *T*
®E. ThenDy(a ® e) = da @ e + (—1)ia N\ Dyee N\*"'T* ® E. Notice that
Di(a®e) = Dylda Qe + (—1)ia A Dyel = da @ e + (— 1)i*'da N\ Dye
+ (—=1)da A\ D,e + (—1)%a N\ D2e = a /\ Oe. We will later need the follow-
ing generalization of Theorem 1.2:

Theorem 1.3. Consider the differential operator D&% = ayoj,: N*T*QE
- I(AT* Q E)/ p,(D)UYN\*'T* ® E)). Call the second bundle G{%. Then
there is a canonical isomorphism h© : \**'T* Q E — G{% and D" = h'® o D,.

Proof. Consider the commutative diagram where i > 2.
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0 0 0 0

l l | |

FA\T* ® E) ——> B\ T ® E) ——> BA'T* @ E) —> \*T* @ E —> 0

l | S

, ) D .
HACT* @ E) 220 pA -1+ @ B) 22 AT @ B) — 25 G, »0

: - R

B\ T* ® E) — > I(\“'T* ®E) ——> AT*®E — > 0

l | |

0 0 0

The top and bottom rows are exact, and all columns except possibly the
last, which is induced by the diagram, are exact. The map p,(D,) restricts to
Ji(A\**T* ® E) and the image of the restriction lies in J3( A\ *~'T* ® E) because
D, is a first-order operator. Since p,(D)) o p,(D,) = p,(D}) = p,(0) is a first-
order operator, it must vanish on J3( A ‘"*T* ® E). Since exactness in the rest
of the middle row is clear, the middle row is a complex. Exactness at
JYA'T* ® E) follows by a diagram chase. Note that exactness of the last
column is not required in this chase. Now that everything else is exact exactness of

the last column and specifically the isomorphism A‘*'T* Q E ﬂ G{?) follows
by a diagram chase. Explicity if 8 ¢ A\ **'T* ® E and d(«) = B, then A8 = @ya.

We now proceed as in Theorem 1.2. Let a ® ee A\'T* @ E,,. We choose
e with e(x;) # 0. Choose f® e e \''T* ® E,, with df(x,) = aand B(x,) = 0.
Noticing that D,(8 ® e)(x)) = (e« ® e)(x,), we have D oD,(8 R e)(x,)) =
OV (B ® e)(x,) = 0. Hence D{%(a ® e — D,(B R e))(x,) = D&+ @ e). We
therefore replace « ® e by a ® e — D,(8 ® e). We have ji(a ® e — D,(8 ®
e)(x) = jla ®e — df ® e)(x,)) — j,(—1)i'8 A D,e)(x,). Both terms lie in
T*® N\‘T* @ E. Remark that for any y ® ee A\'T* Q E with y(x,) =0,
doji(r ® e)(x) = dy ® e(x)). Applying this fact we have G, ((a ®e) —
D,(B® e))(x)) = doji((a — dp) @ e)(x) + (—=1)%j,(B N Dse)(x,)) = (da ®
e)(x) + (—D¥a N D,e)(x,), establishing the theorem.

Now consider the sequence

D
EL2S1m+®E 2 AT @E DS NT*QE.

Let A be a bundle mapA4: E — A*T* ® E. Then the standard covariant
derivative of A can be defined in the following way: Define 4’ to be the
composition

4 T*QESBL e @ AT QE 5 NT*QE
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where A is the obvious map. (One can check, in particular, that ' = D}:
T*QE — N\'T*QE.)

Then define

(1.2) DA =D,0A — A’oD, .
From this point of view the Bianchi identity becomes utterly trivial :
DG =D,00 —OoD, =D,oDy0oD; — DyoD,0D;, =0 .

We wish to generalize this formula to find a way to covariantly differentiate
the higher-order curvatures ' by some operator D, . with Do O = 0.

Clearly, we wish that the domain of D, , be Hom (E, G, ) where Gl 0 =
J.(T* ® E)/ p)(D,)(J?,,(E)) is the range of @”) We wish further that D, 24
be linear over functions and that it be expressible in a form analogous to (1 2).
Finally, it would be nice if ﬁ”@“’ vanished for a reason analogous to the
reason given for D,® = 0.

