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RIEMANNIAN MANIFOLDS ADMITTING AN INFINITESIMAL
CONFORMAL TRANSFORMATION

KENTARO YANO & HITOSI HIRAMATU

1. Introduction

Let M be an n-dimensional connected Riemannian manifold with positive
definite metric of differentiability class C°°. We cover M by a system of co-
ordinate neighborhoods {U; xh}, and denote by gji,Fί,Kkji

h,Kjί and K the
fundamental metric tensor field, the operator of covariant differentiation with
respect to the Levi-Civita connection, the curvature tensor field, the Ricci
tensor field and the scalar curvature field of M respectively. Here and in the
sequel indices h, i, /, k, run over the range {1, •••,«}.

We denote by CQ(M) the largest connected group of conformal transforma-
tions of a Riemannian manifold M, and by I0(M) the largest connected group
of isometries of M.

Riemannian manifolds with constant scalar curvature field admitting an in-
finitesimal nonhomothetic conformal transformation have been extensively
studied and we know the following theorems.

Theorem A (Yano and Nagano [38]). // M is a complete Einstein mani-
fold of dimension « > 2 and

(1.1) C0(M)ΦUM),

then M is isometric to a sphere.
(See also Bishop and Goldberg [3].)
Theorem B (Nagano [23]). // M is a complete Riemannian manifold of

dimension n>2 with parallel Ricci tensor field and (1.1) holds, then M is iso-
metric to a sphere.

Theorem C (Goldberg and Kobayashi [5], [6], [7]). // M is a compact
homogeneous Riemannian manifold of dimension n > 3, and (1.1) holds, then
M is isometric to a sphere.

Theorem D (Lichnerowicz [22]). // M is a compact Riemannian manifold
of dimension n>2, K = const., and K^K^ = const., then (1.1) implies that
M is isometric to a sphere.

Theorem E (Hsiung [11], [12], [13]). // M is compact and of dimension
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n > 2, K = const., and KkjifιK
kjίh = const., then (1.1) implies that M is

isometric to a sphere.
Theorem F (Ofcata [27], Yano [33]). // M w compact, orientable and of

dimension n > 2 wzϊ/z constant K, and admits an infinitesimal nonhomothetic
conjormal transformation vh so that

(1.2)

«£?„ denoting the Lie derivation with respect to vh, such that

(1.3) ί GjφipWv > 0 ,
J M

where

(1.4) Gjt = KJt - λκsJt ,
n

and pj = gjίpi,pi = Fjp,dV being the volume element of M, then M is iso-
metric to a sphere.

Theorem G (Yano [33]). // M is compact and of dimension n > 2 with
constant K, and admits an infinitesimal nonhomothetic conformal transforma-
tion vh satisfying (1.2) such that

(1.5) J^(G^G^) = 0

or

(1.6) &υ{ZkjihZ
k*ih) = 0 ,

where

V

iv J Ό rt/ J 0 s Ί\ Λ*—' J 0 J *—' tv 0 s J

then M is isometric to a sphere.
(See also Hiramatu [10].)
Theorem G, which is a generalization of Theorem D and Theorem E, has

been further generalized by Obata and one of the present authors [40].
Theorem H (Goldberg [4]). // M is compact and of dimension n>2 with

constant K, and admits an infinitesimal nonhomothetic conformal transforma-
tion vh satisfying (1.2), then

(1.8) Ky < n(n -

where Fj = gjίF\, equality holding if and only if M is isometric to a sphere.
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One of the present authors showed that the compactness here can be replaced
by completeness (Yano [34]).

Theorem I (Yano [34]). // M is compact, orientable and of dimension
n > 2 with constant K, and admits an infinitesimal nonhomothetic conjormal
transformation vh satisfying (1.2), then

(1.9) n(n - 1) ί K^p'dV < K2 [ p2dV ,
J M J M

equality holding if and only if M is isometric to a sphere.
(See also Hiramatu [9].)
The assumption K = const, in all the above theorems is based on the follow-

ing result of Yamabe [30].
Theorem J For any Riemannian metric given on a compact C^-differen-

tiable manifold of dimension n > 3, there always exists a Riemannian metric
which is conformal to the given metric and whose scalar curvature field is a
constant.

