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THE STRUCTURE OF COMPACT RICCI-FLAT
RIEMANNIAN MANIFOLDS

ARTHUR E. FISCHER & JOSEPH A. WOLF

0. Introduction and preliminaries

An interesting problem in riemannian geometry is to determine the structure
of complete riemannian manifolds with Ricci tensor zero (Ricci-flat). In par-
ticular one asks whether such manifolds are flat. Here we show that any com-
pact connected Ricci-flat n-manifold Mn has the expression

Mn = ψχjk χ Mn-k ?

where k is the first Betti number b^M71), Tk is a flat riemannian λ -torus, Mn~k

is a compact connected Ricci-flat (n — λ;)-manifold, and Ψ is a finite group of
fixed point free isometries of Tk x Mn'k of a certain sort (Theorem 4.1). This
extends Calabi's result on the structure of compact euclidean space forms
([7] see [20, p. 125]) from flat manifolds to Ricci-flat manifolds. We use it to
essentially reduce the problem of the construction of all compact Ricci-flat
riemannian ^-manifolds to the construction in dimensions < n and in dimen-
sion n to the case of manifolds with bx = 0 (see § 4). We also use it to prove
(Corollary 4.3) that any compact connected Ricci-flat manifold M has a finite
normal riemannian covering T X N —> M where T is a flat riemannian torus,
dim T > bx(M), and N is a compact connected simply connected Ricci-flat
riemannian manifold. This extends one of the Bieberbach theorems [4], [20,
Theorem 3.3.1] from flat manifolds to Ricci-flat manifolds, and reduces the
question of whether compact Ricci-flat manifolds are flat to the simply con-
nected case. J. Cheeger and D. Gromoll have pointed out to us that this exten-
sion also follows from their proof of [8, Theorem 6]. Our direct proof how-
ever uses considerably less machinery than their deeper considerations of mani-
folds of nonnegative curvature.

As a consequence of these results, we can give a variety of sufficient topol-
ogical conditions for Ricci-flat riemannian /i-manifolds M to be flat. For ex-
ample, if the homotopy groups πk(M) = 0 for k > 1, or the universal covering
of M is acyclic (Theorem 4.6), or M has a finite topological covering by a
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space with bλ > n — 3, then M is flat (Corollaries 4.3 and 4.4). In particular,
a given compact manifold which admits a flat riemannian structure satisfies
these conditions (see also Corollary 2.5). Thus a given compact manifold can-
not have both flat riemannian structures and nonflat Ricci-flat riemannian
structures. This remark is useful in studying some subsets of the space of
riemannian metrics on a given compact manifold; see [9] and [10].

In § 2 we give some results for riemannian manifolds with positive semi-
definite Ricci tensor. We apply these results in § 3 to show that if a compact
connected riemannian manifold M with positive semi-definite Ricci curvature
is homotopy-equivalent to a generalized nilmanifold, then M is flat (Theorem
3.1). In particular, if M is homotopy-equivalent to a euclidean space form,
then M is flat. This theorem sharpens a result of Wolf [19, Theorem 6.4] on
generalized nilmanifolds.

After this paper was written, E. Calabi informed us that he had known that
the Calabi construction was valid for Ricci-flat manifolds. He refered us to his
paper [6] where the kaehler case of our Theorem 4.1 is worked out in the
course of the argument of Theorem 1. There, Tk is the Albanese variety of
Mn, Calabi's Jacobi map / : Mn —> Tk is both a holomorphic bundle and a
riemannian submersion, and the /-fibres correspond to our Mn~k.

1. Preliminaries

By "riemannian manifold" we mean a C°° hausdorfϊ differentiate manifold
without boundary, together with a C°° riemannian (positive definite) metric. If
M is a riemannian manifold and p > 0 an integer, then bp(M) denotes the p-th
Betti number for singular cohomology it is the real dimension of the de Rham
group

{p-forms ω: dω = 0}/{dη: η is a (p — l)-form} .