We begin with

Lemma 1.2. Let E and F be vector bundles, and A : E— F a bundle map.
Regarding A as a zero-order operator, we can take its first prolongation. Then
we have g,(4) = id ® A where 6((A): T* QE - T*QF.

Proof. Trivial.

Our next proposition allows us to take a covariant derivative of anything in
Hom (E, F) given only a covariant derivative on E.

Proposition 1.6. Let E be a vector bundle with covariant derivative D,,
and F another vector bundle with A: E — F a bundle map. Consider the
diagram

Ji

F > J.(F)
AT Ti
EL, r+@EYCd e 0 F .

Then Dy,A = jioA — io(id ® A)o D, is a bundle map.
Proof. Since both j,ocA and io(id ® A)o D, are first-order operators, it
suffices to prove that their symbols are identically equal. But we have

(G, 0A) = 0()oo(A) =ido((dR® A) =id® 4
and, on the other hand,
o(ioc(iId® A)oDy) = ([d® A)oa(D,) =id® A4

since ¢(D,) = id.
Remark. D, is thus a first-order operator
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D,: Hom (E, F) —> Hom (E, J,(F)) .

In the classical situation F is equipped with a first-order differential operator
and composition of its bundle map with D,4 provides the usual covariant
derivative of A. In accordance with this point of view, we now focus on the
bundles G, , and desire to take covariant derivatives of sections of Hom (E, G, ;).
We consider the following sequence

E P e p 2 G,, 2 I(Gy)
- — == oD, (T* ® E))

where Dj, , = d,°j,, and we note that O(D{") = Dj ;o DH”.
We make the following definition.
Definition. Let A: E — G, , be a bundle map. Then we write

D, A =Dj,04 — oD} ) (d® A)oD, = oD} ) D, A4 .

Hence 13,,1 is a first-order differential operator and

D, ,: Hom (E, G,,) —> Hom (E, G, ;)

where Gi, = J,(Gy,0)/p(DS")J2,A(T* ® E)).

Notice that the A’ we sought is provided by A" = (D ;) o (id ® A).

We now state

Theorem 1.4. D, 0% = 0.

Proof. Remembering that O = D%®oD, we need only to prove
©@P)Y(= o(D;,) - (id ® OV)) = D; , o D", Hence we prove

Lemma 1.3. (D] )0 (id ® O) = D ;0 D",

Proof. Consider the following diagram :

oW
1® —"C2 16
.T'\Y’) T N(AD;,[)
n i 1
b’\ Dél,o)

Dy,
E —S T*®E —~-G,,—5 G,

We know that the outer diagram, the rectangle, and the two triangles commute.
We show that the parallelogram commutes, i.e., that p(Dj )0 p,(0?) =
Dj oD} 0 po(D,). We already know that

Dj o D" 0 p(Dy) oy = D} ;0 D o Dy = p(D5,1) 0 ps(OF) o,

Since Dj ,oD{® = OV(D{") which is a bundle map, it follow from
OV (D") o p(Dy) o ji = p(D3,) © p,(OV) o j; that

D}, 0D 0 p(Dy) = OV (D) 0 o(Dy) = p(Ds,)) 0 px(OV) .
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Composing now on the right with i and in view of the fact that po(D,)-i = id,
we have

Dyj 0D = Dj o D% 0 p(D,) 0 i
= o(D;,) 0 p(O?) 0 i = p(D5,)) 2 3,(O)
= a(D; ;) 00,(0V) = o(D; ) o (id @ O) .

This establishes Lemma 1.3 and hence Theorem 1.4.

We now wish to show that essentially the @ are covariant derivaties of
the curvature. In fact, we shall find a canonical injection ¢: Gy, — J,(G; )
such that D,0% = ¢o@@+D,

We prove first

Lemma 1.4. The following sequence is exact :

+1(De)
BB P (1 @ E) 1(G)

h 1(Go
(DI A(T* R E))

o1(Dg®)
— >

b

where h is the natural projection.