To prove that a complete Riemannian manifold is isometric to a sphere, the
following theorem due to Obata [24], [25], [26] is very useful:

Theorem K. // a complete Riemannian manifold M of dimension n > 2
admits a nonconstant function p such that

(1.10) ΓjΓiP= -c2pgjί,

where c is a positive constant, then M is isometric to a sphere of radius lie
in (n + l)-dimensional Euclidean space.

One of the present authors tried to replace the condition K = const, in
above theorems by

(1.11) J?vK = 0 ,

and obtained the following theorems.
Theorem L (Yano [35]). // M is a compact orientable Riemannian mani-

fold of dimension n > 2, and admits an infinitesimal nonhomothetic conformal
transformation vh satisfying (1.2), (1.11) and

ί (κjiPβp< - ι κy)v > o
JM \ n(n — 1) /n(n

then M is conformal to a sphere.
Theorem M (Yano [35]). // M is a compact orientable Riemannian mani-

fold and of dimension n > 2, and admits an infinitesimal nonhomothetic con-
formal transformation vh satisfying (1.2) such that (1.11), (1.5) and
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(1.13) — 1 — f K2p2dV<[ KprfdV ,
n — 1 JM JM

or (1.11), (1.6) and (1.13) hold, then M is conformal to a sphere.

We note here that the conditions (1.11), (1.5) and (1.11), (1.6) are respec-
tively equivalent to the conditions

J?VK = 0 , J?v(KjiKjί) = 0 and S£VK = 0 , &v(KkjihK*'ih) = 0 .

To prove these theorems, the following theorem due to Tashiro (see [29]
and also Ishihara [18], Ishihara and Tashiro [19]) is used.

Theorem N. // a compact Riemannian manifold M of dimension n > 2
admits a nonconstant function p such that

(1-14) FjFtp = λ

then M is conformal to a sphere in (n + l)-dimensional Euclidean space.
Sawaki and one of the present authors [42] proved the following three

theorems.
Theorem O. If a complete Riemannian manifold M of dimension n > 2

admits an infinitesimal nonhomothetic conformal transformation vh satisfying
(1.2) and (1.1), then we have (1.8) where the equality holds if and only if M
is isometric to a sphere.

Theorem P. // a compact Riemannian manifold M of dimension n > 2
admits an infinitesimal nonhomothetic conformal transformation vh satisfying
(1.2), (1.11) and

(i.i5) κ , y = kP

h,

k being a constant satisfying

(1.16) K2<n2k2,

then M is isometric to a sphere.
Theoerm Q. // a compact orίentable Riemannian manifold M of dimension

n > 2 admits an infinitesimal nonhomothetic conformal transformation vh

satisfying (1.2) and (1.11), then

(1.17) n(n - 1) ί Kn^p'dV < ί K2p2dV ,
J M J M

equality holding if and only if M is isometric to a sphere.
Hsiung and Stern [16], [17] proved
Theorem R. Suppose that a compact Riemannian manifold M of dimen-
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sion n > 2 admits an infinitesimal nonhomothetic conformal transformation
vh satisfying (1.2) and (1.11). // one of the following conditions is satisfied,
then M is conformal to a sphere:

(1.18) VFJF = Kpgju F being a scalar field on M ,

(1.19) Kjφ* = ±Fj(KP) and FjFί(Kp) = KFjFίp,
n

(1.20) ^vKji = oίgji, a being a scalar field on M .

For generalizations of the above theorems to the case of conformal changes
of metric, see Barbance [2], Goldberg and Yano [8], Hsiung and Liu [14],
Hsiung and Mugridge [15] and Yano and Obata [40], and for further results
on conformal transformations see Yano [36], [37].

