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A THEOREM OF GEOMETRIE FINIE

WILLIAM F. POHL

1. Introduction

In a paper in the Kodaira Festschrift R. Thorn [6] gave a proof, admittedly
incomplete, of the following. Let V2k C Pn+k be a real compact embedded
submanifold of real dimension 2k of a complex projective space of complex
dimension n + k. Suppose there exists an everywhere dense subset U C Gn>k

of the Grassmannian of all complex projective subspaces of complex dimension
n of Pn+k, such that if u e U then u Π V2k consists of exactly m points, where
m is independent of u. Then V2k is an algebraic subvariety of Pn+k; the flat
case is excluded. In this paper we give a complete and corrected statement and
proof of this result. Moreover, we will allow V2k to have certain singularities.

By a semi-real flat L we mean the closure in Pn+k of an affine subspace Lo

c /**<«+*>, where we make the canonical identification #2<w+*> = Cn+k c Pn+k.
These may be classified in the following way. Apply a complex affine transfor-
mation (which is also a real affine transformation) to make Lo pass through
the origin. Let / : Cn+k -> Cn+k be the multiplication by ί = <f^A. We call
the real dimension of Lo Π /(Lo) the type of L. If a complex projective trans-
formation sends L into a semi-real flat, then it preserves the type, so that a
semi-real flat is classified up to a complex projective transformation by its
dimension / and its type t, where 0 < t < j with every such even t possible.
If t = /, then L is a complex projective subspace, and if t — 0 then L is com-
plex projectively equivalent to the real projective space Pj with its canonical
embedding Pj c Pό, C Pn+k. In the intermediate cases 0 < t < /, L is singular
in fact it is a kind of cone.

We say that a continuous map /: X -^ Y of topological spaces is proper
onto its image if for every compact subset A c f(X),f~\A) is compact. We
now state the main result.

Theorem. Let V C Pn+k be a compact subset. Suppose there exists a
closed subset S C V such that the closure of V — S is all of V, and an immer-
sion f:M—>Pn + kof class O of a differentiate manifold M of (real) dimension
2k which maps M onto V — S and which is proper onto its image. Suppose
further:

1) there exists an everywhere dense subset T C Gn+ltk_ι such that if v e T
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then v Π S consists of finitely many points and v is transversal to f and
2) there exists an everywhere dense subset U C GUtk such that either
a) u Π V consists of exactly m points for every u β U, with 0 < m < oo

and m independent of u, or else
b) ί~\u) consists of exactly m! points for every u e U, where m! is inde-

pendent of u,0 < m! < oo.
Then V is a finite union of complex projective transforms of semi-real flats

of dimension 2k and the closures in Pn+k of analytic subvarieties of complex
dimension k of Pn+k — S.

Corollary 1. Suppose V C P2 satisfies the hypothesis of the Theorem with
k = 1. Then V is a finite union of algebraic curves and complex projective
transforms of the real projective plane P2 with its canonical embedding in P2.

Corollary 2. Let M be a compact connected differentiate manifold, and
f:M—^Pn + kaCi embedding. Suppose that almost every projective subspace
of Pn+k of complex dimension n meets f(M) in exactly m points, where m is
independent of the subspace, 0 < m < oo. Then f(M) is either an algebraic
variety of dimension k or a complex projective transform of the real projective
Ik-space with its canonical embedding P2k C P2k C Pn+k.

Corollary 3. Suppose that V satisfies the hypothesis of the Theorem, and
in addition that S has Hausdorff (2k — l)-measure zero. Then V is a finite
union of complex projective transforms of 2k-dimensional semi-real flats and
algebraic varieties of complex dimension k.

The corollaries are proved from the Theorem as follows. In the case of
Corollary 1, Hypothesis 1) of the Theorem implies that S is finite. Hence the
closure in P2 of every analytic subvariety of P2 — S is an analytic subvariety
of P2 by a theorem of Remmert and Stein [1], and is an algebraic variety by
Chow's theorem. Any semi-real flat of real dimension 2 in P2 has type 0 or 2,
so is either a projective transform of P2 c P2 or a complex line. In the case
of Corollary 2, the hypothesis of the Theorem is fulfilled with S = 0 the
dimension of M must be 2k, for if it is smaller there exists an open set of n-
planes which do not meet /(M), and if it is greater there exists an open set of
π-planes which meet /(M) in infinitely many points. If f(M) is a complex-
projective transform of a semi-real flat, its type must be 0 or 2k, for those of
intermediate type are singular. If f(M) is an analytic variety, it must be alge-
braic by Chow's theorem. In the case of Corollary 3, a theorem of Shiftman
[5] asserts that the closure in Pn+k of any analytic subvariety of Pn + k — S is
an analytic subvariety of Pn+k and hence an algebraic variety by Chow's
theorem. Whether the hypothesis of the Theorem is strong enough by itself to
yield the conclusion of Corollary 3, the author does not know.

Let us note that finite unions of algebraic varieties and complex-projective
transforms of semi-real flats satisfy the hypothesis of the Theorem, so that
Corollary 3 gives a characterization.

We shall prove Corollary 1 directly in this paper, the proof occupying
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§§ 2-7. Various parts of this proof are used to prove the general case of the
Theorem in § 8. The essential part of the hypothesis of the Theorem, namely
Hypothesis 2), is used only at the end of the argument, so to speak, so that
much of what we prove in this paper is valid in general for real submanifolds
of complex projective spaces. Notable are Propositions 2 and 12, which charac-
terize locally those even-dimensional submanifolds of Pn+k which are complex-
projective transforms of semi-real flats, Proposition 4, concerning the singu-
larity at the diagonal of the secant map, and Proposition 11 (generalized in § 8)
on the intersection of linear spaces, near to a tangent linear space, with a
submanifold.

2. A separation of cases

Let /: M —* CN be a C2-immersion of a differentiate manifold into a com-
plex number space. For each p e M let τp denote the tangent space to M at p,
and Tp the space of real lines through the origin of τp. Let π: T(M) -> M
denote the bundle of (real) lines through the origins of the tangent spaces of
M. We call the map /: T(M) —» GlpN_19 which assigns to each real tangent line
the complex line in PN containing it, the associated map to /.

Let t e T(M), and let c be a curve on M through p = π(t) tangent to t.
Now suppose that l(i) is not contained in τp, so that τp and l(t) span a real
affine subspace K(t) of CN = R2N of dimension one more than that of τp. If
the curvature vector of c at p is not contained in K(t), we call t an ordinary
direction. Note that by Meusnier's theorem the condition that the curvature
vector lie in K(t) is independent of the choice of c tangent to t. If l(t) is not
contained in τp but the curvature vector of c at p is contained in Kit), we call
t a direction of type F. If Tp contains an ordinary direction, we say that p is
a point of type O. Note that the set of points of M of type O is open. If p e M
is not a point of type O, then either /(/) c tp for every ί e Γ p , in which case
we say that p is a point of type C, or else, for some t e Tp, l(t) ςzί τp, and every
t eTp such that l(t) φ τp is a direction of type F, in which case we say that p
is a point of type F. Note that if p is a point of type C, then τp is a complex
vector space in CN. We have used the word "type" already in connection
with semi-real flats, but we think that no confusion will arise from the two
usages of the term. The property of being a point of type C is clearly invariant
under complex projective transformations of CN. We show below (Proposition
1) that the properties of being a point of type F or O are also invariant.
Consequently these notions make sense for points of submanifolds of PN.

We must next examine the structure of semi-real flats and make some
observations needed in the sequel. As in § 1, we will distinguish real and com-
plex projective spaces by raised and lowered indices, so that Pm will denote
the real projective space of real dimension m and Pm the complex projective
space of complex dimension m. The canonical inclusions Rm C Rm+j, Cm C
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Cm+S, taking the subspace as that defined by the vanishing of the last /
coordinates, induce inclusions Pm~ι C Pm+J~ι and F m _ ! C Pm+j-λ. Regarding
a real ra-tuple as a complex ra-tuple gives a canonical inclusion Rm C C m ,
which induces a canonical inclusion pm~ι c Pm_i

Let L C F n + ί be a semi-real flat, the closure in Pn+Jc of a real aίfine sub-
space Lo c R2(n+k) = Cn+k (Z Pn+k, (the middle identification arising from the
usual identification of i?2 with C). Apply a translation to bring L to the origin.
Let s19 , sr be a complex basis for Lo Π /(Lo), the latter regarded as a linear
subspace of C n + f e , / being multiplication by / in Cn+lc, and 2r = t the type of
L, as previously defined. Extend s19 , sr, 7^, •• , / 5 r t o a real basis of L09

j 1 ? , Isr, sr+19 , Sj_r, where / is the real dimension of L. Next we claim
that s19 --9sr9 sr+1, - - -,Sj_r are linearly independent over the complex
numbers. For, if

j-r

Σ (a* + Ibι)sι = 0 , aubι real ,
1 = 1

then

Σ α ^ = - / Σ bιh >

which implies that Σ aιsι ϋ e s i n ^o Π /(Lo). Hence we must have ar+ι =
= aj_r = 0, since s19 , /5 r forms a real basis for Lo ΓΊ /(Lo) and s19 , /i1,.,
5 r + 1, , Sj_r a real basis for Lo. Multiplying by i on the other hand gives

I Σ fli^ = Σ bιsι

which implies that br+1 = = i j _ r = 0, by the same argument. Then since
^, , sr forms a complex basis for Lo Π /(Lo), we must have at + /6j = 0
for all / < r. Hence all au bt vanish, which establishes the claim. Apply a
complex linear transformation to Cn+k to bring s19 , sr, sr+1, , Sj_r to the
first ] — r vectors of the standard basis e19 , en+k of Cn+k. We now say that
the semi-real flat lies in standard position, and we have shown that any two
semi-real flats of the same dimension and type are complex projectively
equivalent. Since the type of a semi-real flat is the same as the type of its
tangent spaces, and since a holomorphic transformation preserves the type of
the tangent spaces of any real submanifold, we have completely classified
semi-real flats. It is also apparent from the form of the basis that if t = 0
then L is just Pj c Pά c Pn+k.

Using the canonical inclusions, we see that since L contains e19 , eά_r it
contains Pjr. Let c be the intersection of Pr with the hyperplane at infinity,
so that c is a complex projective space of dimension r — 1. Since L contains
e19 , er, Ieί9 , Ier, it contains Pr9 which is the complex r-plane spanned
by c and the origin. Since e19 , er, Ie19 , Ier, er+ί, , eά_r form a real



A THEOREM OF GEOMETRIE FINIE 439

basis for L Π Cn+k C Pn+k,L consists of the locus of all complex r-planes
through points of Pjr parallel to P r , or equivalently, L is the locus of all
complex r-planes containing c and a variable point of PJ~r. Thus we see that
in case 0 < 2r < /', L is a kind of cone as previously asserted.