Proof. That p;,,(D,) is defined was proved in the proof of Lemma 1.1,
and exactness at all points but J),,(T* ® E) is clear. We first prove
0D 0 py1(Dg) = 0. Consider « € J;,4(E),, and choose f e E,, such that
jl+2f = . Then

0D 0 pr1(Do)ar = [01(D§"?) 0 p1,1(Dy) © i 12f1,
= [j10 D" 0 Dofl,, = L1 0 0P (N]sy = () 0 (if)s, = 0,

since (jif),, = O.
To prove exactness at J},,(T* @ E) consider the commutative diagram :

0 0 0
D(l,o)
SHT*QE — 5> s+ @T*QE 2P ) 1+ 9 G, ,
D Do
a® P o areE P20 16,
Tye1 T Ty
D D& A
LB 20, prreE 20, g,
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The columns are clearly exact, and we have seen that the bottom row is exact.
It therefore suffices to prove that the top row is exact.
First, we have the commutative diagram

LH1TR * oDy ) g
SHT*QT*RXE ———5>T ®Gz,o

I I

D(l,D)
T*®@ST*RT*RE "2 T+ ® G, .

Here ¢ is the § map acting as the identity on T* ® E. e: T*® G, , > T*® G, ,
is the identity.

On the other hand, the image of o(D#®) on S'T* Q T* ®E is S'T* ®
T* ® E/5(S**'T* ® E) which is contained in G, , and injects canonically into
SIIT* ® N\*T* @ E. The composition of ¢(D{»®) and this injection is the §
map. Thus ker ¢,(D#") = ker g(D§») oe = ker § oe. But the diagram

0 0

l l

0
SL+1T* ® T* ® E > SZT* ® /\ZT* ® E

I I

T* ® ST* @ T* @ E ——» T* @ S™'T* @ \'T* ®E

commutes and the last column is exact. Therefore ker ¢,(D{"”) = kerdoe =
ker 0§ = ker . Hence exactness of the top row reduces to exactness of the §
complex.

Corollary. Let k be the isomorphism

k: Gl+1,o E— ](L]+1(T* ® E)/PL+1(D0)(J}+2(E))

of Lemma 1.1. Then the sequence

0—> Gy, _e—) JI(GL,O)
h
—> J(Gy0)/ 0D (T* ® E)) — 0

is exact, where ¢ = p,(D§»%) o k, and p,(D{"") is induced on the quotient.

We now state

Theoerm 1.5. We have D,0% = o @@+,

Proof. We start with the defining formula D,0% = j 0% — io(id ®
V)0 D,. Since both sides of the equation to be proved are bundle maps, their
values on a local section f at a point x, depend only on f(x,). Let, therefore,
fe E;, and choose f' € E,, such that f(x,) =0 and (D,/)(x,) = (D,f)(xy).
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That we can do this is guaranteed by the surjectivity of a(D,).
We have first

D,0%(N(x,) = D@V (f — )(x,)
= [,00U(f — f)(x) — io(id ® OV) o Dy(f — f)(xy)
= o0V — x) -
Also 0O P(f)(xy) = e0 OUV(f — f)(x,). Since D,(f — f)(x) = 0, ji,
oDy(f — f)(x) € I, .(T* ® E),,. Using this fact we have
e0 @1 — [)(x) = pu (D) 0 ko OUV(f — f)(x)
= 01451(D5*") 0 ju1 0 Do(f — F)(x0)
=jo0%(F — )(x) .
The last two steps follows from the fact that j;,, o D,(f — f)(x,) € J3,,(T* ®
E),, and hence is a representative of kA 'o@®*? from the definition of

p141(D§?) considered as acting on J}, ,(T* ® E)/p;,,(D,)(J;.4(E)) and from the
commutativity of

01+1(Ds) . Dy
1B 2228 g, (@ @ E) — P | 56y
Tfua J'z+1T j‘T
E_ D r@E_ D I(I*QF)

D) AE)

@(l)

It follows that D,0%f = g0 @U*Vf,
Remark 1. Using the definition of @ the equation in Theorem 1.5 can

be written
jioDEY oD, —io(id ® OP)o Dy = eo D00 D, .