The purpose of the present paper is to eliminate the condition K = const,
or «£?υK = 0 in the above theorems concerning Riemannian manifolds admit-
ting an infinitesimal conformal transformation.

In the sequel, we need the following theorem due to Tashiro [29]:
Theorem S. // a complete Riemannian manifold M of dimension n > 2

admits a complete vector field vh satisfying (1.2) and (1.14) with nonconstant
p, then M is isometric to a sphere.

2. Lemmas

Lemma 1 (Lichnerowicz [21], Sato [28], Yano [32], [36]). For a vector
field vh in a compact orientable Riemannian manifold M, we have

ί (g'ΨjΓiV* + Kfv* + n ~ 2 FΨiV* )vhdV
JM\ n /

(2.1) + ~ f ( W + FV - —VtV'gA

. (FJV, + F,Vj - lFsv
sgΛdV = 0 .

\ n /

Proof. By a straightforward computation, we have

F J ( V V + Fhvι - —V.v^Λvλ = (g'ΨjFiV* + Kt

hvl + H—λΓΨtV^Vb

+ J L ( W + FV - -FtVgAίFjVt + Vtvj - -Fsv
sgjλ ,

2 \ n J\ n J

and consequently, integrating over M we have (2.1).
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Remark. If a vector field vh defines an infinitesimal conformal transfor-
mation, then we have (1.2), i.e.,

(2.2) Fjvt + FiVj - -Ftv'gji = 0 .
n

From this, we can deduce

(2.3) g'ΨjFtV* + Kt

hvι + n ~ 2 FΨjV* = 0 .
n

Formula (2.1) shows that this is not only necessary but also sufficient in
order that the vector field vh define an infinitesimal conformal transformation
in a compact orientable Riemannian manifold.

Lemma 2 (Yano [33]). For a function p in a compact orientable Rieman-
nian manifold M, we have

ί
J M

( 2 4 ) r / i \ / l \
jM \ n I\

ί Γ G ? "

+ 2 f (Vy - ±-ΔpgA(FjPί - -ΔpgΛdV = 0 ,
J M \ n / \ n J

where Pi = Fφ, ph = pigih and Δp =
Proof. Putting vh = /?Λ in (2.1) and using F3ρι = Γ*^, we obtain (2.4).

(2.5) follows from (2.4) because of

(2.6) f (VhΔp)PhdV = - ί

Lemma 3 (Yano [33]). For a function p in a Riemannian manifold M, we
have

(2.7) FhΔp =

that is,

(2.8) gjίFjFίP

h = F Λ

Proof. We have
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FJp = Fh(gJψjPi) = gjίFhFjPi

= gjί(FjFhPί - KhJt%) = gjiFjFiPh - Kh*pt ,

from which (2.7) follows.
Lemma 4. For a function p in a compact orientable Riemannian manifold

M, we have

f

+ ί (Vy - -ΔPgA(vjPi - l ^ W = o,

(2-10) . ( χ w ! ,

+ ( r y - - J ^ M ί F ^ - -ΔpgΛdV = 0 .

Proo/. Substituting (2.8) in (2.4) we have (2.9), and substituting (2.8) in
(2.5) we have (2.10).

Lemma 5 (Yano [31]). For an infinitesimal conformal transformation vh

in a Riemannian manifold, we have

(2.11) J?υKkJi
h = -

(2.12) <?VKH = - ( / i - 2)VjPi - Δpgji ,

(2.13) &Jί = -2(n - DJp - 2Kp .

