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RIEMANNIAN MANIFOLDS ADMITTING AN INFINITESIMAL
CONFORMAL TRANSFORMATION

KENTARO YANO & HITOSI HIRAMATU

1. Introduction

Let M be an n-dimensional connected Riemannian manifold with positive
definite metric of differentiability class C*. We cover M by a system of co-
ordinate neighborhoods {U; x*}, and denote by g;;,V;, Ky;;", K;; and K the
fundamental metric tensor field, the operator of covariant differentiation with
respect to the Levi-Civita connection, the curvature tensor field, the Ricci
tensor field and the scalar curvature field of M respectively. Here and in the
sequel indices 4,1, j, k, - - - run over the range {1, - - -, n}.

We denote by C,(M) the largest connected group of conformal transforma-
tions of a Riemannian manifold M, and by I, (M) the largest connected group
of isometries of M.

Riemannian manifolds with constant scalar curvature field admitting an in-
finitesimal nonhomothetic conformal transformation have been extensively
studied and we know the following theorems.

Theorem A (Yano and Nagano [38]). If M is a complete Einstein mani-
fold of dimension n > 2 and

(1.1) Co(M) #: IO(M) >

then M is isometric to a sphere.

(See also Bishop and Goldberg [3].)

Theorem B (Nagano [23]). If M is a complete Riemannian manifold of
dimension n > 2 with parallel Ricci tensor field and (1.1) holds, then M is iso-
metric to a sphere.

Theorem C (Goldberg and Kobayashi[5],[6],[7]). If M is a compact
homogeneous Riemannian manifold of dimension n> 3, and (1.1) holds, then
M is isometric to a sphere.

Theorem D (Lichnerowicz [22]). If M is a compact Riemannian manifold
of dimension n>2, K = const., and K ;;Ki* = const., then (1.1) implies that
M is isometric to a sphere.

Theorem E (Hsiung [111,[121,[13]). If M is compact and of dimension

Communicated July 29, 1973.



24 KENTARO YANO & HITOSI HIRAMATU

n> 2, K = const., and K;;;;,K*** = const., then (1.1) implies that M is
isometric to a sphere.

Theorem F (Obata [27], Yano [33]). If M is compact, orientable and of
dimension n > 2 with constant K, and admits an infinitesimal nonhomothetic
conformal transformation v* so that

1.2) L8 = 208j:

&, denoting the Lie derivation with respect to v", such that

(1‘3) J Gjipjpid?) > 0 .
M

where

(1.4) Gj= Ky — %Kgﬂ :

and o' = g%p;, p, = V;0,dV being the volume element of M, then M is iso-
metric to a sphere.

Theorem G (Yano [33]). If M is compact and of dimension n > 2 with
constant K, and admits an infinitesimal nonhomothetic conformal transforma-
tion v" satisfying (1.2) such that

(1.5) Z (GG =0
or

(1.6) L ZyjinZ) =0,

where

1.7 Zeyt = Kyt — — K _(@3hg, — S20)

nn—1)

then M is isometric to a sphere.

(See also Hiramatu [10].)

Theorem G, which is a generalization of Theorem D and Theorem E, has
been further generalized by Obata and one of the present authors [40].

Theorem H (Goldberg [4]). If M is compact and of dimension n> 2 with
constant K, and admits an infinitesimal nonhomothetic conformal transforma-
tion v* satisfying (1.2), then

(1.8) Kp* < n(n — VX7 ,;0)(77p") ,

where VI = gi'f,, equality holding if and only if M is isometric to a sphere.
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One of the present authors showed that the compactness here can be replaced
by completeness (Yano [34]).

Theorem I (Yano [34]). If M is compact, orientable and of dimension
n > 2 with constant K, and admits an infinitesimal nonhomothetic conformal
transformation v* satisfying (1.2), then

(1.9) n(n — 1)J K,plo'dV < Kzf pdv
M M

equality holding if and only if M is isometric to a sphere.

(See also Hiramatu [9].)

The assumption K = const. in all the above theorems is based on the follow-
ing result of Yamabe [30].