Let us now assume that 0 < 2r < /. We must next determine which points
of L are singular points. Since L is the closure of a real affine subspace of
R2^+k\ all points of L not lying at infinity are regular points. Let p <= L — c
lie in the hyperplane at infinity. The point p lies in the complex r-plane Q
spanned by c and some q e Pj~r. Let d — c Π P r , that is to say, the real
locus of c. Then d spans c in Pn+k, so that Q is spanned by the real r-plane
Q! spanned in Pj~r by d and q. Let us now apply a complex projective trans-
formation to Pn+Ίc with real coefficients so that PJ~r is sent into itself, so that
d is sent into itself, and so that Q is sent into an r-plane which meets the
hyperplane at infinity only in d. Since d is preserved, c must be preserved,
and then since Pj~r is preserved, L must be mapped onto itself. Since Q
meets the hyperplane at infinity only in d, Q now meets the hyperplane at
infinity only in c. (The complex span of the intersection is the intersection of
the complex spans.) Consequently, p must have been sent to a point of L not
at infinity, in particular to a regular point. This proves that every point of
L — c is a regular point. Since holomorphic transformation preserves the type
of the tangent space, the tangent space to L at every point of L — c is of type
t = 2r.

We claim that all points of c are singular points of L. For let pec be an
arbitrary point. Let d C d be a real (r — 2)-plane such that the complex
(r — 2)-ρlane spanned by d does not contain p. Make a complex projective
transformation of Pn + k with real coefficients in such a way that Pj~r is sent
into itself, so that d is taken to Prl (and hence c to Pr-ι), and so that d is
taken to the intersection of Pr~ι with the hyperplane at infinity. The point p
is then moved to a point not at infinity. L now consists of the locus of complex
r-planes spanned by Pr_x and a variable point of Pj~r — Prί. The real linear
span of these in R2^^ = Cn+k is all of Cj~r, which has real dimension
20' — r) > /• Consequently L cannot have a /-dimensional tangent space at p,
proving that p is a singular point and establishing the claim.

Next we must study the limiting tangent spaces at the singular locus c.
Suppose {pv} is a sequence of points of L approaching a point of c, which we
may assume to be the point p arbitrarily taken just above. We may assume
that the pv do not lie at infinity. We may write

Pv = Σ avlet + Σ bjet + (av + Ib^ΣWi >
1=1 1=1 l=r

with the fl's, fe's and c's real. The tangent space at pv can be found by differ-
entiating this expression with respect to the parameters avl9 bvl, av,bv, cvl it is
spanned over the reals by
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r-l9 2_ι2 ^l^l9 '

(av + Ibv)er, ...,(av + Ibv)eά_r .

It is just as well spanned by

where

= Σ cvlet = av + Ibv

/2 ' V W b
f

V ( Σ cJ)ι/2 '
Passing to a subsequence if necessary, we find the unit vectors /„ converging
to a unit vector /, and the complex numbers (of unit norm) zv to a complex
number (of unit norm) z. Then / has the form

and the limit of the tangent spaces at pv is a /-plane spanned by eλ, - -,er_λ,
Ie19 , /er_i, /, //, zer, , zes_T9 which is a /-plane of type t = 2r. Thus we
have shown that every limiting tangent space is a /-plane of type t. This con-
cludes our remarks on the structure of semi-real flats.

Let V,S,T,U, f: M —> Pn+k satisfy the hypothesis of the Theorem. We
show in § 7, Proposition 11, for k = n = 1, and in § 8 for general k, n, that
M can contain no points of type O, so that all points are of type C oτ F. Let
Mx be a connected component of M, and suppose that Mλ contains a point p
of type F. Then there must be some neighborhood N of p in Mλ all of whose
points are of type F, for otherwise p is a limit point of points of Mλ of type C,
that is, points at which the tangent space is a complex &-plane, which would
imply that the tangent space at p is a complex &-plane. Hence the set of points
of type F is open in Mλ. Let N be the largest connected neighborhood of p in
Mx consisting of points of type F. We show below (Proposition 2 for k = 1,
and Proposition 12 for general k) that / maps N into a complex projective
transform Q of a semi-real flat of dimension 2/: in Pn+k.

We claim that TV has no boundary points in M19 so that Mx = N. For
suppose that N has a boundary point q<zMx. By continuity /(#) € β . If f(q)
is a regular point of Q, then by continuity the tangent space of / at q is the
same as the tangent space of Q at /(<?), which is not a complex /:-plane, so
that q must be a point of type F. If f(q) € c, the singular locus of Q, then the
tangent space of / at q is not a complex /:-plane, because, as we have shown,
the limit of the tangent planes of Q at a sequence of points of Q converging
to a point of c is never a complex / -plane, so again g must be a point of type
F. But the set of points of type F is open in M, which implies that N contains
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a neighborhood of q, and hence q is not a boundary point of N. This con-
tradiction establishes the claim, and shows that every point of Mλ is of type
F, and that KM,) c Q.

We next claim that in this case f(Mλ) is everywhere dense in Q. For suppose
Q — /(Mj) contains an open set A. Let v' be a complex (n + l)-plane trans-
versal to £2, c, and to the hyperplane at infinity oίPn+k, which contains interior
points in Q of both A and f(MJ. By hypothesis we can find v e Γ close enough
to 1/ that v is transversal to Q,c, and the hyperplane at infinity of Pn + k and
contains interior points in Q of both A and KM,). Then β Π v is a semi-real
flat of dimension 2. Q Π v Γϊ S consists of only finitely many points by hypo-
thesis, and v Π c consists of finitely many points by the transversality. Hence
we can find an arc in Q Π v — S — c which joins a point of f(M,) to a point
of A. This arc must contain a boundary point of f(Mλ) in Q. But since V is
compact and / is proper onto its image, all boundary points of f(Mλ)

 m Q must
lie in S. This gives a contradiction, which proves the claim that KM,) is every-
where dense in Q. Since V is compact and f(M,) c *% Q c ^

Suppose that Mx is a connected component of M which contains a point of
type C. Then every point of Mx must be of type C because no points of type
O can occur, and if Mx contained a point of type F then every point of Mx

would be of type F by the above. But the condition that every point of Mλ be
of type C, that is, the condition that the tangent space of / at every point of
M1 be a complex /:-plane, implies that f(Mi) is a complex-analytic immersed
submanifold of Pn+k Since / is proper onto its image, and /(MJ C V, and F
is compact, all limit points of f(Mi) n o t lying in /(Mj) must lie in 5. Conse-
quently f(Mi) is a complex-analytic subvariety of Pn+k — S. We have now
shown that /(M) is dense in a union of semi-real flats of dimension 2k and
complex analytic subvarieties of complex dimension k of Pn+k — S. Since V
is the closure of f(M) m Pn + k, V is the union of these semi-real flats and the
closures in Pn + k of these complex-analytic subvarieties of Pn + k — S.

We next claim that V is a finite union of such semi-real flats and such
closures of analytic subvarieties. To prove this it suffices to show that M has
only finitely many components. Let u' be an arbitrary complex π-plane in Pn+k,
and suppose Mλ is a connected component of M which is mapped by / onto a
complex analytic subvariety of Pn+k — S. Pass a complex (n + l)-plane vf

through uf and some point of f(Mλ). We may choose a complex (n + l)-plane
v" arbitrarily close to v' which meets /(MJ in at least one point and is trans-
versal to /. By hypothesis we can find a v e T arbitrarily close to v", which
also meets KMd- Since v is transversal to / by hypothesis, v Π f(Mλ) is a
complex-analytic curve, and the limit points of v Π /(Λf J not in v ΓΊ /(Mx)
lie in the set 5 Π v, which is finite by hypothesis. It follows from the theorems
of Remmert-Stein and Chow that the closure K of v ΓΊ f(Mi) is an algebraic
curve. Now any complex n-plane contained in v must meet K, which is to say
must meet the closure of /(Mj). Since v can be taken arbitrarily close to v', v
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can be taken to contain a complex π-plane arbitrarily close to uf. It follows
that u' must meet the closure of f(Mx), where u' is an arbitrary complex n-
plane. But let u" be a complex /?-plane in v" € T which does not meet the
finite set v" Π S. Since S is compact, any ft-plane sufficiently close to u" will
not meet S. Hence we can choose u e U which does not meet S. Since by what
we have shown u must meet the closure of the image under / of any component
of M mapped by / onto an analytic subvariety of Pn+k — S, u must meet the
image of any such component. If Mx is any component of M mapped by / onto
an everywhere dense subset of a projective transform of a semi-real flat Q,
then clearly u meets Q. Since /(Mj) is closed in Pn+k — S, u meets /(Mj).
Hence we have shown that u meets the image under / of any component of
M. Now by hypothesis u Π f(M) is a finite set. If M contained infinitely many
components, then for some point p e u ΓΊ /(M), f~\p) would be an infinite set.
Since / is proper onto its image, f~\p) is compact and therefore contains a
limit point. But since / is an immersion, and therefore locally one-to-one,
f~\p) cannot contain a limit point. This contradiction proves that M contains
only finitely many connected components and thereby establishes the claim
that V is a finite union of projective transforms of semi-real flats and closures
in Pn+k of complex-analytic subvarieties of Pn+k — S.

To complete the proof of the Theorem, then, it remains only to show that
property of being a point of type O and the property of being a point of type
F are invariant under complex projective transformations of Pn+k; that any
immersion of a 2&-dimensional connected manifold, all of whose points are of
type F in Pn+k, is an immersion into a 2£-dimensional semi-real flat; and that,
under the hypothesis of the theorem, points of type O cannot occur.

3. The rank of the associated map

Let /: M —> PN be a C2 immersion with M of dimension h, and let τp denote
the tangent space at p e M, Tp the space of real lines through the origin of
r p , π: T(M) -* M the bundle of real lines through the origins of the tangent
spaces of M, and /: T(M) —> GlιN^ the associated map, as before. Let TG(M)
consist of those t e T(M) such that l(f) does not lie in τp, and let TG

V = TG(M)
ΓΊ Tp. Note that every t e TG(M) is either an ordinary direction or a direction
of type F.

Proposition 1. a) / restricted to TG is one-to-one, and has rank h — 1
provided TG is nonempty.

b) / has rank 2h — 2 at t € TG{M) if and only if t is a direction of type F,
and rank 2h — 1 // and only if t is an ordinary direction.

Note. We have defined the notions of an ordinary direction and a direc-
tion of type F only for immersions in CN. However, the associated map and
hence the rank of the associated map are complex-projective-invariant notions.
Hence, if we prove the proposition under the assumption that f(M) c CN C
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PN9 it will follow that the notions of being a direction of type F or an ordinary
direction and hence the notions of being a point of type O or F are invariant
under complex projective transformations, and hence well-defined for maps
f:M-+PN.