Proof. We can prove these using (1.2) and the following formulas for Lie
derivatives:

(2.14) &υ{j\} = δ*Pί + δϊPj - gjίP

h ,

(2.15) J ? A / = F*&υ{jhi} ~ Pj^vίΛ} ,

{̂ ί̂} being Christofϊel symbols formed with gH.
Lemme 6. For an infinitesimal conformal transformation vh in a Rieman-

nian manifold M satisfying (1.2), we have

(2.16) &&Si =~(n- 2)(v3Pi - -ΔpgΛ ,

\ n I

J?υZkji

h = -δh

kV3Pί + d*FkPi - (Fkp
h)gji + (FjP

h)gki

(2*17) +
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where GH and Zkji

h are given by (1.4) and (1.7) respectively.
Proof. (2.16) follows from (2.12) and (2.13), and (2.17) follows from

(2.11) and (2.13).
Lemma 7. // a compact orientable Riemannian manifold M of dimension

n > 2 admits an infinitesimal conformal transformation vh satisfying (1.2),
then

<2.1» 4 , - - ^ * - 3 ^ * ,

(2.19) f KpdV = 0 ,
JM

(2.20) ί jgf.KdF = 0 .
J M

Proof. (2.18) follows from (2.13). Using (2.18),

(2.21) ί ΔfdV = 0 , (/: a scalar field on M)
J M

for / = ̂ ,

(2.22) &JL = ^FVC ,

(2.23) F4v* = ^

and VityK) — KF\vi + vΨtK, and applying the well-known Green's formula
we readily obtain (2.19), which together with (2.18) and (2.21) for f = p
implies (2.20). It should be remarked that (2.20) shows that if &VK = const,
then &VK = 0.

Lemma 8. // a compact orientable Riemannian manifold M of dimension
n > 2 admits an infinitesimal conformal transformation vh satisfying (1.2),
then

(2.24) f gJipip*dV = -±—\ Kp*dV+ * \ (J?vJM n — I JM 2{n — I) JM

Proof. (2.24) follows from integration over M of

(2.25) ±J(p2) = (Δp)p +

and use of (2.18) and (2.21) for / = p\
Remark. If a compact orientable Riemannian manifold with K = const,

admits an infinitesimal nonhomothetic conformal transformation vh satisfying
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(1.2), then (2.24) implies that K > 0, and therefore that K = 0 (Kurita [20])
since otherwise pt = 0 which means that t;Λ is homothetic.

Lemma 9. // 0 compact orientable Riemannian manifold M admits an in-
finitesimal conformal transformation vh satisfying (1.2), then

(2.26) f Kj^p'dV + (n - 1) f g^pHV = 0 .
J M J M

Proof. Using (2.22), (2.2), (2.23), (2.13), (2.25) and

(2.27) F>KJt = W,K ,

by direct covariant differentiation we easily obtain

p) = -i(n - l)J(p2) + (n - D^^V + ̂ V

Thus integrating this over M, we obtain (2.26).
Lemma 10. // a compact orientable Riemannian manifold M of dimension

n > 2 admits an infinitesimal conformal transformation vh satisfying (1.2),

f Kj^pW - ι f
JM 4n(n — 1) JM

+ £>υ

(2.28) = — L _ f

+ 4- f fa** - n , l ,
2 J M I 2n(n — 1)

Proof. Substituting (2.16) in

and using g^G^ = 0 and (1.4) we obtain

(2.29) K hpGjtG + ?,

n — 2 L 2

On the other hand, direct covariant differentiation gives

(2.30) FKKjtpp*) = Wi^W + Kjipip* +

(2.31) PAKppί) = (VJQpp* + KPip* + KpΔp ,

where we have used (2.27) for (2.30). Eliminating KiJ7ipi and (VJOpp* from
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(2.29), (2.30) and (2.31), integrating the resulting equation over Λf, and using
(2.13) we can easily obtain

f
n- 2

(2-32) M _ 2

+ — KρφίdV — -
2 JM 4n(n—l)JM

Thus substracting

4n\n — 1) Jif
(2.33) χ

4n(n — 1) Jjif

from (2.32), we reach (2.28).
Lemma 11. // a compact orientable Rίemannian manifold M of dimension