Theorem J. For any Riemannian metric given on a compact C=-differen-
tiable manifold of dimension n > 3, there always exists a Riemannian metric
which is conformal to the given metric and whose scalar curvature field is a
constant.

To prove that a complete Riemannian manifold is isometric to a sphere, the
following theorem due to Obata [24], [25], [26] is very useful:

Theorem K. If a complete Riemannian manifold M of dimension n > 2
admits a nonconstant function p such that

(110) VjViP = _Cngji ’

where c is a positive constant, then M is isometric to a sphere of radius 1/c
in (n + 1)-dimensional Euclidean space.

One of the present authors tried to replace the condition K = const. in
above theorems by

(1.11) Z,K =0,

and obtained the following theorems.

Theorem L (Yano [35]). If M is a compact orientable Riemannian mani-
fold of dimension n > 2, and admits an infinitesimal nonhomothetic conformal
transformation v* satisfying (1.2), (1.11) and

(1.12) '[ (Kﬂpfpi — —1_——sz2)V >0,
u nn — 1)

then M is conformal to a sphere.

Theorem M (Yano [35)). If M is a compact orientable Riemannian mani-
fold and of dimension n > 2, and admits an infinitesimal nonhomothetic con-
formal transformation v* satisfying (1.2) such that (1.11), (1.5) and
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(1.13) L f KpdV < f Kpio'dV
n—1Jx u

or (1.11), (1.6) and (1.13) hold, then M is conformal to a sphere.
We note here that the conditions (1.11), (1.5) and (1.11), (1.6) are respec-
tively equivalent to the conditions

ZK=0, Z,K;K¥%) =0 and £K=0, Z,(KK") =0.

To prove these theorems, the following theorem due to Tashiro (see [29]
and also Ishihara [18], Ishihara and Tashiro [19]) is used.

Theorem N. If a compact Riemannian manifold M of dimension n > 2
admits a nonconstant function p such that

(1.14) ViVip = ldpgﬁ ’
n

then M is conformal to a sphere in (n + 1)-dimensional Euclidean space.

Sawaki and one of the present authors [42] proved the following three
theorems.

Theorem O. If a complete Riemannian manifold M of dimension n > 2
admits an infinitesimal nonhomothetic conformal transformation v* satisfying
(1.2) and (1.1), then we have (1.8) where the equality holds if and only if M
is isometric to a sphere.

Theorem P. If a compact Riemannian manifold M of dimension n > 2

admits an infinitesimal nonhomothetic conformal transformation v satisfying
(1.2), (1.11) and

(1.15) Kot = kp" ,
k being a constant satisfying
(1.16) K? < nk?,

then M is isometric to a sphere.

Theoerm Q. If a compact orientable Riemannian manifold M of dimension
n > 2 admits an infinitesimal nonhomothetic conformal transformation v*
satisfying (1.2) and (1.11), then

(1.17) n(n — 1)f KyppidV < J Ktdv
M M

equality holding if and only if M is isometric to a sphere.
Hsiung and Stern [16], [17] proved
Theorem R. Suppose that a compact Riemannian manifold M of dimen-
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sion n > 2 admits an infinitesimal nonhomothetic conformal transformation
" satisfying (1.2) and (1.11). If one of the following conditions is satisfied,
then M is conformal to a sphere:

(1.18) VV.,F = Kpg;;, F being a scalar field on M ,

(1.19) Kot = LV ,Ko) and V7yKp) = KV Vo0,
n

(1.20) F.K;; = ag;;, o being a scalar field on M .

For generalizations of the above theorems to the case of conformal changes
of metric, see Barbance [2], Goldberg and Yano [8], Hsiung and Liu [14],
Hsiung and Mugridge [15] and Yano and Obata [40], and for further results
on conformal transformations see Yano [36], [37].

The purpose of the present paper is to eliminate the condition K = const.
or #,K = 0 in the above theorems concerning Riemannian manifolds admit-
ting an infinitesimal conformal transformation.