Proof of Proposition 1. That / restricted to T% is one-to-one is almost
obvious. If t, f e TG

V and l(f) = l{fr)9 then t and f lie in the same complex line.
If t Φ t\ this complex line must lie in τ p , contradicting the assumption that
l(t) not be contained in τp.

For the remainder, by the above note we need only consider a t e TG

P with
/(/?) € CN C PN. Let x19 , xh be local coordinates in a neighborhood of p
in M so chosen that t is along djdxλ. In a neighborhood of /? the immersion /
is represented by

where Zt are the complex coordinates in CN. Now introduce homogeneous
coordinates w09 , wN in C^ so that z« = Wi/>v0. In these homogeneous
coordinates / is represented by

Hence we may represent I by the complex bivector

YA(X1 + s2Y2 + + shYh) ,

where the subscripts on Y denote partial derivatives. Note that x19 ,xh,
s2, -,sh form a local coordinate system on T(M). Differentiating we obtain
(Y, Yj and YiJfc henceforth being evaluated at p)

β, = 3//3^ | t = YΛYj, 2 < j < h ,

Ωh+j =

Now these bivectors are to be regarded as ordinary vectors in the space of
homogeneous coordinates of the projective space containing G ^ ^ . The kernel
of the Jacobian of the projection mapping of this space of homogeneous co-
ordinates into the projective space at any point x is the complex line through
the origin and x. Consequently to find the rank of I it suffices to find the
dimension of the vector space spanned over the reals by Ω09 iΩ0, Ω2, , Ω2h

modulo that spanned by Ωo and iΩ0.
We claim that fl0, iΩ0, Ω2, , Ωh, Ωh+2, , Ω2h are linearly independent

over the reals. For if there are real numbers ξt such that
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ξ0Ω0 + ξλiΩQ + Σ ξjΩj + Σ £ * + A + J = 0 ,
y=2 3=2

then multiplication by Y gives

Λ y. ξ Y = o.
3=2

Now Y has leading entry nonzero and the Yk have leading entry 0. Hence Yλ

and Σ ξh+jYj must be linearly dependent over the complex numbers, which
is to say that they lie in the same complex line. But since t € TG(M) the com-
plex line containing df/dxι meets τv only in a real line, which says that Yλ and
2 ξh+jYj are already linearly dependent over the reals. But since / is an
immersion, Yλ,Y2, -,Yh are linearly independent over the reals. Hence
ξh+2 = ' ' = ?2/> = 0. This gives

h / h

= fo^o + fiW ô + ZJ ς̂ W./ = 2 Λ (fo-ί i + f i ^ i + 2J ? J J

y=2 \ j=2

Again, since Y has leading entry nonzero and the Yk leading entry zero, this
says that ξ0Yι + ξ1iY1 + Σ ζjYj = 0 B u t again iYι lies outside the real
linear span of Y1? Y2, , Yh, and the latter are linearly independant. Hence
ξ0 = ξι = ξ2 = . . . = ξh = 0, which proves the claim that Ωo, iΩQ, Ω2, ,
Ωh-> Ωh+2> '' 9 &iκ are linearly independent over the reals.

This has two consequences. First, since in particular Ωo, iΩ0, Ω2, , Ωh are
linearly independent, the restriction of / to T% has rank h — 1 at t, which
proves Part a) of Proposition 1. Secondly, it shows that the rank of / at t is at
least 2h — 2. The rank of I is then exactly 2/z — 2 if and only if there exist
real numbers η, ξt not all zero such that

vΩh+ί + ξ0Ω0 + ξxiΩ0 + Σ ξjΩj + Σ ξh+jΩh+J = 0 .
3=2 3=2

Multiplication by Y leads to ξh+2 = = ξ2h = 0, as before, which implies
that

Y A

which implies as before that

+ SoYi + f i ^ i + Σ
3=2

But since Y1? iY19 Y2, , Yh are linearly independent over the reals, this is
the condition that Yn, which is the curvature vector of a curve on M tangent
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to t, (we ignore the first component of Yπ, which is zero) lie in the linear span
of l{t) and τv. If the condition does not hold, then the rank of / is 2h — 1
and t is an ordinary direction. This proves Part b) and completes the proof of
the Proposition.

4. Surfaces of type F

Proposition 2. Let f:M-+PNbean immersion of class C3 of a connected
real surface. Then f{M) lies in a complex projective transform of a semi-real
flat of dimension 2 and type 0 // and only if M consists of points of type F.

Remarks. Such a surface will be called an F-surface or a surface of type
F. Note that any F-surface is then complex-projectively equivalent to a portion
of the real projective plane with its canonical embedding P2 C P2 C PN.

Proof of Proposition 2. By a "circle" in Pλ we mean a euclidean circle
lying on the Riemann sphere, the latter being canonically identified with Pλ.
By a "circle" in PN we mean a "circle" lying on some projective line in PN

the definition is good because any (complex) projective transformation of Px

takes "circles" to "circles". It follows that any projective transformation of PN

takes "circles" to "circles". The canonical identification R2N = CN C PN being
made, the "circles" of PN, other than those lying in the hyperplane at infinity,
are the euclidean circles in R2N which lie in complex lines, and the straight
lines of R2N (each of which lies in a unique complex line).

Now consider the standard semi-real flat P2 C P2 C PN. Ignore the points
at infinity. Through each point of P2 and in each direction there passes a
euclidean line, contained in a unique complex line. If we apply a complex
projective transformation to PN this euclidean line will be sent to some "circle".
This "circle", together with its tangent lines and curvature vectors, is contained
in the image complex line. It follows that any complex projective transform
of P2 consists of points of type F, which proves the forward implication of
Proposition 2. Note that a general complex projective transform of P2 C P2

contains a 2-parameter family of circles. According to the Italians, a surface
in R4 containing a 2-parameter family of conies is a Steiner surface, i.e., a
projection of the Veronese surface in R5. Such a surface is by no means flat.

The proof of the converse of Proposition 2 parallels the argument of [3,
§§ 4-6]. We first show that f(M) lies in a complex 2-ρlane. Let f:M-^PN

be a C3-immersion of a surface with all points of type F. Since the tangent
planes are 2-dimensional and none complex lines, TG(M) = T(M), and the
associated map Z: Γ(M) —• GUN_1 has rank 2 everywhere by Proposition 1,
b). For any t <= T(M), l~\l(t)) is therefore an embedded curve in T(M), and
such a curve is nowhere tangent to the fibre of T(M) and meets no fibre of
T(M) in more than one point by Proposition 1, a). Consequently the projection
of such a curve into M gives an embedded curve in M. Such a curve we call
an s-curve.
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Let x e M, let Wx denote the set of all points of M which are joined to x
by s-curves, and let y eWx with f(y) Φ f(x). We claim that Wx contains a
neighborhood of y. For, consider l(Tx), which is a curve in GltN_1. Then
l~\l(Tx)) contains a surface S which meets both Tx and Ty. We claim that S
is not tangent to Ty. For, S is fibred by the curves l~ι(l(t)), t e TX9 which are
not tangent to Ty. Hence, if S were tangent to Tv there would be a curve Q
in S transversal to the curves l~\l(t)), t e TX9 and tangent to Ty. Apply a com-
plex projective transformation to PN to bring f(x) to the origin of CN c PN

and τx to the real plane spanned by d/dx1 and 3/3JC2, where Zj — Xj + iyj are
the coordinate functions of CN. Now the s-curve containing x and y is unique,
for otherwise we would have two distinct complex lines in PN meeting in two
distinct points. We may assume that the tangent vector to this unique s-curve
is 3/3*!. The curve fπ(Q) can be represented in the real coordinates x19 y19 ,
XNΛN by

jπQ(θ) = a(0)(cos θ, 0, sin θ, 0, 0, •. , 0)

+ 6(0)(O, cos θ, 0, sin θ, 0, , 0) ,

so that

d/dθ\MfπQ = fl'(0)(l,0, ,0) + 6'(0)(0, 1,0, ,0)

+ fl(0)(0, 0, 1, 0, . . ., 0) + i(0)(0, 0, 0, 1,0, . . . , 0) .

This must vanish in order for Q to be tangent to Ty but this is impossible
unless a(0) = b(0) = 0, which contradicts the assumption that f(x) Φ f(y).
Hence the surface S is not tangent to Tv, as claimed. It follows that π(S) con-
tains a neighborhood of y9 and since π(S) C Wx, we have established the
claim that Wx contains a neighborhood of y.

From this it follows that every point of M has a neighborhood whose image
under / is contained in a projective subspace of PN of two complex dimensions.
For, given y e M, choose x e M on a connected component of an s-curve
through y such that f(x) Φ f(y). Then a neighborhood of y is contained in Wx.
But Wx is mapped by / into the complex 2-plane spanned by the tangent 2-
plane of / at x. This complex 2-ρlane is also spanned by the tangent space of
/ at v, and is therefore uniquely determined by y. It follows by analytic con-
tinuation, M being assumed connected, that f(M) lies in a complex 2-plane.

We may now assume that /: M -> P2. Let t, u e T(M). Then we say that
t = u if there is a curve C joining t and u in T(M) such that l(C) — l(t). This
is an equivalence relation, and since / has rank 2 everywhere the set M* of
equivalence classes forms a difϊerentiable manifold of dimension 2. The map
/: T(M) —> GlΛ induces a map Z*: M* —* G M , which is an immersion. We
call Z* or l*(M*) the dual surface. Note that G ^ = Pf, the dual projective
space.
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As we have seen, / embeds any fibre Tp of T(M) in Pf, and l(Tp) lies on
the dual surface. We shall call l*~ι{l(Tp)) a c-curve. We claim that every l(Tp)
is a "circle" in Pf. To show this we bring p to the origin of C2 C P2 as above,
so that the tangent plane at p is spanned by d/dx1 and djdx2. Using complex
homogeneous coordinates as in the proof of Proposition 1 we find that for each
tangent vector t{0) = cos θd/dxι + sin θd/dx2, l(t(θ)) is spanned over the
complex numbers by

O = (1, 0, 0) , tβ = (l, cos θ, sin θ) ,

so that l(t(θ)) is represented by the complex bivector

O A tθ = (0, — sin0, costf) .

In suitably chosen nonhomogeneous coordinates in Pf, l(t{θ)) is then represented
by (0, — tan#), which is a parametric representation of the real line, which
establishes the claim.