We are therefore motivated to prove
Corollary. We have

jio DY — io(id ® OW) = go D10 |
Proof. The equation is equivalent to
(D) 0 iy — 10(d @ OV) = p,(DH) o ko p(DF* M) 0y, -

Let @ e T* ® E with a(x,)) = 0. We prove equality for such «. We have
([d®OV)e =0 and j,,,ael)  (T*QE). It therefore suffices to prove
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0:(DEH?) — p,(DE0) 0 ko p(DFH?) = 0 on J?,,(T* @ E). But this follows from
the definition of p(D§"®) ok = e.
Therefore

jo D&Y — jo(id ® O®) — go DL

is a zero-order operator, and is identically zero if and only if its composition
on the right by any symbol surjective differential operator vanishes. Composing
with D, and comparing to Theorem 1.5 we obtain the corollary.

Remark 2. In the case [ = 1 there is a canonical splitting of the exact
sequence

0—> Gyp —> L(AT*® E) -5 G,y — 0.
v\,zLDo) - L S

i is defined as the composition of the canonical maps

Gy —> NT*®E —> T*® \T*QE —> J(\*T* ® E) .
Composing the formula of Theorem 1.5 with p(ﬁ,,) we find

O? = p(ﬁ,) 0go@? = p(D,,) oD,O
= o(Dy)0j,00 — p(D,)oio(id ® 0) - D,
=D,00 — (D)o ((dRO)D, .

Thus the corollary becomes
Dg® = DyoD, — (D)o (id ® 6) .

b) Applications. The above theorem indicates the precise sense in which
the ©“ are higher-order curvatures. It may be asked, however, if any informa-
tion is contained in the O which is not already given by © (the classical
curvature) especially since Theorem 4 implies that ® = 0 implies O = 0 for
all I. That they indeed do is settled by

Proposition 1.7. Given a connection § with curvature © + 0, it is always
possible to find a connection 6’ with ® = @ but @'® + 02,

Proof. Consider a local trivialization of E over an open set U with a local
basis given by e, - - -, e,. Let {6,,} be the matrix of one-forms for . Choose
some nowhere vanishing function g such that g = 1 outside of some compact
set K C U and such that dg is not identically zero. Set 6;, = 6,, — g7'dgs,,,
and let ¢’ agree with g outside U. Then it is easily verified that &’ = 6 but
in view of Theorem 1.5 &’® =+ 6@,

Our next theorem plays a key role in the next chapter.
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Theorem 1.6. Let D, have constant rank on E, and let () ker OV (D,)
l

= E’. Then D,;.: E' — T* & E’ is defined and ©(D, z.) = 0.

We start with a lemma.

Lemma 1.5. If D, has constant rank, there exists an m < fibre dim E such
that ker @™ = ker @™*V_ Furthermore for any | > m, ker @™ = ker OV =
(M ker O, If m is so chosen, then R, ., is formally integrable.

k

Proof. Since g;,, = 0 for all { >0, the maps z,: R, — R, s <, are all in-
jective. We have ker O C ker O~ for all I. Since ©” has constant rank and E
is finite dimensional, there is an m < fibre dim E such that ker ™ = ker O™+?,
Then nyomy, (Ry.,) = n(Rp.,) = ker ®™*Y = ker O™ = z(R,,,,). Since
=, is injective, it follows that z,,,,(R..,) = Ry, Since the symbol of R, ., is
zero, its d-cohomology is zero and R, ,, is formally integrable. It follows from
Theorem 1.1 that ker @™ = ker O = (M ker O® for all [ > m.

k

Proof of Theorem 1.6. Let m be chosen such that ker O™*? = ker O™,
Then R, ,, is formally integrable and g,,, = 0. From the discussion in § 0,
it follows that there exist f,, - - -, fy of E such that j,,.f, form a basis of R,, _,.

But 7,: R,,,, —> E’. and since 7,0 j,,.f, = f, and x, is an isomorphism, the
f, are a local basis of E’. We have D,f, = p(D,) o j,f, = 0, which guarantees
that the image of D, on E’ lies in T* @ E’. Indeed, D,(3,f,) = dy, ® f, and
6(p.f,) = Di(f) = Dy(dy, ® 1) = d*, ®f, = 0.

Corollary. We can induce a connection

Dyzys: E/E —> T*® (E/E) .

Remark 1. It is not true in general that D,..,: ker ® — T* ® ker O is
defined. Consider, for example, the connection on the trivial bundle over an
open set U in the plane defined by D,e, = dx ® e,, D,e, = ydx & (e, + e,).
Then Oe;, = 0, B¢, = dydx (e, + e,), so the kernel of O is generated by e,.
But by definition, D,e, = dx ® e, 2 T* @ ker 6.

