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A GENERALIZATION OF THE CLOSED SUBGROUP

THEOREM TO QUOTIENTS OF ARBITRARY

MANIFOLDS

HECTOR J. SUSSMANN

1. Introduction

The purpose of this paper is to present a new necessary and sufficient con-
dition for an equivalence relation i ί o n a differentiable manifold M to be regular
(i.e., such that the quotient M/R is also a differentiable manifold, and that the
canonical projection M —» M/R is a submersion). Our condition is motivated
by a problem of system theory. Given a nonlinear system x = f(x, u) together
with an "output map" y = φ(x), one can associate with every "input" u(f),
(0 < ί < T), and every "initial state" x°, an "output" y{t), (0< t < T), denned
as follows: let x(t) be the solution of x(t) = f(x(t), u{t)) for which JC(O) = x°,
and let y(t) = φ(x(t)). It, fqr an input «, the outputs which correspond to two
initial states xQ and x1 are not identical, we say that u distinguishes between x°
and x1. If there is no input which distinguishes between x° and x\ we say that
x° and x1 are indistinguishable. If there do not exist states x° and x1 which are
indistinguishable but different, we say that the system is observable. Given a
nonobservable system whose state space is a manifold M, we would like to
"make it observable". The obvious way to achieve this is by taking the quo-
tient M/R, where R is the equivalence relation of indistinguishability, and by
letting this quotient be the state space of our new system. For this to be pos-
sible it is necessary that R be regular. The necessary and sufficient condition
given in Serre [2, Part II, Chap. 3, § 12, Theorem 2] is not easy to verify.
However, in situations where there is more structure, JR turns out to be regular
for a different reason. As an example, consider the system

X = (A + uB)X , X € G ,
( 1 )

Here the state space G is a Lie group of n X n matrices, A and B are matrices
in the Lie algebra of G, the inputs are real-valued functions, the variable y
takes values in Rn (viewed as a space of row vectors), and b € Rn. For each
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input u(i), (0 <t < T), let Φu(t) be the solution of (1) for which Φu(0) is the
identity matrix. Let H denote the subgroup of G whose elements are the
matrices X e G for which bX = b. Let K denote the intersection of the sub-
groups Φu(t)~ιHΦu(t), where u ranges over all inputs and, for each u, Granges
over the interval in which u is defined. In this particular case the relation R
can be easily described: X and Y are indistinguishable if and only if XY~ι e K.
Therefore R is regular, because K is a closed subgroup of G.

The preceding example suggests that the appropriate tool for attacking our
system theory problem should be some generalization to arbitrary manifolds
of the closed subgroup theorem. We now describe this generalization inform-
ally. The rest of the paper is devoted to a precise statement and proof of this
result. The application to the observability problem will not be discussed here
(cf. Sussmann [5]).

Suppose that M is a connected Lie group, and let L be the Lie algebra of
M, viewed as the set of vector fields on M which are infinitesimal generators
of one-parameter groups of right multiplications. Let R be an equivalence
relation on M which is closed as a subset of M x M and for which (JC, y) e R
implies "(JC exp (tX), y exp (tX) e i?" for every X e L. It is clear that R is nec-
essarily the relation whose equivalence classes are the cosets Kx, where x e M,
and K is a closed subgroup of M. Therefore R is regular.

To obtain our generalization we no longer require M to be a Lie group, and
allow L to be an arbitrary transitive Lie algebra of vector fields on M. Those
vector fields X whose corresponding (local) one-parameter groups of difϊeo-
morphisms map equivalent elements to equivalent elements are called symmetry
vector fields of R. It turns out that all that is needed for R to be regular is
that R be closed in M X M and that the set of symmetry vector fields of R be
"sufficiently large". This is the content of Theorem 8. Moreover, the converse
is also true: if R is regular, and M/R is Hausdorff, then R is closed in M X M
and there are sufficiently many symmetry vector fields. However, our proof of
this last fact depends on the use of the standard C°° machinery (partitions of
unity, etc.), and we do not know whether a similar result is valid in the real
analytic case (cf. Theorem 10).

Our presentation of the results will first discuss the local problem, i.e., that
of characterizing locally regular equivalence relations. We present a necessary
and sufficient condition in Theorem 5. From this result, we derive a necessary
and sufficient condition for regularity in terms of symmetry vector fields which
need not be everywhere defined (Theorem 6). Theorem 8 then follows as a
corollary. So far, all the results are valid both in the C°° and in the real analytic
case. In § 7 we prove (in the C°° case) that the sufficient condition of Theorem
8 is also necessary (Theorem 10).

In accordance with the standard terminology of Palais [1] or Serre [2], we have
chosen to allow in our definition of regularity the possibility of a non-Hausdorίϊ
quotient. However, the manifold M on which R is defined will always be
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Hausdorff. As the reader will see, integral trajectories of vector fields on M
are used throughout. The condition that M be Hausdorff is needed to guarantee
the uniqueness of such trajectories.