If M is compact, then the Hodge theorem says that the de Rham group is
isomorphic to the space J^p = {p-forms ω: Δω = 0} where Δ = dδ + δd is
the Laplace-de Rham operator. If the riemannian manifold M is not orientable,
then δω is defined by its local coordinate expression: (δω)il...ίp_1 = — Vkωkiχ...ip_1

(Einstein summation convention) for p > 0, and δ annihilates functions. If M
is compact, then the Hodge theorem for M comes down from the two-sheeted
orientable riemannian covering manifold π: M —> M as follows. Express M =
Γ\M, where Γ = {l,γ} and γ is a fixed point free involutive isometry of M.
Let ω be a p-form on M with dω = 0. Express ττ*ω = h(π*ω) + dλ where
h(π*ω) is a harmonic p-form on M, and λ is a (p — l)-form on M. Evidently
f*(ττ*ω) = π*ω, and also γ*>h = h>γ* because γ is an isometry. Thus ττ*ω =
h(π*ω) + dπ*η where η is the (p — l)-form on M defined by π*η = ^(1 + γ*)λ.
Now ω = h(ώ) + dη where h(ω) is defined to be the p-form on M with ττ*-lift
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h(π*ω). Since h(π*ω) is harmonic on M and the covering is locally isometric,
h(ω) is a harmonic p-ίorm on M. Uniqueness of h(π*ω) in ττ*ω = h(π*ω) +
dπ*η implies uniqueness of h(ω) in ω = hω + dη. Thus ω *-+ h(ω) defines an
isomorphism of the p-th de Rham group of M onto the space of harmonic p-
forms.

For a development of Hodge theory which does not use orient ability, see
Nelson [13, §7].

The Ricci tensor of M is denoted r. Let X be a nonzero tangent vector at
a point x e M. The Ricci curvature of X at x is defined to be r(X, J C ) / | | Z | | 2 .
In local coordinates with the sign convention R{j = Rm

ίjm, the Ricci curva-
ture is i ^ Z ^ / g ^ Z^X7'. The mean curvature, i.e., the average of the sec-
tional curvatures for plane sections of Mx which contain X, is (n — 1)~V(Z,

We say that a vector field X is parallel if VX = 0. This means that if p,
q € M and σ is a curve from p to q, then parallel translation along σ carries
Xp to Xg. <3Γ,, denotes the set of all parallel vector fields on M.

The Laplace-de Rham operator acts on vector fields through their corre-
spondence with 1-forms, and we let J f = {X: ΔX = 0}, the harmonic vector
fields on M. Also, we let /(M) be the isometry group of M, I(M)° its connect-
ed component of the identity, and J>(M) the Lie algebra of Killing vector fields
on M. We make extensive use of the following results of Bochner ([5] see [22,
pp. 37 and 39] and [21]):

Theorem 1.1 {Bochner). Let M be a compact riemannίan manifold. If X
is a harmonic vector field on M with r(X, X) > 0, then X is parallel and
r(X, X) = 0. // X is a Killing vector field on M with r(X, X) < 0, then X is
parallel and r(X,X) = 0.

We will refer to these results as '"the Bochner lemma". Note that connected-
ness and orientability are dropped from the usual formulation. If M is non-
orientable, then the volume element dμ formed from the riemannian structure
is a measure but not an n-form. However, for M compact, Green's theorem

δXdμ = 0 still holds. This is sufficient for the Bochner lemma to apply to
JM

nonorientable M.

2. Nonnegative mean curvature

In this section we study compact riemannian manifolds M with every mean
curvature > 0, i.e., whose Ricci tensor r is positive semi-definite. We are able
to extract some consequences for the Betti numbers of such a manifold for

example, we give the lower bound bp(M) > ί J, k = b^M) (Theorem 2.3).

We then use an idea of Berger to give a sufficient topological condition for such
a manifold to be flat (Theorem 2.4). In particular, this condition is satisfied
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by a compact manifold which admits a flat riemannian structure.
In § 4 we shall give weaker sufficient topological conditions for M to be flat

under the stronger geometrical conditions r = 0.
Theorem 2.1. Let M be a compact connected riemannian manifold, and

bλ(M) its first Betti number.

If M has every mean curvature > 0, then SCXX = J^, and ^,, is a central ideal
in the Lie algebra J>(M) of all Killing vector fields on M. Further &l{ defines
a b^Mydimensional foliation of M by fiat totally geodesic submanifolds.

If M has every mean curvature < 0, then Γ̂,, = J>(M) C Jf, and the identity
component 7(M)° of the isometry group is a torus group T of dimension
< bλ(M). T acts effectively and smoothly on M, and the orbits of the action
foliate M by fiat totally geodesic tori of the same dimension as T.