In the sequel, we need the following theorem due to Tashiro [29]:

Theorem S. If a complete Riemannian manifold M of dimension n > 2

admits a complete vector field v* satisfying (1.2) and (1.14) with nonconstant
0, then M is isometric to a sphere.

2. Lemmas

Lemma 1 (Lichnerowicz [21], Sato [28], Yano [32], [36]). For a vector
field v in a compact orientable Riemannian manifold M, we have

J (g”VjViv" + KMt + n—_—zV’lVivi>vth
M n
2.1 + ij (Vjvz + Vvl — 2l7 v‘g”)
: 2 Ju n '
. (Vj’vi + Vi’vj — zVs'l)sgj,,;)dl-/ =0.
n

Proof. By a straightforward computation, we have

V{(V"v" + Prt — thv’g“’)vh] = (g”VjVﬂ)” + K;™v? + n—2 V"Vm")vh
n n

+ %(vai + Pl — %V,v‘g”)(Vj’vi + Vv, — %stsgﬂ) ,

and consequently, integrating over M we have (2.1).
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Remark. If a vector field »* defines an infinitesimal conformal transfor-
mation, then we have (1.2), i.e.,

(2.2) Vv, + Vv, — EVtv‘gﬁ =0.
n

From this, we can deduce

2.3) W Tt 4+ Kt + L= gt — 0.
n

Formula (2.1) shows that this is not only necessary but also sufficient in
order that the vector field v* define an infinitesimal conformal transformation

in a compact orientable Riemannian manifold.
Lemma 2 (Yano [33]). For a function p in a compact orientable Rieman-
nian manifold M, we have

IM (g“V iVio" + Ko + n—;—thA‘D)pth

2.4) 1 1
+ 2] (pri — —Apgji><‘7jpi _ —Apgﬁ) av =0,
M n n

[ [@ 7ot + Keovo, — = 2 tpr|av

2.5) 1 |
M n n

where p, = V,p, p" = p;g*" and dp = g’V ;¥ ;p.
Proof. Putting v* = p" in (2.1) and using F?p* = V’p/, we obtain (2.4).
(2.5) follows from (2.4) because of

2.6) IM (7" dp)ppdV = — I _pyav .

Lemma 3 (Yano [33]). For a function p in a Riemannian manifold M, we
have

2.7 Vrdp = g7l V0" — K;"p* ,
that is,
2.8) gl p* = V*dp + K;"p" .

Proof. We have
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Vidp = V(&9 ;0,) = &7V, 04
=gl WV ros — Knji'o) = &7V Vipn — Ki'ps
from which (2.7) follows.

Lemma 4. For a function p in a compact orientable Riemannian manifold
M, we have

JM (Kjipjpi + n ; lphV;LAp>dV
2.9) L .
+ I (prz _ —~Apg“)<l7jpi _ —Apgji>dV ~0,
M n n
[Knp"pi— - I(AP)Z]dV
M n
(2.10)

v j (prf - lA,;gﬂ)(ij - iApgﬁ>dV —0.
M n n

Proof. Substituting (2.8) in (2.4) we have (2.9), and substituting (2.8) in
(2.5) we have (2.10).

Lemma 5 (Yano [31]). For an infinitesimal conformal transformation v"*
in a Riemannian manifold, we have

.11 LKy = —0tV 0, + 0tV voi — Wrp™)gs + (Vjph)gki 5
(2.12) LK = —(n— 20 0, — dpgj; »
2.13) LK = —2(n— 1)dp — 2Kp .

Proof. We can prove these using (1.2) and the following formulas for Lie
derivatives :

(2.14) Lol = 030 + 0105 — 850" 5
(2-15) gvchjih = ngv{jhi} - ngv{khi} s

{;™:} being Christoffel symbols formed with g;;.
Lemme 6. For an infinitesimal conformal transformation v"* in a Rieman-
nian manifold M satisfying (1.2), we have

(2.16) LGju=—0n— 2)<Vjpi — %Apgji) )

Loy = —0mV 0, + 03Vioi — Vip™gjs + T ;0M81s

2.1 2
(.17 +=Ao(@igs — 518u)
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where G;; and Z, ;" are given by (1.4) and (1.7) respectively.