We have formulated our main "global" results (Theorems 6, 8, 9, and 10)
in terms of "almost regularity" rather than "regularity". Equivalently, we are
allowing MjR to have connected components of different dimensions. When
M is connected, the distinction becomes unnecessary (cf. Theorem 7).

Finally, we show in § 8 how a characterization of the same type is possible
for relations R such that the canonical projection πR is a fibre map. The nec-
essary and sufficient condition is that R be locally closed and have "sufficiently
many" complete symmetry vector fields. The classical theorem of Ehresmann
on proper submersions is a particular case of our Theorem 11.

2. Notations and definitions

Throughout this paper, the word "manifold" means "finite dimensional para-
compact manifold". All manifolds are assumed to be Hausdorff, unless an
explicit statement to the contrary is made. All manifolds considered will be C°°
or Cω (real analytic). A submanίfold of a manifold M is a manifold N which
is a subset of M and for which the inclusion N —> M is an immersion. If, in
addition, N is a topological subspace of M, we shall refer to it as a regular
submanifold. We use Mx to denote the tangent space of the manifold M at the
point x.

The real line is denoted by R, and ^-dimensional Euclidean space by Rn.
The expression Cn

ε denotes the cube

{(t19 - , t n ) : \h\ < ε , i = 1 , . . , n } .

Let M be a C°° manifold. We use V~{M) to denote the set of all C°° vector
fields on M (the subscript refers to the fact that they are defined everywhere).
We use V°°(M) to denote the union of all the sets F~(β), where Ω ranges over
all open subsets of M. If M is Cω, then the sets Vω

e(M) and Vω{M) of real
analytic vector fields are defined in a similar way.

If X e V^iM), and x € M belongs to the domain of X, then we use t->Xt(x)
to denote the integral curve of X which goes through x when t = 0.

Let R be an equivalence relation on M. The equivalence class of an x € M
is denoted by R(x). We shall always view i? a s a subset of M x M, so that
the expressions " c e R(y)", "(x, y) e R" and "x is ^-equivalent to j " are used
interchangeably. A vector field X € V^iM) with domain Ω cz M is said to be
a symmetry vector field of R if, for every x € Ω and y e Ω, t e R such that
Xt(x) and Xt(y) are both defined, then

(JC, y) 6 R implies (Xt(x), Xt(y)) e R .

We use S°°CR, M) to denote the set of all symmetry vector fields of R. The set
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of all X e S°°(R, M) which are everywhere defined is denoted by S~(R, M). If
M is real analytic, then the sets Sω(R, M), S°(R, M) are defined in an obvious
way.

If R is an arbitrary equivalence relation on M, then S?(R, M) is a subalgebra
of the Lie algebra V~(R, M). We state this fact, which will be proved in § 3,
as a lemma.

Lemma 1. The set of everywhere defined symmetry vector fields of an
equivalence relation R is a Lie algebra of vector fields.

If L is a subset of V°°(M), and xeM, then we use L(x) to denote the set of
all vectors v eMx which are of the form X(x) for some X e L. If the linear
hull of L(x) is all of Mx, we say that L has maximal rank at x. If L has
maximal rank at every x e M, we say that L is transitive. If A is a subset of
M x M and, for every pair (x, xf) e A, the set of all Z e L whose domain
contains xf has maximal rank at JC, then we say that L is A-transitive. If Λί is
an equivalence relation, then A -transitivity is a stronger condition than transi-
tivity.

If R is an equivalence relation on the C°° manifold M, let M/R denote the
quotient of M by R with the quotient topology, and let πR : M—>M/R denote
the canonical projection. If M/R admits a C°° structure in such a way that the
map πR (from M onto the not necessarily Hausdorff manifold M/R) is a sub-
mersion, we say that R is C°°-regular. It is well known (and trivial), that the
differentiable structure on M/R for which πR is a submersion is unique. More-
over, M/R is Hausdorff if and only if JR is closed as a subset of M X M. If
M is real analytic, and M/R can be given a Cω structure such that πR is a Cω-
submersion, then we shall say that R is Cω-regular.

It is well known that R is regular if and only if R is a regular submanifold
of M X M in such a way that the projection (JC1, x2) —> x1 from JR onto M is a
submersion (cf. Serre [2, Part II, Chap. 3, § 12, Theorem 2]).

If Ω is an open subset of M, then the restriction of i? to Ω is the equivalence
relation RΩ = R Π (Ω X β ) . Clearly S 0 0 ^ , β) is the set of all X <= S°°CR, M)
whose domain of definition is contained in Ω. We say that R is locally regular
if every x <ε M has a neighborhood β such that i? β is regular. We say that R
is c t o ^ if it is closed as a subset of M x M, and that it is /octf/Z y c/αs ed if
every JC e M has a neighborhood Ω such that i? β is closed in fl x β .

3. Proof of Lemma 1

We recall some definitions and results from Sussmann [4] (announced in
Sussmann [3]). Let F be a set of vector fields on a manifold N. Let j e i V .
Let 5 be the smallest set with the property that y e S and that, whenever / e S
and X € F are such that / is in the domain of X, then ^ ( yO is in S for all /
for which it is defined. The set S is called the F-orbit of y. The main result of
[3] is that if S is an F-orbit, then S can be given a topology and a compatible
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C°° structure such that, for each y e S, X e F, the map t-+Xt(y) is continuous,
and that S is a submanifold of N. From this it follows easily that every X eF
is tangent to 5.