Proof. Clearly ^ C ^f and 3Γ,, C J>(M) for any riemannian manifold.
Suppose that M has mean curvature > 0. Then by the Bochner lemma,

Jf C #"„, so that #„ = 3P C J(M). Also, by Hodge's theorem, dim #„ =
f7 = bλ(M).

If X is parallel and Z is a Killling vector field, then

since the contraction of a harmonic vector field and a Killing vector field is a
constant [5], [22, p. 44]. Thus #"„ is a central ideal in J(M). In particular,
[#Ί,, #",|] = 0 so that #Ί, defines an involutive distribution of dimension fcχ(M).
Thus M is foliated by flat Z?1(M)-dimensional submanifolds. These submani-
folds are totally geodesic in M because integral curves of parallel vector fields
are geodesies.

If every mean curvature < 0, then by the Bochner lemma, every Killing
vector field is parallel. Thus J{M) = %\\ d «^. Since #*„ is an abelian Lie
algebra, 7(M)° is a torus group T of dimension < bλ(M) = dim JF. q.e.d.

In case every mean curvature > 0, the Lie subalgebra 9£^ of the center of
J~(M) generates an abelian analytic subgroup of 7(M)° whose closure is a cen-
tral torus subgroup of dimension > dim &l{ = bλ(M). Thus the identity com-
ponent of the center of 7(M)° is a torus of dimension > bλ(M). Also in this
case, #"„ defines a smooth effective nonsingular action of the additive group
Rk {k = bx(M)) on M, given by

RkXM^M , ((/ls , tk), m) ^ F]lQ . . . oF«k(m) .

Here the [F\Ji<i<fc are the respective flows of k linearly independent parallel
vector fields. The orbits of this action are the leaves of the theorem.

We also remark that if b^M) > 1 and M has every mean curvature > 0,
then M has a parallel and hence nonvanishing vector field. Hence the Euler-
Poincare characteristic χM = 0.
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In the case where M is Ricci-flat, we know 7(M)° exactly.
Corollary 2.2. Let M be a compact connected riemannian manifold with

first Betti number bx(M). If M has every mean curvature = 0, then 9£xx = £F
= <f(Mf and 7(M)° is a b^dimensional torus group.

Proof. Since r > 0 and r < 0, by the theorem #*„ = j f c J(M) and #„ =
J?(M) C tf. q.e.d.

The corollary generalizes the same result for compact flat manifolds. In the
flat case, however, 7(M) can be explicitly described by the method of [19,
proof of Theorem 1].

If M has every mean curvature > 0, then we can extract some consequences
concerning the Betti numbers of M.

Theorem 2.3. Let M be a compact connected n-dimensίonal manifold with
every mean curvature > 0, and k = bx(M) its first Betti number. Then

bp(M) > Q forp<k.

Also bx(M) < n, and bx(M) = n if and only if M is a flat riemannian n-torus.
If bx{M) = n — 1, then M is fiat but not orientable.

Proof. Let {^}i<^<fc be k linearly independent parallel vector fields, and
let {0*}î <̂ * be the dual 1-forms, 0*(Y) = <Y, Z*>. Now the {θ1} are parallel and
thus harmonic, as are the

θ1 = θiχ A - Λ 0** , 7 = OΊ, , ip) , 1 < ix < < ip < k .

Since these {θ1} are ί ) linearly independent harmonic p-forms, by Hodge's

theorem we have bp(M) >(λtoτp<k.

Since 2tf — SCV dim 2/F = bx(M) < n. If bx(M) = n, then M has a parallel

frame. The curvature tensor vanishes in this frame, so M is flat. Since 7(M)°
is an n-dimensional torus, so is M.

If bx(M) = n — 1, then we have n — 1 linearly independent parallel vector
fields {Xί}i<i^n-ι o n A^ If M were orientable, then this could be extended to
a frame {X19 - - -,Xn_x,Z}, where Z is orthogonal to the n — 1 parallel vector
fields {Xi^KiKn-i and normalized to unity, i.e., <Z, Z> = 1. Then for any vec-
tor field Y and Xt parallel, ΓF<Z, Z> = 2<Z, ΓFZ> = 0, and ΓF<Z<, Z> =
(Xi9 Fγzy = 0. Since {Xi9 Z^^^ is a frame at each point, VYZ = 0 for all
Y so Z is parallel. Hence M has n linearly independent parallel vector fields
so that bx(M) = n, a contradiction. Now M is not orientable, and its 2-sheeted
orientable cover is a flat torus.