n > 2 admits an infinitesimal conformal transformation vh satisfying (1.2),
then

f K^pW- l f ( ^ + JS?βK)W
Jϋf 4n(n — 1) JM

= 1 ί \p>ZkmZW + ±-p&AZk}i2 JM L 4

+ 1 f (Xftfl* ί [2nK

+ (n + 2)Kp<£vK

Proof. Substituting (2.17) in

and using (2.13), ZtJ(« = G ί4> ^ G ^ ' - O w e find

or, in consequence of (1.4),

(2.35) Kjtΐy = ~pZtJlhZ*>" - l^ , (Z, , i Λ Z^ < Λ ) + λ
2 o /i

On the other hand, using (2.27) and direct co variant differentiation we have
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(2.36) VKKupp1) = WiKW + KjiP3?* +

Eliminating K^p* and (PiK)ppi from (2.35), (2.36) and (2.31), integrating
the resulting equation over M, and using (2.13) we can easily obtain

j M
 Jl 2 J M i Jl 4 J

( 2 3 7 ) I f n-2 Γ
+ JL Kpφ'dV - -JL ±— XpGfy + J2?βK)dK .

2 JM An(n— 1) JM

Thus substracting (2.33) from (2.37) we reach (2.34).

3. Propositions

Proposition 1. If a compact Riemannian manifold M of dimension n > 2
admits a nonconstant function pv then

n ~~

equality holding if and only if M is conformal to a sphere.
Proof. (3.1) is equivalent to

f ry - ^ΔpgA(vjPί - 1 JpgΛ > 0 ,
\ n J\ n J

equality holding if and only if (1.14) holds, that is, by Theorem N, if and
only if M is conformal to a sphere.

Proposition 2. If a complete Riemannian manifold M of dimension n > 2
admits a complete infinitesimal nonhomothetic conformal transformation vh

satisfying (1.2), then

(3-2) * ΛVQKp + j?#y<

equality holding if and only if M is isometric to a sphere.
Proof. (3.2) follows from (2.13) and (3.1) immediately, and the equality

holds if and only if (1.14) does, that is, by Theorem S, if and only if M is
isometric to a sphere.

Remark. If S£υK = 0, then (3.2) becomes (1.8), and consequently Proposi-
tion 2 generalizes Theorem H.

Proposition 3. // a compact Riemannian manifold M of dimension n > 2
admits an infinitesimal nonhomothetic conformal transformation vh satisfying
(1.2) such that

(3.3) FjVtF = \{2K9 + Ji



34 KENTARO YANO & HITOSI HIRAMATU

for a certain function F on M, then M is isometric to a sphere.
Proof. From (3.3) and (2.13) we find

(3.4) Γ/*F= -{n-\)Δpgjt9

which implies Δ\F + n(n - 1)^] = 0, and consequently F + n(n - \)p =
const., from which it follows that

(3.5) P/.F + n(n - V)VsVi9 = 0 .

Comparison of (3.5) with (3.4) gives (1.14). Thus, by Theorem S, M is iso-
metric to a sphere.

Proposition 3 generalizes Theorem R (1).
Proposition 4. // a compact orientable Riemannian manifold M of dimen-

sion n > 2 admits a nonconstant function p such that

(3.6) **y + -^±V^p = 0 >

then M is conformal to a sphere.
Proof. Multiplying (3.6) by 2 and adding the resulting equation to (2.7),

we obtain (2.3). Thus by the remark on Lemma 1 we see that ph defines an
infinitesimal conformal transformation and consequently that (1.14) holds.
Hence, by Theorem N, M is conformal to a sphere.

Proposition 5. // a compact Riemannian manifold M of dimension n > 2
admits an infinitesimal nonhomothetic conformal transformation vh satisfying
(1.2) and (3.6), then M is isometric to a sphere.

Proof. From the proof of Proposition 4, M admits an infinitesimal nonho-
mothetic conformal transformation vh satisfying (1.2) and (1.14), and conse-
quently, by Theorem S, M is isometric to a sphere.