Remark 2. One might hope that (M ker O“(D,,z,z) = 0. However, con-

l

sider the connection defined by D,e, = 0, D,e, = ydx ® e,. Then E’ is gener-
ated by e, and under the quotient D,/ .e, = 0. It follows that &(D;, /) = 0
and hence (M ker OP(Dy /) = E|E’.

l

Remark 3. However in the Riemannian case E splits into E = E’ @ E”
and D,: E” — T* @ E”. (E” is just the orthogonal complement of E’.) In
fact this is part of the de Rham decomposition of T(M) (see, e.g., [4, Theorem
5.4]).

Unless [ = 1, the bundles G, , depend on the connection, creating a difficulty
in comparing higher curvatures of different connections. However, recall that
given a connection we have an injection ¢,: G, , — J,(G,_,,) and in particular
&: G,y — Ji(G, o) = J,(N\'T* Q E).
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We adopt the notation J(F) = J,(J,(- - -J,(F))). Applying the functor J, we
————

k times
have J(e): Ji(G,o) = LA T*®E)) = J(\*T*®E) and & = J(e)o
&: Gy g — J(N\T* ® E). Write ¢, = ¢, and define ¢ inductively by ¢ =
T )oe: Gy — T (AN T* Q E). Clearly ¢ in an injection. Set Q% =
& 00", and notice that ker @ = ker Q©.

Theorem 1.7. Suppose QV:E —1J,_(N\T*®E) are given and
(M ker Q¥ = 0. Then there is at most one connection 6 such that QV =
l
& 00P(D,).

Proof. It is enough to look at a point x, in the base space. Let ker 2™ =
ker QY = 0. We shall prove that (™ and Q{»*" determine 6,,,. Recall that
Emyr0 O™ = D,0™ = jo®™ — g(0™)oD,. Composing on the left side
bY Jl(ém)a we obtain Q'Y = Emi1© O™ = Jl(ém) O&m41° CAGARIES ]1(ém) °
j100(m — J\(85) 00 (0 ™) 0 Dy = 08y 0 O™ — 01(8, 0O ™) 0Dy = jio Q™ —
a,(2™) - D,. Applying both sides to a local section f of E,, gives 2™V (f)(x,)
— o 2™ () = — 6,(2™) 0 Dof(x) = — io(id ® 2™)(D,f)(x,). This de-
termines D,f(x,) since io (id ® 2™) is injective.

Remark. If the Q™ has constant rank, it is enough to use 2™ and Q™*?
where m = fibre dim E.

c) Linear connections. If O is a linear connection on E = T'(M), then one
can consider the curvature © as a tensor of type (1, 3). The covariant deriva-
tive of O yields a tensor of type (1, 4) and is denoted by V@. F*6 denotes the
kth covariant derivative of 6. In view of the preceding results it is natural to
expect a close connection between @ and F'~'@. (The difference in super-
scripts results from the fact that &® = ©.) We wish to make this relationship
explicit.

Recall that /' can be characterized in the following way. First, /,, where
X e I'(T(M)), acts on vector fields by VY = ix(D,Y) and on functions by
Vxf = Xf = ix(df). V' x extends uniquely to a derivation on the algebra of tensor
fields commuting with contraction.

Now let X; be a basis of vector fields, X} the dual basis of cotangent vectors.
Define VA = XF @ V'x,A. Since the expression I y,A is linear over functions
with respect to the variable X;, one shows easily that A4 is well defined.
The symbol of I is the identity, so // is a connection in the usual sense. Further-
more, if A is a tensor valued homomorphism of T(M) and f e I'(T(M)), then
A = V(A — a,(4) o D,f.