Remarks. 1. If bx(M) = [\ή\9 then from Poincare duality the theorem
gives a lower bound for all the Betti numbers of M.
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2. The example of the n-torus with bp = ( n \ shows that our bounds are

the best possible (in terms of the first Betti number alone).
3. The conditions on the Betti numbers are necessary topological condi-

tions for a manifold to admit a riemannian structure with every mean curvature
> 0 and in particular to admit a flat riemannian structure cf. also Cheeger-
Gromoll [8].

Let χM(ί) = £?=o bi(M)f be the Euler-Poincare polynomial of M.
Lichnerowicz [11] has shown that if every mean curvature > 0, then χM(t) is
divisible by (t + l)»i<*>.

4. It is interesting that for M orientable with every mean curvature > 0
there is a gap in the possible values of the first Betti number. The example of
the Klein bottle with bx — 1 shows that orientability is necessary, and the dis-
joint union Sι X S2 U S1 X S2 with bγ = 2 shows that connectedness is neces-
sary.

5. Let span M be the maximal number of vector fields on M which are
linearly independent at each point, and let rank M be the maximal number of
commuting vector fields which are linearly independent at each point. From
Theorem 2.1, if M has every mean curvature > 0, then M has bx(M) parallel
and hence commuting vector fields. Thus span M > rank M > b^M). For M
orientable, span M > n — 1 =̂> span M = n which is analogous to dim ̂  >
n — 1 => dim #*H = w. Since an orientable nontrivial 2-torus bundle over a
circle is a 3-manifold of rank 2 (a result of H. Rosenberg, R. Roussarie, and
D. Weil [14]) rank M does not have this property. Thus an orientable rc-mani-
fold can have rank n — 1, and then given n — 1 commuting vector fields
linearly independent at each point there is no riemannian metric in which these
vector fields can be made parallel.

Berger [2, § 8] and Berger-Ebin [3, § 8] show that a Ricci-flat variation of
a flat riemannian metric remains flat. We generalize this as follows.

Theorem 2.4. Let M be a compact connected n-dimensional manifold.
Suppose that M admits a finite topological covering π: M —>M with bγ(M) = n.
If g is a riemannian structure on M with every mean curvature > 0, then
(M, π*g) is a flat riemannian torus and g is a flat riemannian metric on M.

Proof. Endow M with the differentiate manifold structure for which the
covering is difϊerentiable. Let g = π*g be the pull-back of g. Then (M, g) and
(M, g) are locally isometric, so g has every mean curvature > 0. Since bx(M)
= n, (M, g) is a flat n-torus by Theorem 2.3, so g is flat.

Corollary 2.5. // a compact manifold M admits a flat riemannian structure,
then every riemannian structure with mean curvature > 0 on M is flat.

Proof. One of the Bieberbach theorems [4] [20, Theorem 3.3.1] says that
each connected component of M is covered by a torus, q.e.d.

In particular, a compact manifold cannot have both flat riemannian metrics
and nonflat Ricci-flat riemannian metrics.
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3. Application to generalized nilmanifolds

Let G be a connected Lie group. Then its automorphism group Aut (G) is
a real linear algebraic group. The "affine group" A(G) is the semidirect prod-
uct G Aut (G), acting on G by (g, a): x \-+ g-a(x). Aut (G) has maximal com-
pact subgroups, and any two are conjugate. Choose a maximal compact sub-
group K C Aut (G). The "euclidean group" is the closed subgroup E(G) = G K
in A(G).

If G is the π-dimensional real vector group Rn, then Aut (G) = GL(n, R),
the general linear group, and its maximal compact subgroup is just the orthog-
onal group 0(ή). Then A(G) is the usual affine group, A(n) = RnGL(n,R),
and E(G) is the usual euclidean group E(n) = Rn 0(ή).

A differentiate manifold M is called a generalized nilmanijold if it is dif-
feomorphic to a quotient Γ\N, where N is a connected simply connected nil-
potent Lie group and Γ is a discrete subgroup of E(N). Then Γ acts freely
(because Γ\iV is a manifold) and properly discontinuously on N. M is a nil-
manifold if in addition Γ dN c E(N). See [19, § 6] for a discussion. Here we
sharpen [19, Theorem 6.4] as follows.