For each xf e M* let Ux, denote the set of those points of M* which are
joined to xr by c-curves. We claim that U x, — {x;} is open in M*. For consider
the s-curve πQrι{x')) of M and let B = T Γ " 1 ^ " 1 ^ 7 ) ) ) . By definition Ux, = l(B).
To show that Ux, — {x'} is open it therefore suffices to show that / has rank 2
on B — \-\xf). So let t e B — l~\xf) be arbitrary, and p = π(t). Choose local
coordinates x, y on M in a neighborhood of p such that π(l~ι(xf)) is defined
by x = 0, / = d/dx, with y = 0 at p. It follows that we can represent a general
point of B in a neighborhood of t by

dx + (0,2/)

so that s and y provide local coordinates on B. Using the notation and method
of the proof of Proposition 1 we find that

Kt(s, y)) = Y Λ (Y, + sY2) , ΩQ = /(ί(0,0)) = Y A Y1 ,

Ω2 = di/ds\i0,0) = Y A Y2 , β 4 = a//ay|(0,0) - y 2 Λ YX + Y A Y12 .

But as a special case of the computation there we find that Ωo, iΩ0, Ω2 and Ω4

are linearly independent over the reals, which shows that / has rank 2 on B
at t and establishes the claim.

Lemma 3. Let φ\ M —> P2 be a C2 immersion of a surface in a complex
projective plane.

a) Let x € M, and W C M be an open subset each point of which can be
joined to x by a curve which is mapped by ψ into a "circle" in P2. Then a
complex projective transform of φ(W) is contained in a semi-real flat of dim-
ension 2.
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b) // two of these "circles" having distinct tangent lines at x are euclidean
straight lines in R* = C2 C P2, then φ(W) is already contained in a semi-real
flat of dimension 2.

Proof. If x, W are as in Part a), and the tangent plane to φ at x is a
complex line, then all the "circles" on M passing through x must lie in this
complex line, so in particular φ(W) lies in this complex line. Therefore we
may henceforth assume that the tangent plane to φ at x is not a complex line
we may also assume that W is nonempty. If all the "circles" in question are
mutually tangent at x, then φ(W) lies in the complex line spanned by their
common tangent, in which case the lemma is proved. So we can assume that
two of these circles have distinct tangent lines at x. Take as line at infinity in
P2 a complex line which meets two of the "circles" in question but does not
pass through φ(x). These two "circles" are now euclidean straight lines in # 4

= C2 C P2. To complete the proof of the lemma it suffices now to prove that
φ(W) lies in a semi-real flat of dimension 2.

Let us next recall some generalities about a surface in R\ Suppose p is a
point of such a surface, and C a curve on the surface through p with unit
tangent vector t. The orthogonal projection of the curvature vector of C at p
into the normal plane at p depends only on t. Hence we have a map Jί: Σp

—> Np from the circle of unit tangent vectors at p to the normal plane at p.
The properties of Jί may be found conveniently in [2], In particular the image
of Jί is an ellipse covered twice, which may degenerate to a line segment or
a point. Consider now our surface φ, which maps a neighborhood of x into RK
Since there are two distinct real lines lying on it passing through x, the ellipse
Jί(Σx) must pass through the origin of Nx twice, which implies that Jί{Σx)
degenerates, and hence is contained in a real line L through the origin of Nx.
Now let C be any "circle" lying on M and passing through x, which is not a
straight line. The complex line containing C is spanned by its tangent and
curvature vectors at x. Consequently the orthogonal projection of this complex
line in Nx is L, since the tangent space of ψ at x is not a complex line. Hence
the complex line is contained in the 3-space spanned over the reals by L and
the tangent plane of φ at x. Now this 3-space contains only one complex line
passing through φ(x), since any two distinct complex lines passing through a
point of Ri span RA over the reals. Hence all the "circles" lying on M and
passing through x, which are not straight lines, lie in a single complex line.
If there are infinitely many such actual circles, then the tangent plane of φ at
x is this complex line, a situation already ruled out. Consequently there are
only finitely many such circles, and hence none, which implies that the
"circles" lying in M and joining x to the points of W are straight lines. These
lines lie in the tangent plane of φ at x, of course, so that all of φ(W) lies in
that semi-real flat which is the closure in P2 of the tangent space of φ at x.
This completes the proof of Lemma 3.

Now apply this lemma to our immersion /* : M* —> Pf. If y is an arbitrary
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point of M*, choose a ocurve on M* passing through y, and x a point on this
c-curve such that /*(*) Φ l*(y). As we have already shown, the set of points
of M* which can be joined to x by c-curves, Ux, is a neighborhood of y. The
c-curves are mapped by Z* to "circles". From Lemma 3 we conclude that
l*(Uχ) is contained in a projective transform of a semi-real flat of dimension
2, so that every point of M* has a neighborhood mapped by Z* into a projec-
tive transform of a semi-real flat of dimension 2. Since Γ(M), and hence M*,
are connected, we conclude by analytic continuation that l*(M*) lies in a single
projective transform of a semi-real flat of dimension 2. This cannot be a com-
plex line; for if so, by duality all the complex lines spanned by real tangent
lines of / in P2 have a common point. But two such complex lines spanned by
two real lines tangent at a point of M have only that point in common. It fol-
lows that f(M) is a single point, contradicting the assumption that / be an
immersion. Hence some projective transform of l*(M*) lies in a semi-real flat
of dimension 2 and type 0. Applying the adjoint complex projective transfor-
mation to P2, we have l*(M*) actually lying in such a semi-real flat, which we
can take to be P 2* c P2*.

Now consider P2 C P2. As we have already shown, its points are all of type
F its dual surface consists of those complex lines whose real locus is a line,
i.e., P 2* C Pf, and by its homogeneity and isotropy every real line of P 2* is
the c-curve corresponding to some point of P2. This enables us to establish a
map M —> P2, by which we assign to every point p e M the point pf in P2 such
that l(Tp) = l(Tp,). The intersection of the complex lines l(Tp) is f(p), the
intersection of the complex lines l(Tp,) is //. Hence f(p) = //, which proves
that f(M) c P2. This completes the proof of Proposition 2. We remark finally
that l*(M*) is a surface of type F and its s-curves are the same as its c-curves.

5. The secant map

Let f:M^C2 = RA be an embedding of class C4 of a real surface. Let
π: Γ(M) -> M denote the bundle of unoriented (real) tangent lines of M, as
before. Consider

S(M) = (M X M - Δ) U Γ(M) ,

where Δ = {(*, JC)} is the diagonal. It is shown in [4, pp. 1333-1337] that S(M)
has a differentiate structure compatible with the canonical differentiable struc-
ture on M X M — J , and in which T(M) with its canonical differentiable
structure is an embedded submanifold (this is done by blowing up the diagonal
in M X M). Moreover, the mapping Lf from S(M) into the Grassmann mani-
fold of all (real) lines in R* defined by

L'(x9 y) = the real line joining f(x) and f(y) in R\ (x, y) e M X M — Δ ,

L\t) = t realized as a real line in R\ t <= T(M) ,
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is difϊerentiable of class C3. (Actually in the construction of [4], T(M) is the
bundle of oriented tangent lines, and S(M) is a manifold with boundary T(M).
But if, in the treatment of [4], one interprets the f/s as homogeneous coordi-
nates in a (real) projective space and ignores the inequalities X£i > 0, one
obtains the construction desired here.) The map tϋ: S(M) —> M X M defined
by

&(χ, y) = (x, y), (x, y) e M X M - Δ ,

is called the canonical projection.
For any real line Q in R4 = C2 let λ(Q) denote the (unique) complex line

containing Q. Let L = ΛZ/: 5(M) -» P2*. Note that L restricted to T(M) gives
/, the associated map previously defined. Let χ: S(M) —> 5(M) be defined by

χ(*, y) = Cy> *) , (Λ, y) e M x M - J ,

χ(0 = ί , ί 6 T(M) .

Let us take note of some dimensions and ranks: S(M) and Pf have (real)
dimension 4, Γ(M) has dimension 3 if t € Γ(M) is an ordinary direction for
the map /, then by Proposition lb) / has rank 3 at t hence L has rank at least
3 at ί. But L cannot have rank 4 at ί because Lχ = L and the set of fixed
points of χ is Γ(M), which implies that L cannot be one-to-one on any
neighborhood of t. Hence L has rank exactly 3 at t.

Definition. Let N19N2 be 4-dimensional diίϊerentiable manifolds, Q an
embedded submanifold, and φ: Nx —• iV2. We say that φ is a /o/d w/ίΛ center
Q at p ζQ ii there exist C1 local coordinates x19 , x4 in a neighborhood of
p, and y1? , y4 in a neighborhood of φ(p) such that in this neighborhood Q
is defined by xx = 0 and 9 has the form

?i = *ϊ > y< = -̂ ί» 1 = 2,3,4 .

Proposition 4. L^/ /0 e T{M) be an ordinary direction. Then L is a fold
with center T(M) at t0.

The proof is based on the following criterion.
Lemma 5 Let Q,φ: Nι—> N2 be as above and differ entiable of class C3.

Then ψ is a fold with center Q at p 6 Q if Q has dimension 3, and
1) there exists a neighborhood U of p in Nλ such that φ has rank 3 at each

point of U Π Q and the restriction of φ to U Π Q has rank 3, and
2) there exists a C2 real-valued function ψ defined in a neighborhood of

<p(p) in N2 such that the directional derivatives of ψ o φ along Q at p vanish
and there exists an embedded C2 curve C(s) on Nλ with C(0) = p, whose
tangent vector at p lies in the kernal of φ#, but such that
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ds2

Proof of Lemma 5. Suppose C(s) and ψ are given with conditions 1) and
2) satisfied. Choose C3 local coordinates JC", , x" valid in a neighborhood
V a U of p and vanishing at p, and C3 local coordinates y1? , j 4 valid in a
neighborhood of ^(F) and vanishing at φ(p), such that Q Π F is defined by
t" = 0 and φ(Q Π F) is defined by y1 = 0. Since φ\ V Π Q has rank 3, we
must have

0

Hence

x[ = x[' , x[ = yt o φ , i = 2, 3, 4 ,

is a valid C3 change of local coordinates in a neighborhood W ot p. In these
coordinates the map φ has the form

3Ί = )Ί(*ί> , ̂ ) , y* = ΛJ , / = 2, 3, 4 .

Since 9? has rank 3on<3 Π W, we must have

dy,ldx[\q = 0 , for all 4 e Q Π Ψ ,

and since y1 = 0 on β Π W7,

3^/341, = 0 , £ = 2, 3,4 , for all 4 e β Π Ψ .

Since the tangent to C at p lies in the kernal of φ^ we must have

dyjdsh = 0 , dyί/ds\0 = dx[jds\, = 0 , / = 2, 3,4 .

By assumption

3 ψ / 3 y * U ) = O , z = 2 , 3 , 4 .