If TV is a manifold, and B is an arbitrary subset of N, then let F be the set
of all vector fields X on N such that

"y e B, Xt(y) defined" implies Xt(y) e B .

It is clear that if y e B, then the F-orbit of y is contained in B. From this
it follows that B is a union of F-orbits. The manifold N is partitioned into F-
orbits, and it is clear that the set G of all vector fields X tangent to the F-orbits
is a Lie algebra which contains F. Since B is a union of F-orbits, it follows
that G cz F. Therefore F = G, so that F is a Lie algebra.

To prove Lemma 1, we let N = M x M and B = R. Then F consists of
all vector fields on M X M whose integral curves through a point of R are
entirely contained in R. If Γ̂ is a vector field on M, we can associate with it
a vector field I Θ I o n M x M b y letting (X 0 X)(x, x') = (X(x), X(x'))
(recall that (M x M)(XιXΊ ~ Mx x Mx, canonically). Clearly, X belongs to
S~(R, M) if and only if (X φ X) e F. Since the map I - > Z 0 Z i s a Lie
algebra homomorphism, and F is a Lie algebra, we conclude that S™(R, M) is
a Lie algebra, and the proof of Lemma 1 is complete.

4. Limiting directions

The main result of this section is that if there are sufficiently many symmetry
vector fields of R, and R is closed, then every "limiting direction" of the
equivalence class of x is in fact the direction of a curve t —• Xt(x), where X is
a symmetry vector field of R and Xt(x) is equivalent to x for all t. We begin
by giving a precise definition of "limiting direction".

Let U be an open subset of Rn, and A a subset of U. Let p β A. We say
that a vector v e Rn is a limiting direction of 4̂ at p if v = 0 or there exists a
sequence {pj9 j = 1, 2, •} of points of 4̂ — {p} such that pj goes to /? as
/ —• oo and that

Lemma 2. Let φ: U —> V be a dίffeomorphism, and let B — φ(A). Let v
be a limiting direction of A at p, and let J denote the Jacobian matrix of ψ at
p. Then Jv is a limiting direction of B at φ(p).

Proof. If v = 0, the conclusion is trivial. Assume that v Φ 0. Then we
have
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Let {pj\ j = 1,2, •} be a sequence such that

Pj - p _ v
PjΦ P , Pj-»P, M

J^°° \\Pj ~ P\\

Then

p(P;) - p(p) = J'iPj - P) + o(\\pj - p\\) ,

and therefore

Lim Pfo> ~ ^ = J.(um P > - P ) = J

In particular,

ί - " WPJ-PW \\V\\

The last two equations imply that

Lim y(Pi)~y(P) =J^L_. q.e.d.

^°° I I ^ ) ( ) I I IIJv\\

The preceeding lemma shows that the statement that v is a limiting direc-
tion of A at Λ: is invariantly defined if 4̂ is a subset of a manifold M, Λ: e ^4,
and v e Mx. We shall use L(A,x) to denote the set of limiting directions of A
at x.

Lemma 3. Let A (Z M, (3nJ Λ: € >4. Lei {JC1? , xn) be a coordinate chart
in a neighborhood of x, such that xx(x) = = xn(x) = 0. Then

d (x)eL(A,x)
dx1

if and only if there exists a sequence x\ x2, of points of A, different from
x, such that xx(x

}) > 0 for all /,

and Xi(xj) = o(xλ(xj)) as / —» oo for ί = 2, , n.
Proof. Immediate.
Theorem 4. Lei R (Z M X M be an equivalence relation. Assume that R

is closed in M X M, ίmd that S~(R, M) w transitive. Let X e 5^(7?, M), x e M.
Assume that X(x) e L(R(x), x). Then Xt(x) e R(x) for all real t for which Xt(x)
is defined.
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Proof. The conclusion is trivial if X(x) = 0. Assume that X(x) Φ 0. Let
X1 = X, and let X\ , Xn be elements of S:(R, M) such that {XKx), ,
Xn(x)} is a basis for Mx. The mapping

defines a diffeomorphism of a cube Q onto a neighborhood U of JC, and the
inverse of this mapping defines a chart on U. Clearly

X(χ) = J-(χ) .

By Lemma 3 there is a sequence {JC 7} in [/ Π R(x) such that ^(JC^) —> 0 for all
/, and that, as /—> oo, tλ(xj) > 0 and t2(xj), , iw(*J) are 0 ( ^ 0 0 ) . From now
on we let t{ = ti(xj). We choose a > 0 so that the following holds:

(E) For every rc-tuple (μ19 , un) of measurable real-valued functions
defined in the interval [0, a] with values in [— 1,1], the equation

( # ) ξ=Σ " A

has a solution (i.e., an absolutely continuous curve t —> ξ{i) whose tangent
vector at t is

for almost every t) with values in U, and such that ξ(0) = x. The domain of
definition of this solution is the interval [0, a].