Theorem 3.1. Let M be a compact connected ήemannian manifold with
every mean curvature > 0. Suppose that the underlying differentίable manifold
of M is homotopy-equivalent to a compact generalized nilmanifold. Then M
is flat, i.e., M is isometric to a compact euclidean space form. Further, the
following conditions are equivalent: (i) M is a nilmanifold (ii) π^M) is nil-
potent; (iii) M is a flat rίemannian torus.

Proof. Let iVbea connected simply connected Lie group, and Γ C E(N)
a discrete subgroup such that there is a homotopy equivalence /: M —» Γ\N.
According to L. Auslander ([1] or see [19, Proposition 6.2]) there is an exact
sequence 1—> Σ -^ Γ —>Ψ -^ 1, where Σ = Γ Π N is a maximal nilpotent
subgroup of Γ and Ψ is finite. Now / lifts to a homotopy equivalence f\M'^>
Σ\N where Mr is a finite riemannian covering manifold of M. From the proof
of [19, Theorem 6.4], Mf is diffeomorphic to a torus. Thus bλ(M') = n where
n — dimM 7 = dimM. Corollary 2.2 above says that Mf is a flat riemannian
torus. In particular M is flat.

Observe that Γ is nilpotent exactly when it coincides with Σ = Γ Π N be-
cause the latter is a maximal nilpotent subgroup. If M is a nilmanifold then
Γ = TΓ̂ M) is nilpotent. If Γ is nilpotent then M = Mr, a flat riemannian torus.
If M is a flat riemannian torus then it is a nilmanifold Zn\Rn.

In particular, since euclidean space forms are generalized nilmanifolds, we
have

Corollary 3.2. Let M be a compact connected riemannian manifold with

every mean curvature > 0. // M is homotopy-equivalent to a compact euclidean

space form, then M is flat.
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4. The Calabi construction for Ricci-flat manifolds

We now specialize to manifolds with every mean curvature zero, i.e., whose
Ricci tensor r = 0. We extend Calabi's result on the structure of compact
euclidean space forms from flat manifolds to Ricci-flat manifolds. As a conse-
quence, one of the Bieberbach theorems can also be generalized to the Ricci-
flat case.

Our extension of the Calabi construction specifies the Ricci-flat rc-manifolds
in terms of the Ricci-flat manifolds of dimension < n and the Ricci-flat n-
manifolds with bλ = 0. Similarly our extension of the Bieberbach theorem re-
duces the question of existence of nonflat Ricci-flat manifolds to the case of
simply connected manifolds.

Using these results we give various sufficient topological conditions for
Ricci-flat riemannian manifolds to be flat (Corollaries 4.3, 4.4; Theorem 4.6).

Part of our argument in generalizing the Calabi construction to the Ricci-
flat case is the standard Selberg discontinuity technique [16, p. 149]. Yau uses
that technique to obtain a weaker result [23, Theorem 3] under the weaker
hypothesis that M have every mean curvature > 0.

Theorem 4.1. Let Mn be a compact connected Ricci-flat (r = 0)
riemannian n-manifold and k = b^M71). Then there is a finite normal
riemannian covering

p:Tk x Mn~k -> Mn = Ψ\(Tk X Mn~k)

where
(1) Tk is a fiat riemannian k-torus,
(2) Ψ = {(h(φ), φ):φ€ Φ}, where Φ is a finite group of isometrίes of Mn~k

and h is an injective homomorphism of Φ into the translation group of Tk (so
Ψ acts freely and properly discontinuously on Tk X Mn~k),

(3) Mn~k is a compact connected Ricci-flat riemannian (n — k)-manifold
which has no nonzero Φ-invariant parallel vector fields.

Conversely, given Tk,Mn~k, and Ψ as above,

is a compact connected Ricci-flat riemannian n-manifold with first Betti number
k, and Mn is determined up to affine equivalence by (Mn~k, Φ, k).