Using these relations, we obtain

d2ψ _ Σ d2ψ dy, dyj + Σ aψ d2yt __ dψ d2yλ

ds2 ί,j dyidyj ds ds % dyt ds2 dyx ds2

at 0, which is nonzero at s = 0 by assumption. Hence at p

x^_ Jy1_d2x^= d2yλ ( dx[ V

s t dx\ ds2 dx'2 \ ds ) 'ds2 ti dxβx'j ds ds t dx\ ds2 dx'2 \ ds

so that d2yjdxί2 Φ 0 at p. Since
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yλ = dyjdxί = 0 on Q Π W ,

by elementary methods we have

yλ(x[, , O = x[2g(x[, , xθ ,

with g of class C1 in some neighborhood oi Q Γϊ W and

Let

xλ = *ίg 1 / 2 «, .,*ί) , x, = *ί , / = 2,3,4 .

This is a valid C1 change of local coordinates in some neighborhood of p,
since

In these coordinates the map ψ takes the form

)Ί = * Ϊ , tt = <̂ > 1 = 2, 3, 4 .

This completes the proof of Lemma 5.
Proof of Proposition 4. Let t0 be an ordinary direction. By continuity there

is a neighborhood of t0 in T(M) consisting of ordinary directions, and hence,
by the remarks just preceeding the definition of "fold", L satisfies Condition 1)
of Lemma 5. We proceed to construct ψ and C satisfying Condition 2).

Let x(s) be a C3 embedded curve on M parametrized by arc length such that
JC(O) = π(t0) and such that t0 is the tangent line of x at 0. Let C(s) be the curve
on S{M) defined by

(x(s), x(-s)) eM X M - Δ , s ^ O ,

t0 e T(M) , 5 = 0.

That C(s) is embedded and C2 follows from properties of the S(7V)-construction
established in [4]. Since LC(s) = LC(—s), the tangent to C at 0 lies in the
kernal of L^.

Since t0 is an ordinary direction, the tangent space to / at π(t0) and L(t0)
span a hyperplane G of R\ Choose a point P Φ fπ(ί0) on the real line through
fπ(t0) perpendicular to G. For each complex line y e P} let ψ(y) denote the
euclidean distance in R* from y to P. Clearly ψ is infinitely difϊerentiable on
some neighborhood of L(t0) in Pf -ψ may be computed as follows. For each
y e Pf near L(t0) let n(y) denote the unit vector along the unique line through
P meeting y perpendicularly and oriented from P toward y. (Note that n(L(tQ))
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is perpendicular to G.) Take P as the origin, and let X be the position vector
of a point on y. Then ψ(y) = X n(y).

For each t e T(M) let X(t) = /τr(O If t(u) is any curve on T(M) with ί(0)
= t0, we have

(dψoL)ldu\u=0 = dX/du\Q n(0) + Z(0).dn/dιι|0 .

But the first term on the right-hand side of the equation vanishes because
(dX/du)(Q) is a tangent vector of M at π(t0), while n(0) is normal to / at π(tQ).
And the second term on the right vanishes because dn/du is perpendicular to
n since n is a unit vector, and X(0) is a multiple of n(0). Hence the directional
derivatives of ψ o L are zero along T(M) at t0.

Now let X(s) = fx(s). Since the kernal of L^ contains the tangent of C at
0, we must have

dn/ds\0 = 0 .

Consequently, since n is a unit vector,

0 = (d2n n)/ds2\0 = 2d2n/ds2\Q n(0) + 2(dn/ds\QY ,

which implies that d2n/ds2\Q n(0) = 0. Hence, using the fact that X(0) is a
multiple of n(0), we obtain

ds2

d2X

ds2 ds

dn

ds

dιn

ds2
o ds2

But this last cannot vanish because d2X/ds2(O) is the curvature vector of fx(s)
at 0, and this cannot lie in G because t0 is an ordinary direction. Hence L, ψ, C
satisfy Condition 2) of Lemma 5, from which we obtain the conclusion of
Proposition 4.

6. Maps proper onto their images

Let /: Nι —> N2 be a differentiate map of differentiate manifolds. We say
that px e N1 is a good pomί of / if f(pλ) has an open neighborhood X a N2

such that i~ι(X) = U1 U U C/m, where each [/* is open and is embedded
diίϊeomorphically by / onto /(L^), with the Ut pairwise disjoint. Note that every
point of Ui is then a good point.

Lemma 6. Suppose f:Nι^N2 is proper onto its image, and p eN2. Let
W be a neighborhood of f~Kp) in Nx. Then there exists a neighborhood C of
p in N2 such that f-\C) C W.

Proof. Suppose not. Then there exists a sequence pv —> p such that f~\pv)
<£ W. Since / is proper onto its image f~ι{\Jv {pv} U {p}) is compact. Choose
qv £ f~Kpv) — W; then {qv} has a convergent subsequence qμ —> q, so that by
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continuity f(qμ) -> f(q). But f(qμ) —> p. Hence q <= f~\p) and qμ is eventually
inside W, a contradiction.

Lemma 7. Suppose f: N1 —> 7V2 w tf dίβerentiable map of diβerentiable
manifolds, which is proper onto its image, and q e Λ^ a point at which f is an
immersion, i.e., such that the rank of f at q equals the dimension of Nλ. Then
there exists a good point of f arbitrarily close to q in Nx.

Proof, Let V be an arbitrary neighborhood of q in N19 where q is a point
at which / is an immersion we will show that V contains a good point of /.
Let V C V be a neighborhood of q, and C a cubical coordinate neighborhood
of f(q) such that /(F') C C and such that f(V) appears as a linear space in C
parallel to a side of C of the same dimension, with the boundary of f(V) lying
in the boundary of C. Let πc: C —> /(F') denote orthogonal projection in C
onto /(F'). Now /"XC) is an open subset of Nλ of dimension equal to that of
/(FO Consequently by Sard's theorem there is a point qγ e V such that f(qλ)
is a regular value of πcf\f~ι(C). At each point of f^iίiqj), f is then an immer-
sion. Hence /"K/Gsfi)) is finite, for otherwise f~ι(q^) would contain a limit point,
at which point / could not be an immersion. Let f~\f(qy) = {q19 , qn}, and
Wι be a neighborhood of qt such that Wt is mapped by TΓ̂ / difϊeomorphically
onto its image, with the Wt pairwise disjoint. By Lemma 6 there exists a
neighborhood C" of /(t^) such that f~ι{C) a W1 \J U Wn. Let ^ be a
point of f~\C) Π F 7 such that f~\f(pj) consists of the smallest number of
points for all p e f-\C) Π V.

We claim that p1 is a good point of /. For since f~ι(f(Pι)) C ^ U U
Wn, it is finite: f~\f{p)) = {p19 , pm}9 and after some renaming we can take
Pi<εWi. By Lemma 6 there exists a neighborhood C" C Cf of f(pλ) such that
i~ι(P") dWx\J U W m . Now f(Wi) must contain an open neighborhood
Di C /(FO of Z(F') ΓΊ C", 1 < i < m, for otherwise we could find a point
p e f~\C") Π F 7 with f~ι(f(p)) consisting of strictly fewer than m points. Let
D = Dγ Π ΓΊ Dm, and U[ = (πcf)-\D) Π Wt. Then U, is open, and /
must map U[ difϊeomorphically onto D, 1 < / < m. For if x e C/J, let y eWi
be the unique point such that /(j) = πcf(x) Then ^^/(j) = πcf(x), which
implies that * = j , showing that / maps JJ\ into D. And / maps C/{ o«/o D ;
for let Λ: β D, and y β JP* be the unique point such that f(y) = x. Then TΓ^/C )̂
= x, which implies that y e (πcf)~ι(D) Π Wt = ty. By Lemma 6 there exists
an open neighborhood X of /(px) in N2 such that /"^Z) C U[ U U 171.
Let Ut = f~KX) Π C/7,. Then the t/t are open and /-χ(Z) = ^ U U Um,
f maps each £/* difϊeomorphically onto /(C/^ = I ί l i ) , and the C/̂  are pair-
wise disjoint because Όt C Wt and the ^ are pairwise disjoint. This completes
the proof.
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7. Ordinary directions

Let V C P2 be a compact subset, S C V a finite set of points, and f:M-+
P2 a C4 immersion of a surface which is proper onto its image, with /(M) =
V — S. We will suppose that there is an ordinary direction tx e Γ(M). Let W
be an arbitrary neighborhood of tx in T(M), Wx C W a neighborhood of tx

consisting of ordinary directions, and /: T(M) —» P^ the associated map. By
Proposition 1, b), / is an immersion on Wx.

Let Λs denote the set of all complex lines in P2 which pass through points
of S. We claim that it is impossible to have an open set Wf C T(M) such that
l(Wf) c Λs. For if so there exists an open set W" C Wf C Γ(M) such that
every line /(/), t e W", passes through some fixed point P. If p e M is any
point such that the fibre Tp meets W", choose t, t' e Tp Π W", t Φ f. Then
l(t) Π /(ί7) — {/(p)}, so that /(p) = P. It follows that / maps the whole open
set π(W") into P, which is impossible. This establishes the claim. Thus l~ι(Λs)
is a closed set with empty interior, and we choose an open subset W2 C Wx

such that W2 Π ΓKΛS) = 0.
Let T = T(M) — l~\Λs). We claim that /| V is proper onto its image. For

let A C /(TO be compact. Then

,4' = y κ P2

is compact, and Af ΓΊ 5 = 0. Consequently^7 Π K c j(M) is compact. Since
/ is proper onto its image ί~ι(A') is compact, and since the fibres of T(M) are
compact π~ιf~ι(Af) is compact. But ί " 1 ^) is closed and contained in π~ιf~ι(A').
Hence Z" 1 ^) is compact, which establishes the claim. By Lemma 7, then,
there exists an open subset WQ C W2 consisting of good points for / T7. Since
l(W2) Π Λs = 0 and Λs is closed, Wo consists of good points for the whole
mapping /: T(M) -• P*.

Suppose t0 e Wo and tx β T(M) are such that Z(ί0) = l(tx), tQ Φ tx. We claim
that then fπ(t0) = fπ(tx), which is to say that "f(M) has no 3-parameter family
of bitangent complex lines". To show this we choose as line at infinity in P2 a
line which meets neither fπ(t0) nor fπ(tx). Let zx = xx + ίyx, z2 = x2 + ίy2 be
the complex coordinates in R* = C2 C P2. Apply a complex affine transforma-
tion to bring fπ(t0) to the origin of JR4 so that the tangent plane of / at π(t0) is
defined by yx = y2 = 0, with t0 in the xx direction. To each / in a neighborhood
of tQ in T(M) associate an orthonormal frame Xexe2e3e4 in JR4 such that X(t)
= fπ(t), ex(f) is directed along t, e2 is in the tangent plane of / at π(t), and ez

and e4 are normal, so that e3(t0) and eA(t0) are along the increasing yx and y2

directions, and ex(t0) and e2(t0) along the increasing xx and x2 directions. If /
denotes multiplication by / = V— 1? we have

= -ex(t0) ,
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which relations, we must emphasize, hold only at tQ.
Let cΰi = dX eu Wij = dβi-βj. Since ex and e2 span the tangent plane of /

at each point, we must have ω19 ω2 linearly independent and ω3 = ω4 = 0. If
we restrict these differential forms to a fibre Tp, we find that ωx = ω2 = 0,
and that ω12 is the differential of the angle of turning. Hence ω1? ω2, ωί2 are
everywhere linearly independent. By the structure equations of Maurer-Cartan
we have

0 = dωA = ωλ Λ ω14 + ω2 Λ ωu ,

and by a lemma of Cartan we can write

ωu = eωx + gω2 .