The proof that such an a exists is an easy application of the usual successive
approximations methods for existence of solutions of ordinary differential equa-
tions. It is clear that the solution ξ referred to in (E) is unique. Moreover, the
following can be proved easily:

(C) Let ui,Ui (ί = 1, , n, j = 1,2, •) be measurable functions from
[0, a] to [—1,1], and let ξj9ξ be the solutions of (#) corresponding to
(u(, , uJ

n), (μ19 - , un) respectively. Assume that, for each i,

Lim u{ — ut weakly .

Then

Lim ξj(t) = ξ(t) for 0 < t < a .

We shall apply (C) for a particular sequence which we now define. Let

Tj = tί + \ t ί \ + . . - +\ίί\.
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Let vj be the largest integer such that vjTj < a. Let u{(τ) = 1, u)(τ) =
= u%τ) = 0 for 0 < τ < t{'. Also, let u{(τ) = 0 for i φ I, and u{(τ) = σ{ for
H + + |*/-i| < τ < *i + + \t{\, where σ{ = 1 or —1 according as
// > 0 or # < 0.

In this way, the functions u{ are defined on the interval [0, Tj). We extend
them to [0, VJTJ) by requiring that they be periodic with period T3. Finally,
we let u{(τ) = 0 for all i if VJTJ < τ < a. The functions u{(τ) are now defined
for 0 < τ < a, and are certainly measurable with values in [— 1, 1]. As in the
statement of (C), we let ξj be the solution of (#) which corresponds to
(ul, , uζ), and for which f/0) = x. It is clear from the construction of the
u{ that if v is an integer such that 0 < v < vj9 then

W + D T,) = xn

t{x-rix xiλξMj)),

from which, together with the fact that X1 are symmetry vector fields of R, we
conclude that

) , ξj((v + l)Tj)) € R

implies

ξj((v + 2)Tj) e R

if 0 < v < Vj, — 2. But ξj(Tj) is xj, which is ^-equivalent to f/0) (i.e., x).
Therefore ξjivjTj) e R(x). Since the u{ vanish for v5Ύ3 < τ < a, we conclude
that ξjifx) = f A , Γ, ), so that f^(α) 6 Λ(Λ).

As / —> oo, it is clear that u{ —> 1 weakly, and that w|, - - -,uJ

n converge
weakly to 0 (in fact, this is also true, for instance, with "weakly" replaced by
"in L1 norm"). If we let ux = 1, u2 = = un = 0, and f denotes the cor-
responding solution of (#) with f(0) = Λ, then it follows from (C) that £/α)
—> f(α) as /-> oo. Since f^(α) e JR(X) and JR(X) is closed, we conclude that
ξ(a) ζR(x). But ξ(a) is simply Zα(x). Moreover, if a > 0 is such that (£)
holds, then the same is true for any / such that 0 < t < a. Therefore, we
have shown that Xt{x) e R(x) for every t in the interval [0, a]. Using the fact
that X is a symmetry vector field of R, it follows immediately that Xt(x) e R(x)
for every t e R for which X^x) is defined.

5. Local regularity

We now state and prove our necessary and sufficient condition for local
regularity.

Theorem 5. Let M be aC°° manifold, and let RCIM X M be an equivalence
relation. Then R is locally C°°-regular if and only if (i) and (ii) below hold:

(i) R is locally closed.
(ii) S°°(R, M) is transitive.
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If M is real analytic, then R is locally CW-regular if and only if (i) holds and 
Sm(R, M) is transitive. 

Proof. Suppose that R is locally regular. Then every point has a neighbor- 
hood U in which there is a chart (x,, . . . , x,) such that Ru  is simply the relation 
whose equivalence classes are the sets defined by x, = a,, . . . , x, = a,, where 
a,, . . . , a, are constants. From this it is clear that Ru  is closed in U x U, and 
that S,"(R,, U) is transitive (it contains the vector fields dlax,, - . . , dldx,). 
The necessity of conditions (i) and (ii) follows. 

To prove the converse, we can replace M, is necessary, by an open subset 
of M. Therefore we can assume that R is closed, that S,"(R, M) is transitive, 
and that M is connected. Let p(x) denote, for x E M, the dimension of the 
linear hull of the set L(R(x), x) of limiting directions of R(x) at x. Since 
Sm(R, M) is transitive and M connected, it is clear that, given any two points 
x, x' in M, there is a diffeornorphism p : U + U' (where U, U' are neighbor- 
hoods of x, x') such that p(U n R(x)) = U' n R(xf). Therefore (cf. Lemma 2) 
,Y(x) = p(x'), and the number p(x) is in fact a constant p independent of x. We 
let n = dimM, k = n - p. 