Proof. From Theorem 2.1, the identity component of the isometry group
7(M)° is the torus group Tk. Let π: Mn -> Mn = Γ\Mn be the univejsal
riemannian covering. Γ is a discrete subgroup of the isometry group I(Mn).
The torus group I(Mn)° lifts to a real vector group Rk of ordinary translations
along the euclidean factor in the de Rham decomposition of Mn. Thus Mn =
Ek X Mn~k, where Ek is a euclidean &-space and the /£fc-orbits are the Ek X
{m}, m e Mn~k. This product splitting is stable under Γ because Rk centralizes
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Γ. Since /(Mn)° = Rk/Rk Π Γ and is compact, Rk Π Γ is a lattice in # * which
is central in Γ. If p <= Γ then 7- = C7Ί» fr)> where ^ € I(En) and f2 e I(Mn~k)
because the product structure Ek x Mn~k is /^-invariant. Define Γι = {^:

r e Γ } , s o Γ c 7\ X Γ 2 . Since i?fc Π Γ is a lattice in Rk and is central in Γ, γ1

is an ordinary translation on Ek. Now /\ is abelian, and its derived (com-
mutator) group is [Γ, Γ] = 1 X [Γ2, Γ 2 ] . The quotient Γ/[Γ, Γ] ^ ^ ( M w Z)
is the product of a finite abelian group with a finitely generated abelian group
of Z-rank k. Since Zk ^ (Rk Γi Γ) d (Γx X 1), we have

j = (*fc n D x [r2,r2]

is a normal subgroup of finite index in Γ. In particular Rk Π Γ has finite index
in Γ t x 1, and [Γ2, Γ2] has finite index in Γ2.

Define A = {γ z Γ: γ2 = 1} and 5 = {γ e Γ : ^ = 1}. Then ^ = ^ Π Γ
because Γj consists of translations of Ek. Evidently (1 X [Γ2, Γ 2 ] ) C ΰ c ( l χ Γ 2 ) .
Now

Σ = A x B = (Rk Π Γ) X B

is a normal subgroup of finite index in Γ. Define

Tk = (Rk Π Γ)\Ek , MB~fc

Then Tfc is a flat riemannian /:-torus, Mn~k is a compact connected Ricci-flat
riemanniann (n — A;)-manifold, and the projection

p:Tk x Mn~k -> Ψ\(Tk x Mn~k) = Γ\M W = M

is a finite normal riemannian covering.
Let ψ 6 Ψ, say ψ = γAB. Then ψ acts on Tk by a translation τ = 7Ί^4. If

ψ is trivial in Tk == A\Ek, then we replace 7 by an element of p4 and can
assume γ1 = 1. Consequently f € J?, so ψ = 1. Similarly if ψ is trivial on
Mn~k, then ψ = 1. Thus Ψ = \(h(φ), φ):φeΦ}, where Φ is a finite subgroup
of I(Mn~k) and /* is an injective homomorphism of Φ to the translation group
of Tk.

If Mn~k has a nonzero Φ-invariant parallel vector field, then that field in-
duces a parallel vector field Y on Mn. The lift of Y to M w must be tangent to
Ek, contradicting the provenance of Y. Thus Mn~k has no nonzero Φ-invariant
parallel vector fields.

Given Tk, Mn~k and Ψ as in the statement of the theorem, it is obvious that
Mn = Ψ\(Tk X Mn~k) has the required properties.

Fix Mn~k, Φ and k as in the statement of the theorem. Let hi be injective
homomorphisms of Φ to the translation group of Tk. Define Ψi = {(hi(φ),φ):
φ e Φ}. Since the ht are injective and Φ is finite, there is an automorphism a
of the translation group of Tk such that h2 = a-hx. Now a X 1: Tk X Mn~k
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-> Tk X Mn~k induces an affine equivalence of W^T* X Mn~k) onto
Ψ2\(Tk X Mn~k). q.e.d.

Roughly speaking, Theorem 4.1 says that modulo identifications from a
finite group of isometries, it is possible to split off a flat /:-dimensional torus
k = bλ(M) from a Ricci-flat riemannian manifold. This simplifies the topology

and reduces the dimension of the spaces on which we study Ricci-flat metrics.
To be precise, Theorem 4.1 reduces the affine classification of compact n-
dimensional Ricci-flat manifolds to

( i ) the classification in dimensions < n,
(ii) the classifications in dimension n with bί = 0, and
(iii) the classification of finite abelian groups Φ of isometries of compact

Ricci-flat manifolds Mn~k, 0 < k < n, such that Mn~k has no nonzero Φ-in-
variant parallel vector field.

Iterating Theorem 4.1 we obtain the following.
Corollary 4.2. Let Mn be a compact connected Ricci-flat riemannian n-

manifold. Then there is a series of finite normal riemannian coverings

jkr χ Mn-kr -> T^-1 x Mn~kr-χ -> -> Tkl x Mn~kl -> M

where b^M71) = kx < < kr, each Mn~ki is a compact connected Ricci-flat
riemannian (n — k^-manifold, each Tki is a flat riemannian ki-torus,
bλ(Mn~ki) = ki+ι - ki for 1 < i < r, and bx{Mn-^) = 0.