Proof. (2.16) follows from (2.12) and (2.13), and (2.17) follows from
(2.11) and (2.13).

Lemma 7. If a compact orientable Riemannian manifold M of dimension
n > 2 admits an infinitesimal conformal transformation v" satisfying (1.2),
then

1 1
( e n—1 " 2m—1
(2.19) f KodV =0,
M
(2.20) f LKAV =0 .
M

Proof. (2.18) follows from (2.13). Using (2.18),

2.21) I AfdV =0, (f: a scalar field on M)
M

for f = p,

2.22) 2K =9V ,K,

(2.23) Vot = np

and V,(v'K) = KV ;v* + vF;K, and applying the well-known Green’s formula
we readily obtain (2.19), which together with (2.18) and (2.21) for f=p
implies (2.20). It should be remarked that (2.20) shows that if #,K = const.
then ¥, K = 0.

Lemma 8. If a compact orientable Riemannian manifold M of dimension
n > 2 admits an infinitesimal conformal transformation v* satisfying (1.2),
then

(2.24) j g0’ p'dV = #J Kodv + 1 _ f (ZK)odV .
o n—1Jx — 1 Jx

2(n

Proof. (2.24) follows from integration over M of
(2.25) %A(pz) = (o) + 810’0

and use of (2.18) and (2.21) for f = P~
Remark. If a compact orientable Riemannian manifold with K = const.
admits an infinitesimal nonhomothetic conformal transformation v" satisfying
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(1.2), then (2.24) implies that K > 0, and therefore that K = 0 (Kurita [20])
since otherwise p; = O which means that v” is homothetic.

Lemma 9. If a compact orientable Riemannian manifold M admits an in-
finitesimal conformal transformation v* satisfying (1.2), then

(2.26) fMKjivjpidV +(n—1) fngipfpidV 0.
Proof. Using (2.22),(2.2),(2.23),(2.13), (2.25) and
(2.27) ViK;, = iV, K,
by direct covariant differentiation we easily obtain
Vi(K;v'0) = —3(n — DA(p*) + (n — 1)g;ip’0" + K;v7p0*

Thus integrating this over M, we obtain (2.26).
Lemma 10. If a compact orientable Riemannian manifold M of dimension

n > 2 admits an infinitesimal conformal transformation v* satisfying (1.2),
then

K’ idV——j 2Kp + £, Kydv
L{”"’ Inin — 1) Ju 2RO T LK)
(2.28) S j [2p2G]-iGﬂ + lp,s,ﬂ,,(GjiGﬁ)]dV
n—2Ju 2
+ 5[ {Kow - S K (DKL K4 (2 KAV .

Proof. Substituting (2.16) in
gv(GjiGji) = 2(va]Z)G'“ —_— 4PG‘”G‘” 5

and using g,;,G’* = 0 and (1.4) we obtain

2.29) K, Pl = — 1 [2pGﬁGﬁ + Lo, (GﬁGﬂ)] + Lo,
n—2 2 n

On the other hand, direct covariant differentiation gives
(2.30) V(K jipp") = §V:K)pp* + Kyip?0* + oK;V7p"
(2.3 Vi(Kpp®) = V:K)pp* + Kpip* + Kodp ,

where we have used (2.27) for (2.30). Eliminating K;;F//p* and (V;K)gp® from
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(2.29), (2.30) and (2.31), integrating the resulting equation over M, and using
(2.13) we can easily obtain

f K;ip'p'dV = LJ [ZPZGjiGji + Lo, (Gjin")]dV
o n—2Jx 2
+ lj Ko;p'dV —
2 Jn

Thus substracting

(2.32)

mj Ko(2Kp + £, K)dV .

m j QKp + 2, KydV
(2.33)

~_*J [4K%0* + 4Kp.Z K + (£, K)HdV
dn{n — 1)

from (2.32), we reach (2.28).