Our first problem is that @ and F'*~'@ do not live in the same place. We
solve this problem by replacing the O with the 2 defined in the previous
section. We may regard the /¥ as a section in Hom (T, (R T*) @ A\T* Q T),

k
but since ® T* ® AT* @ T injects canonically into J,(A*T* ® T) we will
k

regard F*0 as a section of Hom (T, J.(\*T* @ T)).
We can now state
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Theorem 1.8. We have Q9P| o0 = V'Olwerow and ker QU0 =
M ker I'*e. :

k=0,1
We need some lemmas.
Lemma 1.6. If F is a tensor bundle, there exists a unique section

B ¢ Hom (F, J,(F)) such that for any A ¢ Hom (T, F) we have
(D, —P)A =BoA .
Proof. Notice that

[(Dy — NAYf = (o P — a(AND,) — 7o Af) + 0,(4)D,f)
= ((h =P Af .
But j, and V' are first-order operators with the same symbol, so (j, — F): F —
J,(F) is ¢-linear, and the lemma follows.

Lemma 1.7. Let D, be a connection on E, and let F, G be vector bundles.
Let A e Hom (E, F) and B ¢ Hom (F, G). Then

DyBoA) = p(B)oD,A .
Proof. Let f be a section of E. Then

(Dy(B o A))f = ji((B o A)f) — a,(B>A)D,f)
= p(B)(ji(41)) — (p.(B) o 0,(A))(D,)
= 0.(B)(j\(4f) — a,(A)D,f) = (0,(B) o D,A)f .

Lemma 1.8. If Fis a tensor bundle, there exist sections B® ¢ Hom (J,_,(F),
J(F),i=1,..-,1, such that for any A ¢ Hom (T, F) we have

(D} — PYA = B oD\'A + BLP o D2 (FA) + -+ + BP V"4 |

Proof. We proceed by induction, and start with Lemma 1.6. Suppose the
statement has been demonstrated for £k < I — 1. Then we have

(D} — rh4
= D,(Dy'4) — 14
= D,[B{PoDiA + -+ + BEVol A + VAl — 74
= pl(B{z—n)of)g—lA 4+ e+ pl(BY_‘l”)oDv,,(VHA) + (ﬁ, — P)(P*1A)
= (Bl ) oDy A + -+ 4 p(B{) 0 Dy(P'2A) + BV A .
Thus the lemma follows with B{ = p,(B{*?) for i < ! and B = B.

Lemma 1.9. If F is a tensor bundle, there exist sections B*» ¢ Hom (J;(F),
J(F),i=1—k,---,1— 1,0 < k <, such that for any A e Hom (T, F)
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Di(P'-*A4) = BEP oV ¥4 + -« + BEP ol 4 VA .
Proof. First by Lemma 1.6 we have
D,(F*'A) = BRP ol '4 + F'A

for all I. We proceed by induction. Assume the lemma for k£ < m and for all
I. Then

l‘jrﬁn+l‘71—m—1A — DV,[Bg’_'L;,i:}) ofl-m=14 4 ... 4 BmIDopl-24 4 VI.—IA]

= p(BED) o (D ™14)) + - - -
+ p(B{™' ) 0 (D,(PV24)) + D,(F'"'A4)

— pl(Bfm"i_l)) B(ll m)OVl m- lA + pl(Bgm"f:i))on-mA

+ .- +P1(B§7le 1))0351_5 Dopi-24
+ o(BiTy ) oV TIA + BhP oV + 1A

This establishes the lemma with

B('m.+1 D — p(B? gn—m)) B(ll m)
B(m+l ) — p(B(ml 1)) + pl(Bf:m,l 1))0B1(:l,i+1) ,

forl —m—-—1<i<l—-1,
B = p,(BTs' ) + Bk .

Theorem 1.9. If F is a tensor bundle, then

ker DA = () ker V¥4

k=0,1
for all 1; and if f e ker D\™*A, then
(DiA)f = (P A)f .

Proof. Notice that z,0 D4 = DA so that ker D)4 C ker Di-'A. The
rest follows inductively from Lemma 1.9 with [ = k.

Proof of Theorem 1.8. We observe that D}@ = D\Q® = QU+V Therefore
the theorem follows from Theorem 1.9.

We also call attention to

Corollary 1 to Lemma 1.9. We have

DiA = BP oA + BOoVA 4 ... + BOJ''A + 7'4

where we have set B = B\,
We state a final corollary to Lemma 1.9, namely,
Corollary 2 to Lemma 1.9. There exist sections C¥ ¢ Hom (J;(F), J,(F))
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such that for any A e Hom (T, F)
PiA = CPoA + CPoWByd) + - + Cyo (D) + Did .

Proof. Follows by induction from Lemma 1.9.