As another corollary, we obtain the following result of Willmore [18] which
generalizes the classical result that Ricci-flat riemannian manifolds of dimen-
sion < 3 are flat.

Corollary 4.3. Let Mn be a compact connected Ricci-flat riemannian n-
manifold. If b^M71) > n — 3, then Mn is flat.

Proof. Applying Theorem 4.1, Mn~k is a Ricci-flat riemannian manifold
of dimension < 3, so from [12] it is flat. Hence M is flat, q.e.d.

Lichnerowicz [12, p. 219] and Yau [23, Corollary 1] prove Corollary 4.3 in
the case n = 4.

Using the same technique as in Theorem 2.4, we can derive a weaker suf-
ficient condition for Ricci-flat manifolds to be flat.

Corollary 4.4. Let M be a compact connected n-dimensίonal manifold. Sup-
pose that M has a finite topological covering π: M —> M with bx(M) > n — 3.
Then every Ricci-flat riemannian structure on M is flat.

Note that this weakening of the topological condition on M compared to
Theorem 2.4 is a consequence of our strengthening the geometrical condition
on M.

According to Cheeger and Gromoll [8, Theorem 3], πλ(M) has a finite nor-
mal subgroup P such that there is an exact sequence 1 —> Zk —* TΓ^M)//* —*
(finite) —> 1. If we replace M by a finite covering we increase bx but evidently
do not increase k. Doing that we may suppose πι(M)/P = Zk with k =
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and Theorem 4.1 then gives us Tk x Mn~k -> M with πλ(Mn-k) finite. If N is
the universal riemannian covering of Mn~k, then we have

Theorem 4.5. Let M be a compact connected Ricci-flat riemannian mani-
fold. Then there is a fiat riemannian torus T of dimension > b^M), a compact
simply connected Ricci-flat riemannian manifold N, and a finite riemannian
covering T X N -^ M.

This extends the Bieberbach theorem ([14] see [20, Theorem 3.3.1]) which
says that a compact euclidean space form admits a finite normal riemannian
covering by a flat torus. This extension can also be extracted from the work
of Cheeger-Gromoll [8], specifically from the proof of Theorem 6.

Remarks. 1. If πλ(M) is infinite, then dim T > bx(M) > 0 so χM = 0.
2. If M is flat, then Theorem 4.5 specializes to the Bieberbach theorem;

N, being compact connected simply connected and flat, reduces to a point. If
M is not flat, then dim N > 4.

3. If every compact simply connected Ricci-flat manifold is flat, then the
theorem shows that every compact Ricci-flat manifold is flat.

Using this extension of the Bieberbach Theorem, we can find some inter-
esting sufficient topological conditions for Ricci-flat manifolds to be flat.

Theorem 4.6. Let M be a compact connected Ricci-flat n-dimensional
riemannian manifold. Then the following are equivalent:

1. Mis flat.
2. For k > 1 the homotopy groups πk(M) = 0.
3. The universal covering of M is acyclic.
Proof. (1) => (3) and (2). If M is flat, its universal covering p: En -+ M

is a euclidean π-space which is contractible and hence acyclic. Also, πk{En) = 0
for all k > 1, so πk(M) = 0 for k > 1 by the isomorphism p^: πk(En) —>
πk(M) for k > 1.

Not (1) => Not (3) and Not (2). Suppose M is not flat. Then from Theorem
4.5, the universal covering of M is p: E x N —> M, where E is a euclidean
space and N is compact simply connected and of dimension r > 4. Then Hr(N)
= Hr(E x N) is infinite cyclic, so the universal covering cannot be acyclic.

Now let s be the smallest positive integer such that HS(N) Φ 0, s < dim N.
Since N is simply connected, s > 2, and by the Hurewicz isomorphism theorem
π,,(N) = 0 for sf < s and πs(N) = HS(N) Φ 0. Thus πs(M) ^ πs(E X N) ^
πs(N) Φ 0. q.e.d.

Finally we comment that none of our results exclude the possibility that the
Kummer surface [17], which is a compact simply connected 4-manifold with
b2 = 22 and χ = 24, might carry a nonflat Ricci-flat riemannian metric.
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