Since t0 is a good point of /, there exists a diffeomorphism φ of some neighbor-
hood of ίQ to some neighborhood of tx such that Iφ = /. Let Y(t) = fπφ(ί).
Since Y(t) lies in the complex line /(/), we can write

Y = X + λeλ + μlex ,

where λ and μ are real-valued functions on a neighborhood of t0 whose dif-
ferentiability follows from that of Y. Calculating, we obtain

dY e2 — ω2 + λωl2 + dμ(le^) e2 + μl(ωue2 + ωl3e3

dY>eA = λωu + dμ(Ieι)-e4 + μl(ωί2e2 + ωιzez + ω

Evaluating at t0, we obtain

dY-e2 = —μeωλ + (1 — μg)ω2 + λωl2 ,

dY e4 =

Since Y has rank 2, there must be a tangent vector τ of Γ(M) at ί0 for which
dY = 0, and since the plane Z(/o), which is spanned by eί and e3 at ί0, contains
a tangent line of Y at t09 we must have dY-e2 = JY ^4 = 0 for a tangent
vector of Γ(M) at ί0 independent of τ. Hence there exist two linearly inde-
pendent triples of numbers ξ19ξ2, ξ3 such that

-juβft + (1 - /ιg)f2 + « s = 0 , λeξx + λgξ2 + μξ, = 0 ,

the functions being evaluated at t0. But this implies the vanishing of a sub-
determinant of the system:

0 =z -μ*e - λ2e = -(μ2 + λ2)e .

Take a curve on M passing through π(Q with tangent line t0 at TΓ(/0), and con-
sider the curve of its tangent lines in Γ(M). On this curve ω2 = 0 and d2X-eA
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= ωxωu = eωl, which is nonzero at tQ because the curvature vector of the curve
does not lie in the linear span of e19e29e39 since tQ is an ordinary direction.
Hence λ2 + μ2 = 0 at t09 which proves that π(t0) = π(ti)9 as claimed.

We can obtain something more. Let

Z(t,λ,μ) = X(π(t)) + λeM + μleSf) .

By the above calculations, dZ-e2 and dZ-eA are linearly independent combina-
tions of ωl9 ω2 and ωί2, provided (λ, μ) Φ (0, 0) and t is an ordinary direction.
From the structure equation

0 = dω3 = ωx A ωn + ω2 A ω23

we find by the lemma of Cartan that ω13 is a linear combination of ωι and ω2.
A short calculation then gives

dZ e1 = dλ+ >- , dZ-e3 = dμ + -" ,

where the dots stand for combinations of ω19 ω2 and ω12. Hence dZ-eλ, dZ>e2,
dZ e^ dZ-e± are linearly independent, provided (λ, μ) φ (0,0) and t is an
ordinary direction. This proves

Lemma 8. Z(t, λ, μ) has rank 4 at (ί, λ, μ), provided t is an ordinary direc-
tion and (λ,μ) φ (0,0).

Now since / is proper onto its image, by Lemma 7 there exists a point p0

in the open set π(WQ) which is a good point for /. Let f~\f(Po)) = {p0, , pa},
and let At be an open neighborhood with compact closure of pt in M, such
that the At are pairwise disjoint, 0 < i < a, At consists of good points for /,
and / maps each At diίϊeomorphically onto f(A0). Let tQ € TPo Π Wo, and ^0 =
l(t0). We claim that f~\λo) is finite. We first show the following

Lemma 9. Suppose that ψ: A —» P2 is an embedding of a surface, and
Ar C A an open submanifold with compact closure. Suppose λ = l(t), t εTp

C T(A'), and p is a point of type O. Suppose {xv}, {yv} are sequences of points
of A, xvΦ yv, such that L(xv,yv) -^ λ, where L is the secant map of §5 .
Suppose that either xv—>p and yv —> p, or else λ meets ψ(A) only in p. Then
{(xv, yv)}9 considered as lying in SG40> has a subsequence converging to t.

Proof. Since S{Af) has compact closure in S(A), {(xv9 yv)} has in either case
a convergent subsequence {(xμ9 yμ)}. Hence w(xv, yv) converges in A xA, where
ΐΰ is the canonical projection of § 5 . By continuity ^(lim xμ), ^(lim yμ) € λ.
Hence limx^ = lim yμ = p is either case. It follows that {(xμ,yμ)} converges
to f eTp. By continuity L(t') = l(t') — λ = l(f) since / maps Tp in a one-to-
one fashion, by Proposition 1, we have / = /', which completes the proof.

Suppose that f~\λ0) is infinite. Then since Λo and V are compact, λ0 Γϊ V d
f(M) is compact, and since / is proper onto its image f~\λ0) = f~ι(λ0 Π V) is
compact. It follows that /~1(^0) contains a convergent sequence of distinct
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points {xv}. At the limit point p of xv,f cannot be transversal to λ0. Hence
Λo = l(t) for some t εTp. But then, as we have shown, f(p) = f(p0), which is
to say that p = pt for some i < a. Hence xv is eventually inside At. Now since
At is identified with AQ under the mapping /, we may as well assume that xv

lies in Ao — {p0} and xv —* p0. Note that we have L(xv, p0) = λ0. It follows
from Lemma 9 that {(X, /?0)} has a subsequence {(^, p0)} converging to tQ. Of
course LC^, pQ) = λ0. But this is impossible because L is a fold in a neighbor-
hood of t0 by Proposition 4, so that ί0 has a neighborhood which is mapped
by L in a two-to-one or one-to-one fashion. This proves the claim that f'^/Q
is finite.

For later use we summarize in the following lemma a few of the results
which we have proved so far.

Lemma 10. Let V c P2 be a compact subset, S C V a finite set, and
f:M—*P2 a C4 immersion of surface which is proper onto its image with
f(M) = V — S. Let t e T(M) be an ordinary direction, and W a neighborhood
of t in T(M). Then W contains an ordinary direction t0 which is a good point
for I, such that p0 = π(t0) is a good point for f, and such that l(t0) does not
meet S. Such a t0 has the properties that f~\l(Q) is finite, and if t e /^(/(Λ))?
then fπ(f) = /(p0).

Let f-\λ0) = {p0, '-,pa, pa+1, '"9pb} with / transversal to Λo at pa+19

pb, and p0, , pa as before. For all i < b let A't be an open neighborhood of
Pi such that the A\ have pairwise disjoint closures, such that A\ c At if / < a,
and such that / maps each A\ diίϊeomorphically onto f(A'o) for / < a. By
Lemma 6 there exists an open neighborhood B of {/(#>), , f(pb)} in P2 such
that t\B) C A'o U U A'h. Since the compact sets ^0 and V — B are
separated, there exists an open neighborhood Cλ of λ0 in Pf such that it λeC1

then f~KX) C AQ U U A'b. Since / is transversal to Λo at pa+ί, -, pb,
there exists a neighborhood C2 C Cx of λ0 such that if λ € C2 then λ meets f(A§
transversally in a single point, a + 1 < i < b.

Let l^00 C Wo be a neighborhood of t0 in T(M) such that /(^0 0) C C2. By
Lemma 8, since t0 is a good point of / (so that f(Pi) Φ f(p0), i > a) as t varies
in JPQO, l(i) Π fiA'i), / > «, will describe some open subset of f(A$. Since the
good points of / are open and dense in M, we can find ate Woo such that /(/)
meets f(A'^) in the image of a good point of / for all i > α. Since A'o consists
of good points for / and /(/) Π f(M) c f(A'o) U U KA'b), l(t) meets f(M)
only in the images of good points. This new t, we now call t0, l(t0) we call λ0,
and π(t0) we call p0. Since ί0 e Wm t0 is a good point for / and λ0 Π S = 0. It
follows from Lemma 10 that f'XKto)) is finite. We redefine α,b, and /^ so that
f~ιW = {Po, •-, Pα,Pα+i, > Pδ}? where >ί0 is transversal to / at pα+1, -, pb,
and has a real line in common with the tangent plane of / at p0, , pα. By
Lemma 10, f~\f{p^)) = {po> > Pα} Let^J 7, , ̂ 4" C M be pairwise-disjoint
open sets with compact closure and smooth boundary such that A" is a neigh-
borhood oipi,0 < i < b, such that the v4" consist of good points for /, and such
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that / maps A" diίϊeomorphically onto /G4")> 0 < ί < a. Let C3 C C2 be a neigh-
borhood of λϋ such that if λ e C3 then λ Π V d f(A'o') U U /G4") and λ
meets each j(A") transversally in a single point, a + 1 < i < b. (That such a
C3 exists is proved by the argument for the existence of C2.)

Now by Proposition 4, the secant map L is a fold at t0 with center Γ(M).
That is to say, there exist a coordinate neighborhood C4 c C3 of λ0 in Pf with
coordinates y19 ,y4, and a coordinate neighborhood X of /0 in S(A") with
coordinates x19 , x4 such that Γ(M) in X is defined by JCX = 0, and L takes
the form

)Ί = * ? , Jz = *« , i = 2, 3, 4 .

Let

By shrinking C4 if necessary, we arrange that L maps X onto CX. For any sub-
set β c p * l e t β + = β n c4

+, β Γ - β n c4

Γ, β- = ρ n c4-.
We claim that there is a neighborhood C5 C C4 of >ί0 such that if λ e C5

+ then
λ meets /G4") in just the unique pair of points f(p) and /(/?') such that L(̂ 7, pθ
= ^. For otherwise there exists a sequence of lines λv —> Λo, λv € C4

+, such that
f~\Ό contains three distinct points pv, p'v, p" e A" for each v with (pv, p'v) e X.
It follows from Lemma 9 that {(pv, /?")} has a subsequence {(/?π, p")} converg-
ing to ί0, and then that {(pi, p'J)} has a subsequence {(/ ,̂ p^)} converging to tQ.
It follows that {(pp, p")} and {(p'p, p'p')} are eventually inside X. Hence, for some
value of the index p, L(pp, p'p) = L(pp, p") = L(p'p, p"), which contradicts the
fact that L is two-to-one o n l - T(M). This establishes the claim.