Let x E M. Let XI, . . , Xp be vector fields in S,"(R, M) such that {X1(x), . ., 
. . , Xp(x)) is a maximal linearly independent subset of L(R(x), x). Choose Xrtl, 

Xn also in S,"(R, M) such that (X1(x), . - . , Xn(x)) is a basis for M,. Choose E 

so small that the mapping @ defined by 

(t,, . . -, t,) --t XTn . . . Xil(x) 

is a diffeornorphism from the cube C: onto a neighborhood U of x. Identify 
C: with C: x Cf in the obvious way. We shall show that if 6 > 0 (and < E )  is 
sufficiently small, then the restriction of @ to C: x C,k has the property that 
@(y, z) and @(y', z') are R-equivalent if and only if z = z'. From this it is clear 
that the restriction of R to @(C: x Cf) is regular, and the sufficiency of (i) and 
(ii) for local regularity follows. 

To show that a 6 with the desired property exists, we first show that @(y, 0) 
E R(x) for y E C:. Let y = (t,, . . . , t,). By Theorem 4, Xil(x) is R-equivalent 

to x. Since X2 is a symmetry vector field for R, we conclude that Xi,Xil(x) is 
R-equivalent to Xi,(x). But, from Theorem 4 again, it follows that X:,(x) E R(x), 
so that XizXil(x) E R(x). Repeating this reasoning ,u - 2 more times, we con- 
clude that X;pX;p-:l . . . Xtl(x) (which is precisely @(y, 0)) belongs to R(x). 

It is an immediate consequence of the preceding paragraph that @(y, 0) and 
@(y', 0) are R-equivalent whenever y E C:, y' E C:. Using the fact that Xrt1, 
. . , Xn are symmetry vector fields of R, we conclude that (@(y, z), @(y', z)) E R 

whenever y E C:, y' E C:, z E Cf . 
There remains to be shown that if 6 is sufficiently small, then @(y, z) and 

@(yl, z') (y, y' E C:, Z, Z' E Cf) cannot be equivalent unless z = z'. It this were 
not the case, there would exist sequences y), y; of points in C:, and z), z; of 
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points in CJ such that z) -> 0, z) -> 0 as / -> oo, z) Φ z}, and that (Φ(y), z)),
Φ(y), z))) e R. Since (Φ(y), zj), 0(0, zj)) <= fl for / = 1, 2, we see that (Φ(0, z}),
(0(0, z})) e # . Let zj = (rj, , τ)). If / is sufficiently large, then the diίfeo-
morphism Ψ5 = X^l X\\Xn_τu is denned on a fixed neighborhood £/' c: [7
of JC, and Ψj(U') c ίλ Therefore for sufficiently large / there exist y) € Cμ

ε and
z5 6 CJ such that

It is clear that Ψj(Φ(0, z))) = x. Since 0(0, zj) and 0(0, z}) are ^-equivalent,
it follows that Φ(y] ,z*) e R(x). Therefore 0(0, zp e R(x). We show that z)
cannot vanish if / is sufficiently large. Indeed, if z) = 0, then (*) implies that

Φ(0, z}) = Xffiΐλ ' ' X'fΦty, 0) = Φ(y>, z)) .

Therefore z) = z), which is a contradiction. Thus we have found a sequence
{zj} which converges to zero, and is such that z) Φ 0, Φ(0, zj) e /?(JC). Replac-
ing it by a subsequence, if necessary, we can assume that the limit of Zy/||Zy||
exists. Let v be this limit. Then w = dΦ(v) is a nonzero limiting direction of
R(x) at x. Moreover, w is clearly tangent to the manifold Φ({0} x CJ) at x.
Therefore w cannot belong to the linear hull of X\x), , Xa(x), and this is
a contradiction.

The proof of our theorem is complete, except for the final remarks on real
analyticity. However, the preceding proof goes through without any change if
"C°°" is replaced throughout by " C ω " .

6. Regularity

We now give necessary and sufficient contitions for regularity. However, we
shall state our theorem in terms of "almost regularity" rather than regularity.
We say that the equivalent relation R on M is almost C™-regular if every con-
nected component M' of M\R can be given a C°° differentiate structure in
such a way that the canonical projection from πγ(M') onto Mf is a submersion.
In other words, R is almost regular if the quotient M/R is a manifold, whose
connected components are allowed to be of different dimensions.

In the statement of our main theorem we shall refer to the following "homo-
geneity condition" (H). Suppose that R is locally regular. It is then clear that
the equivalence classes of R are regular submanifolds. If x e M, two regular
submanifolds S and T will be said to be transversal at x if Sx0 Tx = Mx. We
shall say that R satisfies condition (H) if, given any two points x, y, such that
(x, y) € R, there exist regular submanifolds S, T transversal to R(x) at x and
y, respectively, and a diffeomorphism Φ from S onto T such that Φ(x) = y
and that (z, Φ(z)) e R for all zeS.