Remark. If sejK. = 0, then due to (2.13) the condition (3.6) becomes the
first equation of (1.19). Thus Proposition 5 generalizes Theorem R (2).

Proposition 6. // a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits a nonconstant function p, then

(3 7)
JM n JM

equality holding if and only if M is conformal to a sphere.
Proof. (3.7) follows from (2.10), and the equality holds if and only if (1.14)

does, that is, if and only if M is conformal to a sphere.
Corollary. // a compact orientable Riemannian manifold M of dimension

n > 2 admits a nonconstant function p such that

(3.8) 0
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then M is conformal to a sphere.
Proposition 7. // a compact orίentable Riemannian manifold M of dimen-

sion n > 2 admits an infinitesimal nonhomothetic conformal transformation vh

satisfying (1.2), then

(3.9) ί X iP'p'dV < l \ (2Kp + <£ΏKfdV ,
v J JM Anin — 1) JM

equality holding if and only if M is isometric to a sphere.
Proof. This follows from (2.5), (2.13) and Theorem S.
From Proposition 7, we have
Proposition 8. // a compact orientable Riemannian manifold M of dimen-

sion n > 2 admits an infinitesimal nonhomothetic conformal transformation vh

satisfying (1.2) such that

(3.10) f
JM Λ (4n(n —

0

then M is isometric to a sphere.
If <&VK = 0, then (3.10) becomes (1.12), and consequently Proposition 8

generalizes Theorem L. For this generalization, see also Ackler and Hsiung [1].
If moreover K = const., then (1.3) follows from (2.24) and (1.12). Thus

Proposition 8 generalizes Theorem F.
Proposition 9. // a compact orientable Riemannian manifold M of dimen-

sion n > 2 admits an infinitesimal nonhomothetic conformal transformation vh

satsfying (1.2) and (1.15) with a constant k satisfying

(3.11) (2KP

then M is isometric to a sphere.

Proof. Substituting (1.15) in (2.26), eliminating p^dV from the result-
JM

ing equation and the equation obtained by integrating V^pv1) = pVtv
l + p^v1

over M, and using (2.23) we readily obtain

(3.12) n k [ p*dV = ( n -
J M

On the other hand, from (1.15), (3.11) and (3.12) it follows that

f V f W = k f gjφtpW = -^--k* f (fdV
JM JM n — 1 J M

> . , l

 ΛΛ <2Kp + &JQWV .
4n(n — 1) J M
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Thus, by Proposition 8, M is isometric to a sphere.
If SejL = 0, then (3.11) becomes (1.16), and consequently Proposition 9

generalizes Theorem P.
Proposition 10. // a complete Rίemannian manifold M of dimension n > 2

admits a complete infinitesimal nonhomothetic conformal transformation vh sat-
isfying (1.2) and (1.20), then M is isometric to a sphere.

Proof. From (2.12) and (1.20) we have

H

and consequently, by Theorem S, M is isometric to a sphere.
Proposition 10 generalizes Theorem R (3).
Proposition 11. If a compact orientable Rίemanίan manifold M of dimen-

sion n > 2 admits an infinitesimal nonhomothetic conformal transformation vh

satisfying (1.2), (1.5) and

kpφW
.1 M

(3.13)
> / , J [2/2^+^ + 2)^^^

2n(w — 1) JM

then M is isometric to a sphere. *
Proof. Under these assumptions, (2.28) implies (3.10), and consequently

Proposition 11 follows from Proposition 8.
If sevK = 0, then (3.13) reduces to (1.13), and consequently Proposition

11 generalizes the first part of Theorem M.
Proposition 12. // a compact orientable Riemannian manifold M of dimen-

sion n > 2 admits an infinitesimal nonhomothetic conformal transformation vh

satisfying (1.2), (1.6) and (3.13), then M is isometric to a sphere.
Proof. Under these assumptions, (2.34) implies (3.10), and consequently

Proposition 12 follows from Proposition 8.
Proposition 12 generalizes the second part of Theorem M.
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