Now since tQ is a good point for /, there exists a connected neighborhood
C6 C C5 of Λ in P* such that l(T(M)) Pi C6 a C6

Γ. It follows that every line
in Q or C6~ meets f(M) transversally. Since any line λ in Q meets /(^J0
transversally in exactly two points and does not meet df(A"), its linking number
with df(Aoθ must be even. Since C6 is connected and no λ e C6 meets the
d/O4oO> the linking number of any λ e C6 with dfiA") is even. Hence no Λ € C6

meets /G4") transversally in a single point, and there must be an open neighbor-
hood C7 c C6 of Λo such that if λ € C7~ then Λ does not meet f(A'o') in more than
one point. For otherwise there would exist a sequence of lines λv—>λ0,λv€ C6~,
such that λv meets f(A") in two distinct points f(xv), f(yv). Lemma 9 gives a
convergent subsequence of {(xv, yv)} which eventually lies inside X, so that for
some v, λv = L(xv7 yj e C6

+, which is a contradiction.
We have constructed, therefore, two open subsets C?,C? C Pf such that

each line in C7~ does not meet /G4")> a n d ^ a^h line in Cf meets j(A") trans-
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versally in exactly two points. Recall that each A", i < a, is identified with
f(A") under the map /. Each line in C7 meets f{A") transversally in a single
point, / > a. Consequently the number of points in f~\ΐ) Π 04"+1 U U Afζ)
does not vary as λ varies in C7. Since A"+19 - ,A" consist of good points,
the number of points in λ Π (f(A"+1) U U KA")) does not vary as λ varies
in C7. Finally, C7 may be made arbitrarily small. We have proved the following.

Proposition 11. Let t e T(M) be an ordinary direction, and C a neighbor-
hood of l{t) in Pf. Then there exist nonempty open subsets C+,C~ C C and
positive integers c,d, and e, such that if λeC+, then λ Π V consists of c
points and f~\X) consists of d points, and such that if λeC~, then λ Γϊ V
consists of c — 2 points and f~KX) consists of d — e points. Furthermore each
line in C+ U C~ is transversal to f and does not meet S.

The conclusion of this proposition is clearly incompatible with Hypothesis
2 of the Theorem. We conclude that if n = k = 1 and the hypotheses of the
Theorem are fulfilled, then T(M) contains no ordinary directions. The proof
of the case n = k — 1 of the Theorem, that is to say Corollary 1, now stands
complete.

Remark. If it is desired to prove Lemma 2 of Thorn [6], one cuts L(X)
by a complex line in Pf transversal to L(T(M) Π X), which line corresponds
to a pencil of lines in P2.

8. The higher-dimensional case

We next generalize Proposition 11 to higher dimensions. Let V (Z Pn + k be
a compact subset, M a difϊerentiable manifold of (real) dimension 2k, and
f:M-^Pn+kdiO immersion which is proper onto its image, with f(M) C V.
Let S = V — f(M), and suppose there exists an everywhere dense subset T C
Gn+i,k-i s u c n t n a t if v e T then v Π S consists of finitely many points and v
is transversal to /. Suppose that T(M) contains an ordinary direction tγ. By
Lemma 7 there exists a good point for / arbitrarily close to π(tλ), and hence
there exists an ordinary direction t2 such that π(t2) is a good point of /. Finally
we can find a v € T containing an ordinary direction t3 so close to t2 that p3 =
τr(/3) is a good point for /.

Let Mf = f~\v). Then M' is an embedded submanifold of M of dimension
2; let f denote the restriction of f to M'. We claim that t3 e T(M') is an
ordinary direction for f. For consider a curve p(s) on Mf tangent to t3 since
its curvature vector at p3 does not lie in the tangent space to / at p3, a fortiori
it does not lie in the tangent space of f at p3. Since l{t3) does not lie in the
span of this curvature vector and the tangent space to / at p3, a fortiori it does
not lie in the span of the curvature vector and the tangent space of f at p3,
which establishes the claim.

Let A(v) denote the locus swept out in v by all the complex lines joining
points of the finite set S ΓΊ v to points of f(M')\ it depends on 4 real
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parameters. Let B(v) denote the locus swept out in v by the complex lines
each of which meets a tangent plane of /' in a real line at least it depends on
5 real parameters. Let C(v, t3) denote the complex 2-plane spanned by the
tangent space of f at p3. Now choose as hyperplane at infinity in Pn + k a hyper-
plane which does not pass through /(/?3), and identify its complement with
Cn+k = R2^n+k) in the canonical way. Let L be the real line inR2(n+k) through
f(p3) in the direction of the curvature vector of a curve p(s) on M' tangent to
ί3. Choose a point P on L distinct from f(p3), and let D(v, t3) denote the closure
of the locus of complex lines joining P to the points of the real 3-plane spanned
by the tangent plane of f at p3 and l(ί3) D(v, t3) depends on 5 real parameters.
Let E(v, t3) denote the closure of the locus of points swept out by the complex
lines joining the points of /(MO to f(p3) E(v, ί3) depends on 4 real parameters.
It follows that we can find a complex (n — 2)-ρlane H in v which does not
meet A(v), B(v), C(v, t3), D(v, t3), nor E(v, /3). Let P2 c v be so situated that
P2 n H = 0, and let w denote projection of v into P2 with H as center. Let
S' denote the finite set w(v Π S).

Since H does not meet B(v), wf \Mr—>P2 is an immersion. Since H does
not meet A(v), wf{Mr) Π S' = 0. Since v Π V is compact, so is V =
tΰ(v Π V). Since H does not meet C(v, t3), the tangent space of wf at p3 is
not a complex line, so that this tangent plane does not contain the complex
line spanned by (zΰf)*(t3). Since H does not meet D(v, t3), the curvature vector
of zϋf'p(s) is in general position at p3 with this complex line and tangent space,
so that t3 is an ordinary direction for wf. Let K C wf'{Mf) be a compact set.
Then tϋ-\K) U H is compact, and (&-\K) U H) Π V c f (MO Since / is
proper onto its image, f-\(®-\K) [j H) Γi V) = (®fY\K) is compact, which
proves that wf is proper onto its image. By Lemma 10 we conclude that there
is a tA € T(Mf) such that the complex line λ in P2 generated by (Φ/0#(A) meets
F ' in only finitely many points, does not meet S', and such that if λ is non-
transversal to wf at p then wf(p) = wfπ(t4). Since ί4 can be taken arbitrarily
close to ί3, we can arrange that in addition t4 is an ordinary direction for / and
pA = τr(O is a good point for /. Since H does not meet the compact set E(v, ί3),
no complex line joining f(p3) to any other point of V meets H, so we can take
ί4 so close to t3 that no complex line joining /(p4) to any other point of V meets
H.

It follows that the complex π-plane h = w~\λ) U # meets V in finitely
many points, does not meet 5, contains ί4, and has the property that if it is
not transversal to / at p, then f(ρ) — f(pA). It may happen that the points in
which h meets V, other than /(p4), are not good points of /. We must there-
fore vary /4 and h containing ί4 so that f~ι(h Π F) will consist only of good
points of / and h Π S = 0. To show that this is possible we observe first that
if t4 and h are varied by sufficiently small amounts then t4 will remain an
ordinary direction of /, p4 will remain a good point of /, h will remain trans-
versal to /(M) at all points other than an open neighborhood of good points
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of f(p4), and h Π S = 0. Since there is a good point for / arbitrarily close to
any point of M, and since h Π V consists of finitely many points, it suffices
to show that any point qzh — /(p4) can be varied in any direction transversal
to h by an appropriate variation of tA and h, which may be shown by showing
that q can be varied in any one of a maximal linearly independent set of di-
rections transversal to h by varying tA and h. Now if q e h, q i l(t4), q can be
varied in any direction perpendicular to h by a kind of rotation of h about /(/4).
Suppose q g Z(ί4) - f(p4), and f(p4) e Λ2<»+*> = Cn+k C P w + λ ; . Since v is trans-
versal to the tangent space of / at p4, we can choose tangent vectors e19 ,
e2k-2 which, together with v, span R2(-n+k\ Then the rotations of t4 about p4

in the tangent space of / at /?4 in the directions et give rise to linearly inde-
pendent movements of q e Z(ί4) transversal to v, as can be shown by an ele-
mentary computation. Finally, by Lemma 8, w(q) may be varied in any direc-
tion in P2 by varying tA and leaving H fixed. Hence q may be varied in any
direction transversal to h in v by varying tA.

Thus we find tb e T(M) and a complex n-plane hf c P w + f c such that *5 is an
ordinary direction for /, pb = π(t5) is an ordinary point of /, h' contains tδ,
hf Π S = 0, and i~ι(h') consists of good points for /. Since all these properties
remain unchanged under small changes of ί5 and hf containing tδ, we may
assume that hf C vf e T c Gn+ltk_1. We now repeat the construction of this
section beginning with the second paragraph. Let M" = i~ι{v'), and f be the
restriction of / to M". Then t5 is an ordinary direction for /". Let Hf be a
complex (n — 2)-plane in vf which does not meet A(y'), B{yf), C(vf, t5),
D(v', t5), nor E(v', t5), and which is sufficiently close to h' that the projective
span of H' and l(ί5) meets /(M) only in good points for /. Let P2 c ^ be
chosen so that P2 Π H' = 0, and let o*7 denote the projection into P2 with Hf

as center. Let V" = ®f(yf Π F), S" = ®\vr Π 5). Then S" consists of finitely
many points, V" is compact, ®rfr maps M " onto F / 7 — S", w'f" is an immer-
sion proper onto its image, and ίδ is an ordinary direction for /". It follows by
Proposition 11 that there exist complex lines λ1 and λ2 in P2 which meet V" in
different numbers of points, which do not meet 5", which are transversal to
ΐϋrff and which may be taken so close to ΐϋΊ(tb) that the complex n-planes
hλ = (ΐΰ')~ι(λd and h2 = {τϋ;)~ι{λ2) are so close to the projective span of H'
and l(ί5) that hγ and h2 meet F only in good points of /. Moreover hλ and h2

are transversal to /. It follows that hγ and h2 have open neighborhoods U19 U2

in Gn>k such that for each i = 1,2, each h <=. Ui meets F in the same number
of points and each f~~\h) consists of the same number of points, and these
numbers are distinct for h € U1 and h € U2. But this situation is incompatible
with the hypotheses of the Theorem. Hence, if the hypotheses of the Theorem
are satisfied, M can have no ordinary directions. To complete the proof of the
Theorem, we then need only prove the following.

Proposition 12 Let j : M ->Pn+k be an immersion of class C3 of a con-
nected diβerentiable manifold of dimension 2k. Then f(M) lies in a complex
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projective transform of a semi-real flat of dimension 2k and type strictly less
than 2k if and only if every point of M is of type F.