It should be noticed that all of the maps B{*:" and C{*’ depend on the connec-
tion. This, of course, may give them a certain amount of interest. On the other
hand, in view of this dependence, it does not follow from the above two corol-
laries that the 2 and the /'O contain the same information.

It is clear that Q¢*Y = '@ only on ker 2V because outside the kernel,
Y does not lie in the right bundle. Hence Theorem 1.8 is the best one can
hope for in this respect. The definition of /'O requires that # be a connection
on the tangent bundle, and it seems unreasonable to expect a generalization
of VO, which would reduce to V0 for linear connections. Hence O appears
to be the natural generalization to arbitrary vector bundles.

2. Cohomology of the D,-complex

We now consider the equation D,f = « where « € I'(T ® E). We will show
that under appropriate compatibility conditions on « this equation can always
be solved locally (in the strong sense) in the C= category provided D, has
constant rank. In fact, we obtain a reduction to the case where D, is flat, and
using this reduction we make a preliminary study of the global problem. We
obtain satisfactory answers in two cases: 1) when the base manifold of E is
simply connected, 2) when E = T(M) where M is a Riemannian manifold with
strictly positive or strictly negative sectional curvature.

If & = 0, the compatibility conditions are provided by D,« = 0. However,
if D, is not formally integrable, higher order conditions are required. Hence
the following proposition is of interest.

Proposition 2.1. D, is formally integrable if and only if ® = 0.

Proof. 'This is an immediate consequence of Theorems 1.1 and 1.2.

Remark. This is a special case of a result of Quillen [5], who used the
following diagram :

0—> AT* ®g—> ANT*QR, —> NT*QE — 0

l_a l"
MNT*®g) —> NMTRE -5 Ccit —50

Here R, is assumed to be a first-order equation such that z: R, — E is surjec-
tive. C?*! and p are defined by the bottom row. This determines a unique
first-order operator D: AT* ® E — C%*! such that Dz = pD. Then by de-
finition K(R,) = DD: N\‘T* ® R, — C?*?, and K(R,) is AT* linear. Then
Quillen proved
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Proposition 2.2 (Quillen [5, Proposition 15.11). The sequence of ©-
modules

T K(Rl)
I

R,—> R, C?

is exact.
It is easily checked that for D,, Oor, = K(R) and C* = N\*T* Q E.

In [26] Goldschmidt proved that there are an essentially unique bundle G,
and an operator D" such that

[¢2)

D D
E-5T*®E - G,

is formally exact. We quote his theorem as follows:

Theorem 2.1 (Goldschmidt [2b, Theorem 3]). Let ¢:J.(E) — F be a
regular differential operator of order k from E to F, and let Dy = ¢ o j,. Then
there exists a formally exact complex

j D D D D,
e 0—sy - EL 6 26 26,2 6, 205G,

where G, is a vector bundle, G, = F,, and D, =¥,0j, : G, , — G, is a
differential operator of order 1., moreover the sequences

m m-— v
22) 0 Rin—Juin(E) o) 1,6y 1, 1 (G) —
e —> Jm_ll_..._l,.(Gr) —> e

are exact at R, ., and J; .(E) for m >0, at J,(G,) for m > 1, and at
Jm—ll-m—lf(Gr) ;for m 2 ll + ctt + lr+1a r 2 1.

Furthermore if the maps r, : R, ,, — R, have constant rank for allm > k,,
the cohomology of (2.1) is isomorphic to the Spencer cohomology of Ry.

The operators and bundles are constructed recursively in the following manner.
For the appropriate positive integer I,, G, = J,(G,_))/pi,,(D._D)1,.1,_,(G,_2)
and D, = ¥, 0j, where ¥, is the natural projection. If D,_, is formally in-
tegrable, and its symbol is involutive, then I, may be chosen to be [, = 1. If
D, _, has involutive symbol, and its /th prolonged equation R;., is formally
integrable, then /;, may be chosen to be [, = [ 4+ 1, and /, may be chosen to
bel, =1forr > 1.