Theorem 6. Let R be an equivalence relation in the n-dimensional C°°
manifold M. Then the following conditions are equivalent:
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(i) R is almost C°°-regular;
(ii) R is locally C°°-regular and condition (H) holds,

(iii) R is locally closed and S°°CR, M) is R-transitive.
Proof. We first show that (i) implies (iii). If (i) holds, it is clear that R is

locally regular, so that R is locally closed and Sm(R, M) is transitive. To show
that S°°(R, M) is /^-transitive, let (x, y) e R, v e Mx. We must find X € S°°(R, M)
such that X is defined both at x and y, and that X(x) = v. It x = y, this is
trivially possible, because S^iR, M) is transitive. Assume that x Φ y. Let z =
πR(x)Qι. Choose coordinates z[, , z!k in a neighborhood U/ of z in M/R,
and let U — πγ(U'), zt — z[° πB, i — 1, -,k. Then the functions z1? , zk

are defined on U, and the differentials dzi9 , dzk are linearly independent.
Clearly, it is possible to define C°° functions zk+ι, , zn in an open set V which
contains both x and y, such that dzλ, , dzn are linearly independent at every
point of V. By letting X be an appropriate linear combination with constant
coefficients of the elements of the basis dual to {dzλ, , dzn}, it is possible to
have X(x) = v. Moreover, with X so defined it is clear that (X, dz^ is a con-
stant for every /. Therefore X e S°°(R,M). This completes the proof that (i)
=φ (iii).

We now show that (iii) => (ii). If (iii) holds, it follows from Theorem 5 that
R is locally C°°-regular. We must show that condition (H) holds. Let (x, y) e R.
Let P be a linear subspace of Mx such that P®R{x)x = Mx. By the /^-transi-
tivity of S°°(R, M), there exist vector fields X\ , Xk in S°°(R, M) which are
defined both at x and y such that {X\x), , Xk(x)} is a basis for P. We now
show that Xι(y), , ̂ fcCy) are linearly independent modulo R(y)y. Let c15 , cfe

be such that c ^ O O + + cfcZ
fc(y) belongs to #00^. If we let X = c,Xι +

-" + ckX
k, then it follows that ZeS°°CR,M) and that X(y) is a limiting

direction of R(y) at y. By Theorem 4, ^ t (y) € /?()>) for all t for which it is
defined. Since X is a symmetry vector field for R, and (x, y) β /?, we conclude
that Xt(x) 6 ΉOt) for sufficiently small t. Therefore X(x) = qX^jt) + . . .
+ ckX

k(x) belongs to R(x)x. Since X\x), -,Xk(x) are linearly independent
modulo R(x)x, we obtain that c1 = = ck = 0, as we wanted to show.
The preceding considerations imply, in particular, that dim (Mx/R(x)x) <
dim (My/R(y)y). Since the roles of x and y can clearly be reversed, it follows
that both dimensions are equal. If we let Q be the linear hull of X\y), ,
Xk(y), we have β θ ^ ) , - M y . Moreover, Z !(y), . ,Xk(y) form a basis
for Q. If ε > 0 is small enough, then the mappings F, G defined by

JΛ'i? * * * J ιk) — Λt! * * AίfcW J <JVi> * 5 ΐk) — ^tx ' ' ' Λ t k \ y )

are diffeomorphisms of the cube Ck onto regular submanifolds S, T through
x, y respectively. Clearly Sx = P, Ty = Q so that the transversality require-
ment of condition (H) holds. Finally, if we let Φ = GoF~\ then Φ is the
desired diffeomorphism, and (H) holds.
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We now complete the proof by showing that (ii) implies (i). Assume that
(ii) holds. We first show that πR maps open sets onto open sets. To prove this,
it is sufficient to show that if (x, y) e R, U is open, and x <= U, then there is an
open set V such that y eV and that every point of V is equivalent to some
point of U. Let S, T be transversal to R(x), R(y) at x, y respectively, and let
Φ: 5 -* T be such that (s, Φ(s)) e R for all s e S. Moreover, we can assume
that S is contained in U. Since R is locally regular, there is a coordinate chart
{y\ J yn) in a neighborhood W of y, such that two points of W are R-
equivalent if and only if they have the same yk+ί, ,yn coordinates. More-
over, we can assume that yλ(y) — = yn(y) = 0. Since T is transversal to
R(y), there is a neighborhood Z of y in T such that the mapping

is a difϊeomorphism from Z onto the cube Ck

ε. It V is the subset of W whose
elements are the points for which \yι\ < ε for i = 1, , k, then V is open,
y e F, and every point of F is ^-equivalent to a point of T and hence to a
point of S. Since S ci U, the assertion that TΓ̂  is open is proved.

Since R is locally regular, we can cover M by open sets Ua such that R,
restricted to Ua, is regular. Let Va — πB(Ua). By the preceding paragraph, the
Va are open. Moreover, we have a canonical- homeomorphism of Va with
Ua/RUa. Since this space is a C°° manifold, we conclude that M/R is covered
by the open sets Va, and that each Va has a C°° structure such that πB, restricted
to Ua9 is a submersion onto F α . To complete our proof, we must show that
the differentiable structures of the Va are compatible. Let zeVa Π Vβ. We
show that the identity map / from Va ΓΊ Vβ, considered as an open submani-
fold of Va, into Va Π Vβ, considered as an open submanifold of Vβ, is C°° in
a neighborhood of z. Let z — πR{x) = 7rΛ(j) with x € Ua, y € Uβ. Let 5, 71 be
as in the statement of condition (//). It is clear that, by shrinking S and T if
necessary, we can assume that S cz £/α, T (Z t/^, that TΓ̂  is a diίϊeomorphism
of 5 onto an open neighborhood Z of z, considered as a submanifold of Va, and
that a similar statement is true for T and ί^. Since / = πRoφoπγ, the con-
clusion that / is C°° follows, q.e.d.