Proof. The proof of the forward implication goes as in the proof of
Proposition 2. To prove the converse, we first note that by the argument of
that proof if every point of M is of type F, then through every point x and
tangent to every direction t e TG there passes a unique curve on M whose image
under / lies in a complex line. These curves are called s-curves, and by an
argument essentially that found in the proof of Proposition 2, if x, p e M are
joined by an s-curve, f{x) Φ f(p), then the set of points of M which may be
joined to x by s-curves contains a neighborhood of p in M. Assume that every
point of M is of type F.

We prove the local form of the converse first, so we assume for the time
being that / is an embedding. Let t eTG, let C be the s-curve on M tangent
to t, and let Q C Pn+k be a complex (n + l)-plane which meets / transversally
at y and contains t (explicit construction below). Then f~\Q) contains a sur-
face R passing through y, and Q contains all ̂ -curves of M tangent to tangent
directions of R. Since t eTG, the tangent space of R at y is not a complex line.
We restrict i ? t o a connected neighborhood of y small enough that the tangent
space at every point of R is not a complex line. It follows that tangent to every
direction in T(R) there lies on R a portion of an s-curve of M. It follows that
every point of R is of type F, from which it follows by Proposition 2 that R
is a surface of type F. Hence all the portions of ^-curves of M lying on R are
portions of "circles". It follows that C, in particular, contains a portion of a
"circle" passing through y. Since y and t e TG were arbitrary, we conclude
that all the s-curves of M are portions of circles.

Let p e M be an arbitrary point, and let x e M, x Φ p, be a point which is
joined to p by an s-curve in M p,x will remain fixed for the remainder of the
discussion. We will show that all the ^-curves on M through x can be turned
into straight lines simultaneously by a complex projective transformation of
Pn+k- We first apply a complex projective transformation to bring f(x) to the
origin of Cn+k C Pn + k.

Let τG denote the complex part of the tangent space of / at x, i.e., τc

x — τx

Π Iτx, where / denotes multiplication in Cn+k by V— 1. Let sl9 , sr form
a complex basis of τx. We say that ^+1,^+2 e τx — τx = τx form a generic
pair if s19 ,sr9 is19 , isr, sr+1, sr+2 are linearly independent over the reals.
Let sr+1, sr+2 be an arbitrary generic pair, and extend to a real basis s19 , sr9

is19 , isr9 sr+ί9 sr+2, , s2k_r of τx and to a complex basis s19 , sr9

sr+ι, - ',S2k-r, s2Jfc_r+1, -,sk+n of Cn+lc. The complex (n + l)-plane Q
through the origin spanned by sr+19sr+29 sr+3 + isr+49 . ,*si

2fc_r._1 + is2k_r,
s2k-r+ι> ' ' '^k+n is transversal to / at x. Note that any tangent vector in τG

x

can be made a member of a generic pair, since M is even-dimensional, so that
the construction of the previous Q is now explicit. Since our new Q contains
sr+1 and sr+2, Q Π f(M) contains an F-surface R tangent to s r + 1 and sr+2,
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according to our previous remarks.
Suppose r > 1, and let s € τG

x9 s Φ 0. We change the complex basis s19 ,
sr of τc

x so that s = sx. Now apply a complex linear transformation to Cn+k to
bring ^ to d/dxj, 1 < / < k + n, where Zj = Xj + iyj are the complex
coordinates of Cn+k. Consider the four vectors

^r + i? ^r + 2? ^l I ^ V + l T" ^ r + 2> ̂ 1 T" ^r + l T~ ̂ r + 2

As one checks, each pair of these is a generic pair. Since each lies in τG

x9 there
lies on M an s-curve tangent to each.

On each of the ^-curves tangent to sr+ι,sr+2 and sλ + 2sr+1 + sr+2, choose
a point distinct from x. Through these three points, pass a hyperplane in Pn + k

which does not contain x. (Such a hyperplane exists, since otherwise s19sr+1

and sr+2 would lie in a 2-complex-dimensional complex plane.) Take this
hyperplane as hyperplane at infinity in Pn+k without disturbing the tangent
space at the origin of Cn+k. The s-curves tangent to sr+1,sr+2 and sι + 2sr+1

+ sr+2 are now straight lines in Cn+k. Choose a point q distinct from x on the
s-curve on M tangent to is1 + ^ r + 1 + sr+2. Its coordinates in Cn+k have the
f o r m Zι = — b + i a , z r + 1 = a + i b , z r + 2 = a + i b , z d = 0,jΦl,r+ 1 , r +
2, with a, b real, (a, b) Φ (0,0), since the s-curve lies in the complex line
through the origin spanned by ίsι + sr+1 + sr+2. Consider the complex hyper-
plane

H: -bz1 + azr+ι = a2 + b2 .

One verifies that H meets the real lines through the origin tangent to sr+19

sr+2, and sλ + 2sr+ι + sr+2 (the points of intersection are at infinity possibly),
that it passes through q, and that it does not pass through the origin. Take H
as hyperplane at infinity in Pn+k without disturbing the tangent space at the
origin of Cn+k. The s-curves tangent to sr+19sr+29s1 + 2sr+ι + sr+2 and isι +
sr+1 + sr+2 are now all straight lines. Since each pair of these vectors is a
generic pair, there passes tangent to each pair an F-surface lying in M, with
each such F-surface containing a portion, containing the origin, of the straight
line in Cn+k tangent to each vector of the pair. From Lemma 3, b) we con-
clude that each of these F-surfaces is now contained in a semi-real flat of
dimension 2.

Let S be the complex (n + 2)-plane through the origin of Cn+k spanned by

1̂? ^r + l? sr + 2> Sr + 3 + w r + 4> * ' * ? S2k-r-i ~\~ ιS2k-ri S2k-r + i> ' ' ' ? sk + n- *t m e e t s / ( M )

transversally at x, so that its intersection with j(M) contains a 4-real-dimen-
sional manifold N containing the origin of Cn+k. The vectors sr+1,sr+2,s1 +
2sr+1 + sr+2 and is1 + sr+1 + sr+2 form a (real) basis for the tangent space of
N at the origin. Since S is a linear space, it contains the semi-real flats tangent
to these vectors in pairs. Hence N contains an open set, containing the origin,
of each of these semi-real flats. Choose local coordinates x19 , x4 on N, for
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example geodesic normal coordinates, such that these semi-real flats are denned
in N by Xj = xk = 0, for pairs /, k, 1 < / < k < 4, and represent /1N by a
vector function X(x19 - - , x4) in Cn+lc = R2<n+k\ We must have that the com-
ponent of Xjk(0, , 0) normal to N vanishes for all /', k, 1 < j , k < 4,
because N contains these semi-real flats. Consequently the second fundamental
form of N in Cn+k vanishes identically at x, which implies that all the s-curves
on N through x are straight lines lying in the tangent space to N at x.

Let y e N, y Φ x, be a point which is joined to x by an s-curve lying in N.
The set of all points in N distinct from x which may be joined to x by ̂ -curves
lying in N contains an open subset of y in N, by the argument of the proof of
Proposition 2. This open set lies in the tangent space of N at x in R2^n+k) =
Cn+k, as we have just shown, which is to say that a neighborhood of y in N
is contained in a semi-real flat of dimension 4. Now, by the argument of the
proof of Proposition 2, the set of points of N which can be joined to y by
s-curves contains an open neighborhood of x. Since all these ^-curves lie in the
tangent space of N at y, we have shown that a neighborhood of x in N lies in
a semi-real flat of dimension 4.

From this we draw two conclusions, which we formulate in a form invariant
under complex projective transformations of Pn + k, taking cognizance of the
fact that s1 was an arbitrary nonzero vector in τx and sr+1, sr+2 e τx an arbitrary
generic pair. First, given any s e τ% s Φ 0, an open neighborhood of x in the
complex line in Cn+k spanned by s is contained in /(M). Secondly, given any
s e τ£, s Φ 0, and any generic pair s', s" e τ% there exist unique F-surfaces
S19S2 C /(M) tangent to s, s', and s, s" respectively. The intersection of either
with the complex line spanned by s is an open subset of a single "circle"
tangent to s, which circle also contains Sj Π S2 We now drop the assumption
r > 0 .

Consider again the real basis s19 , isr, , s2k_r of τx. We make the fol-
lowing index convention: 1 < j < r; r + 1 < a, β < 2k — r. Let Lj denote
the complex line through the origin of Cn+k spanned by sj9 and let Cό denote
the "circle" tangent to sά which contains the intersection of Lj with the unique
F-surface contained in M tangent to sά and sr+1. For each a > r + 2, sr+1 and
sa are a generic pair, from which it follows that the unique F-surface lying on
M tangent to sό and sa passes through Cό. Similarly, there lies in Lό a "circle"
C'j tangent to isό which contains the intersection of Lj with the unique F-surface
on M tangent to isό and sa for all a. Since the two "circles" Cj and C5 lie in
a complex line L3 and intersect at the origin with distinct tangents, they must
intersect in one further point qό. On the unique j -curve of M tangent to sa,
choose a point pa distinct from x. Then there must exist a complex hyperplane
H in Pn+k passing through the 2k — r points qά, pa and not passing through
the origin, since otherwise τx lies in a complex projective subspace of complex
dimension 2k — r — 1, which is clearly impossible. Take H as hyperplane at
infinity in Pn+k without disturbing the tangent space at the origin. The "circles"
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Cj, C'j, as well as the s-curves tangent to sa are now euclidean straight lines,
and by Lemma 3, b) the F-surfaces tangent to pairs Sj,sa; isj7sa; and sa,sβ

and lying in /(M) are now contained in semi-real flats of dimension 2.
Take local coordinates u19 , ur, u[, , i/r, ur+ί, , u2k_r on M in a

neighborhood of x, for example geodesic normal coordinates, such that these
F surfaces are defined by conditions uA — 0, uB = 0, B Φ /, a u'A = 0, A Φ j ,
uB = 0, B φ a uA = 0, uB = 0, B Φ a, β and such that Lj Π f(M) is defined
in a neighborhood of the origin by uA = 0, uB = 0, A, B Φ j . Represent / by
a position vector function

X(u19 , ur, uί, , i/r, ur+19 , u2k_r) in C w + fc .

Then the components of

dX BX dX

duβua ' du'jdua ' duaduβ

at the origin normal to /(M) vanish for all j , α, /3. Since for every s e τc

x, s Φ 0,
M contains a portion of a straight line tangent to s, the second fundamental
form of M must vanish identically on τc

x and therefore vanishes identically on
all of τx. Thus all the ^-curves of M through x are now straight lines, and
hence lie in the tangent space to M in R2<n+k\ which is a semi-real flat of
dimension 2k. It follows that a neighborhood in M of the arbitrary point p e M
lies in this semi-real flat. By analytic continuation (/ no longer assumed to be
an embedding) we conclude that all of M lies in this semi-real flat. This com-
pletes the proof of Proposition 12 and therewith the proof of the Theorem.
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