We now specialize Goldschmidt’s theorem to the operator D,, and conclude

Corollary. Suppose O has constant rank for all l, and ker 6™ = ker @™,
Set H, = Gy, = J(T* @ E) | pn(Dy)J o 11(E)) and D, = D™ = Goj, where
@ is the natural projection. Define H, = J,(G,)/p(Dy™ ) . (T* ® E)) and
D, = ®0j,: G, — H,. Define H, and D, inductively for 1 >3 by H, =
J\(H,_)/p(D,_DU(H,_;)) and D, = @0 j,: H,_, — H,. Then the complex
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D;” D, D, D,
[ Cﬁ H2 > . e Hr—l 'HT.__).-.

23 E2ST*QE

is formally exact and elliptic, and its cohomology is isomorphic to the coho-
mology of the Spencer complex of R,,.

Proof. That (2.3) is elliptic follows from its formal exactness and the
ellipticity of D, (see [2b]). That the operators D, are all formally integrable
follows for each I by the formal exactness of the preceding stage. Since the
symbol of D, is involutive, the symbols of the D, are involutive (see [1b, Pro-
position 4.3]).

Remark. Let o be the sheaf of local solutions to D,f = 0. If m is chosen
so that ker @™ = ker O™~?, then we recall that the Spencer complex associated
to D, is

i D D
0—>0 " 5Rp, —>T*@Rpyy —> -+

D;; /\iT* QRpyy—> -

2.4

where D; = Doxr3Y,, and x;;! is the inverse of the isomorphism 7x,,: R, ,, —
R,,..

Theorem 2.2. Let w be as above. If ker ®™ = ker O™~ = E’ is a vector
bundle, then w C E’. Furthermore the cohomology of

D
25 0—o——E 2m@E 2% NT*0E-DS ...

is isomorphic to the cohomology of (2.4) and hence of (2.3). Since (2.5) is
locally exact, (2.3) is locally exact.

Proof. =(R,) = E’, and therefore R, is also the (m — 1)th prolonged
equation of D, .. Thus the Spencer complex of D, ;. is (2.4). (2.5) is formally
exact by Theorem 2.1 (Goldschmidt) and Theorem 1.3.

Since the curvature of D, ;. is zero by Theorem 1.6, Dy gz reduces to
d (by introducing flat frames) so that (2.5) and (2.3) are locally exact.

It is of some interest to make the isomorphism at 7* @ E explicit. Hence
we state

Theorem 2.3. Let O“ be of constant rank for | > 1, and let m be chosen
such that ker @™ = ker @™V, Suppose a ¢ I'(T* @ E) such that D{™a = 0.
Then there is an f e ['(E) such that « = D,f + B, where fe I'(T* ® E’, M)
and D,f = 0. If B = D,g, then ge I'(M, E’).

Proof. Since D{™« = 0, it follows from Proposition 1.5 that D{™%x¢ = O™f
for some f ¢ I'(E, M). Thus

D{™9(e — D,f) = DimYa — 0™f =0 .

On the other hand, locally « = D,4 and we have
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O™(h — f) = D{"(D,h — Df) = D*O(a — D,f) = 0..

Hence 7 — f e ker ®™ = E’ on the one hand and on the other 3 = & — D,f
=Dyh —fel'(U, T* Q E’) if h is defined on U. It follows from this that
D, =0. If §=D,g, then O™g = D™ oD,g = D{™”(a — D,f) =0, so
ge'(E).
A few applications are immediate.
Theorem 2.4. If (N ker O = 0, (2.3) is globally exact and v = 0.
l

Corollary. If E = T(M), and D, is a Riemannian connection with strictly
positive or strictly negative sectional curvature, then (2.3) is globally exact.
The interesting case is the case (M) ker O = 0. In this case we have
l

Theorem 2.5. Let E be a vector bundle with connection over a simply
connected manifold M, and let O have constant rank. If fibre dim E’ = k,
(E' = N ker 6V), then H,(M,0) = @ H;,M,R), where o is the sheaf of

l k

germs of local solutions of D,f = 0, and H;(M, R) is de Rham cohomology
of M.

Proof. In this case one can take global flat frames (see e.g. [4, Corollary
9.2]) and the complex (2.5) is the de Rham complex repeated & times.

For D, of constant rank the problem of calculating H;(M, ») reduces to the
case where D, is flat. Here one could hope to be able to calculate H;(M, »)
from H;(M, R), n;(M) and the holonomy of D,.
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