When M is connected, it is clear that regularity is equivalent to almost
regularity. The following is, therefore, a trivial corollary of Theorem 6.

Theorem 7. Let R be an equivalence relation on the connected C°° mani-
fold M. Then R is regular if and only if R is locally closed and S°°(R, M) is
R-transitive.

We have a very important particular case of Theorem 7 when there are
sufficiently many symmetry vector fields of R which are everywhere defined.
We state this result separately.

Theorem 8. Let M be a C°° manifold, and R an equivalence relation on
M. Assume that R is locally closed, and that the set S™(R, M) of everywhere
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defined C°° symmetry vector fields of R is transitive. Then R is almost C°°
regular. If M is connected, then R is regular.

As we shall show in § 7, the converse of Theorem 8 is also true, but cf.
Remark (c) below.

We can get a seemingly stronger form of Theorem 8 by observing that
S™(R, M) is a Lie algebra (Lemma 1). Let us say that a set S of vector fields is
weakly transitive if the Lie algebra generated by S is transitive. The following
is then an obvious consequence of Theorem 8.

Theorem 9. Let M be aC°° manifold, and R an equivalence relation on M.
Assume that R is locally closed, and that there is a set of everywhere defined
symmetry vector fields of R which is weakly transitive. Then R is almost C°°-
regular. If M is connected, then R is regular.

Remarks, (a) If M is the real line, and R is the equivalence relation which
identifies the points — 1 and 1, then R is locally regular but not regular. This
trivial example shows the role of the conditions of Theorem 6. It is easy to
see that S°°(R, M) is not K-transitive (but, of course, it is transitive). Also, con-
dition (H) does not hold. In fact, the canonical quotient map πB does not
map open sets to open sets.

(b) Since manifolds whose connected components have different dimensions
appear anyhow in the conclusions of Theorems 6, 8 and 9, it would perhaps
be desirable to generalize our results so that the original manifold M is also
allowed to have components of different dimensions. This generalization offers
no difficulty, and all our proofs apply without any change.

(c) The results of this section only involve those properties of C°° functions
which are also valid for real analytic functions. It follows that Theorems 6,1,
8 and 9 are also true with "C°°" replaced throughout by " C ω " (and S°°, S~
replaced by Sω and S"). However, we do not know whether Theorem 10 is also
true in the Cω case.

7. Converse of Theorem 8

In this section we show that the sufficient condition of Theorem 8 is also
necessary. As we remarked before, the proof depends on properties of C°°
functions which are not shared by Cω functions.

Theorem 10. Let M be a C°° manifold, and let R be an equivalence rela-
tion on M which is almost C°°-regular. Then the set S™(R, M) of everywhere
defined symmetry vector fields of R is transitive.

Proof. We can assume that M is connected. Let Mr be the quotient MjR.
Let n = dim M, and k = dim M''. Let x° e M. Then there exists a coordinate
chart (jcx, , xn) defined in a neighborhood U oί x° such that: (a) x-^{xι{x),
• , xn(x)) is a diffeomorphism from U onto C\ (b) x^x0) = = xn(x°)
= 0, and (c) two points xι, x2 in U are /^-equivalent if and only if xx{xι) =
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xx(x2), , x k ( x ι ) = Kid*2)- We shall show that, for / = 1, -,n, there exists
a vector field Z ^ e S~(Λ, M) such that

For k + 1 < / < n this is trivial. Indeed, let / be a C°° function on M, such
that /(x°) = 1 and that the support of / is a compact subset of U. We let

It is clear that Xj is tangent to all the equivalence classes of R, and therefore

For 1 < j < k, the preceding argument does not work, and a slightly more
involved reasoning is needed. Let £/' — πR(U), and V = π^\U;). Clearly, we can
define functions x'19 , xk on JJf such that x'j(πR(x)) = Xj(x) for x e U, 1 < /
< k. The preceding equation can then be used to define Xj(x) for every x eV.
It is clear that the functions x[, , x'k define a coordinate chart for U\ Since
πR is a submersion, it follows that the differentials dx, , dxk are linearly
independent at every point of V. The standard proof that every manifold has
a Riemannian metric can be used to show the existence of a Riemannian
metric on V with respect to which

Moreover, we can assume that, in a neighborhood of x°, (#) holds for 1 < /,

Using the Riemannian metric, define Yj to be the gradient of Xj for / = 1,
• , k. Then Yj is a C°° vector field on K. Let g be a C°° function in the cube
Cf, whose support is compact, and for which g(0) = 1. Define

for x € V, 1 < / < k (and, of course, Xj(x) = 0 for x $ V). It is clear that
Xj eS?(R,M), and that

The proof is complete.

8. Characterization of fibre spaces

In this section we give a characterization in terms of symmetry vector fields
of those equivalence relations R on a manifold M such that the canonical pro-
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jection πR is a fibre map. The condition is that R be locally closed and that
there exist sufficiently many complete symmetry vector fields of R.

A submersion π: M —> N is called a C°° fibre map if every point x e N has
an open neighborhood U such that there is a C°° diffeomorphism Φ from
π~ι(x) X £/ onto ^ ( E / ) with the property that πΦ(y, u) = w for y e π'X t),
«€ t/.

We shall allow Λf to have connected components of different dimensions.
Theorem 11. Lei R be an equivalence relation on a C°° manifold M. Then

the following two conditions are equivalent:
(i) R is almost C°°-regular and πR is a C°° fibre map,

(ii) R is locally closed and there exists a transitive set of everywhere defined
complete C°° symmetry vector fields of R.

Proof. Assume that (i) holds. Then R is locally closed. Let y e M, and
v € My. We want to show that there exists a symmetry vector field X of R
which is complete and defined on all of M, and for which X(y) = v. Let x =
π(y), and F = π~\x). Let U, Φ be as in the definition of fibre map. Let V =
π~\U)9 and identify V with F X U by means of Φ. If Y, Z are C°° vector fields
on F, U respectively, then there is a vector field Y ® Z on F x U, defined in
an obvious way. Moreover, Y 0 Z is easily seen to be a symmetry vector
field of R. Clearly, it is possible to choose Y and Z so that (Y 0 Z)(v) = v,
and that both have compact support. We can then extend Y 0 Z to a vector
field X defined on all of M, by letting X vanish outside V. Thus Z(v) = v, X
is a symmetry vector field of R, and X is complete (because it has a compact
support).

We now prove that (ii) implies (i). If (ii) holds, then in particular the condi-
tions of Theorem 6 hold, so that R is almost regular. We prove that πR is a
fibre map. Take x e M/R. Let F = TΓ^(JC), and take y € F. Let X\ , Xk be
elements of S~(R, M) which are complete, and such that X\y), , ^fc(v) are
linearly independent modulo Fy and, together with Fy9 span all of Mv. If
ε > 0 is sufficiently small, then the map Ψ\C\-*M defined by Ψ(t19 ••-,**)
= X\ ^ίfc(y) is a diffeomorphism of C^ onto a /^-dimensional submanifold
S1 of M, which is transversal to F at y. By making ε even smaller if necessary,
we can assume that πR maps S diffeomorphically onto a neighborhood U of x.
Let p denote the inverse of this diffeomorphism. Define Φ: F x Cf —• M by

Clearly, Φ is C°°. Moreover, the fact that the X1 are symmetry vector fields of
R implies that Φ(z, t19 , ίfc) is .R-equivalent to Φ(y, ί1? , tk), which belongs
to S. Therefore Φ maps F X C\ into ^ ( t / ) . Now define Σ: πR\U)^F x Cf
as follows: if z β ττ^(C/), let Ψ~ι

PπR(z) = ft, , ί4) and σ(z) = Xk-tk

Xίtι(z). Then let

= (σ(z) ; t l 9 ' - , t κ ) .
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It is clear that Σ is also C°°, and that Σ and Φ are inverses of each other. By
means of Φ, identify πR\U) with F x CJ. Also, identify CJ with C/ by means
of πRΨ. It is then clear that πR is the projection (z, t19 , tk) —> (t19 , ίΛ).
Therefore πR is a fibre map.

Remarks, (a) The proof that (ii) implies (i) is equally correct when "C°°"
is replaced throughout by " O " .

(b) Theorem 11 does not admit a generalization similar to Theorem 9, in
which "transitivity" is replaced by "weak transitivity". The reason, of course,
is that the set of complete vector fields is not a Lie algebra.

(c) A particular case when it is easy to show that condition (ii) of Theorem
11 holds is when πR is a proper submersion (here "proper" means that Γ ^ C Ό
is compact whenever K is compact). Indeed, let y e M and v <= Mv. Let X e
S™(R, M) be such that X(y) = v. Let / be a C°° function onM/R with compact
support such that f(πR(y)) = 1. It is easy to verify that the vector field Y =
(1&KR)-X is also a symmetry vector field for R. Clearly, Y(y) = v. Since πR is
proper, the support of Y is compact, so that Y is complete.

Therefore Theorem 11 implies the well known fact (due to Ehresmann) that
a proper submersion is necessarily a fibre map.

(d) Another case in which Theorem 11 can be applied is the one where R
is the relation whose equivalence classes are the cosets Kx, where K is a closed
subgroup of the Lie group M. As in the introduction, let L be the Lie algebra
of M. Then R is closed, and every X € L is a symmetry vector field for R.
Therefore M/JR is a (Hausdorfϊ) manifold, and the projection x —> Xx is a
submersion. Moreover, since every X e L is complete, we recover the well
known fact that M is a fibre space over MIR.
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