Lemma 11. If a compact orientable Riemannian manifold M of dimension
n > 2 admits an infinitesimal conformal transformation v* satisfying (1.2),
then

f Kyolo'dvV — 1 f QKp + Z.KdV
o n—1 Jx

4n(

= 5 [ |2z + o2 @nzm|av

lj {K,i__—l__szz
t 5 Kol = gy K

+ (0 + DKpL K + (£ KAV

(2.34)

Proof. Substituting (2.17) in
Lo(ZyjinZH) = 2L, 212, — dpZy jin ZF
and using (2.13), Z,;;* = Gj;, g;:G’* = 0 we find
LoAZyjinZH) = —8G; V0t — 4pZy;in ZF ",
or, in consequence of (1.4),

2.35) K, = —%pzmz’vﬂh _ %gv(zmz'cﬁh) + %de .

On the other hand, using (2.27) and direct covariant differentiation we have
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(2.36) Vi(K00%) = 3(W:K)pop* + Kyip'o" + oKV 0" -
Eliminating K ;;F/7p* and (F,K)pp® from (2.35), (2.36) and (2.31), integrating
the resulting equation over M, and using (2.13) we can easily obtain
J- KjinPidV = —1- I [Pzzkjinzkﬂh + l pgv(zkjihzkjih)]dV
o 2 Ju 4
2.37) "2
dn(n— 1)

Thus substracting (2.33) from (2.37) we reach (2.34).

+ lf Kpio'dV — j KoQKp + LK)dV .
2 Ju M

3. Propositions

Proposition 1. If a compact Riemannian manifold M of dimension n > 2
admits a nonconstant function p, then

3.1) %(Amz < PN 100)

equality holding if and only if M is conformal to a sphere.
Proof. (3.1) is equivalent to

(VjPi — %Apgﬂ)@fpi - %At"gﬁ) >0,

equality holding if and only if (1.14) holds, that is, by Theorem N, if and
only if M is conformal to a sphere.

Proposition 2. If a complete Riemannian manifold M of dimension n > 2
admits a complete infinitesimal nonhomothetic conformal transformation v"*
satisfying (1.2), then

3.2) ! 5 0Ko + 2.KF < 00T 00

dn(n — 1
equality holding if and only if M is isometric to a sphere.

Proof. (3.2) follows from (2.13) and (3.1) immediately, and the equality
holds if and only if (1.14) does, that is, by Theorem S, if and only if M. is
isometric to a sphere.

Remark. If #,K =0, then (3.2) becomes (1.8), and consequently Proposi-
tion 2 generalizes Theorem H.

Proposition 3. If a compact Riemannian manifold M of dimension n > 2

admits an infinitesimal nonhomothetic conformal transformation v"* satisfying
(1.2) such that

3.3) V7. F = 12Kp + £.,K)g;:
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for a certain function F on M, then M is isometric to a sphere.
Proof. From (3.3) and (2.13) we find

which implies A[F + n(n — 1)p] = 0, and consequently F 4 n(n — 1)p =
const., from which it follows that

(3.5) Viv.F + n(n — P Vo =0 .

Comparison of (3.5) with (3.4) gives (1.14). Thus, by Theorem S, M is iso-
metric to a sphere.

Proposition 3 generalizes Theorem R (1).

Proposition 4. If a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits a nonconstant function p such that

(3.6) Kirpt 4 L Lpigp =0,

then M is conformal to a sphere.

Proof. Multiplying (3.6) by 2 and adding the resulting equation to (2.7),
we obtain (2.3). Thus by the remark on Lemma 1 we see that p" defines an
infinitesimal conformal transformation and consequently that (1.14) holds.
Hence, by Theorem N, M is conformal to a sphere.

Proposition 5. If a compact Riemannian manifold M of dimension n > 2
admits an infinitesimal nonhomothetic conformal transformation v* satisfying
(1.2) and (3.6), then M is isometric to a sphere.

Proof. From the proof of Proposition 4, M admits an infinitesimal nonho-
mothetic conformal transformation v* satisfying (1.2) and (1.14), and conse-
quently, by Theorem S, M is isometric to a sphere.

Remark. If #,K = 0, then due to (2.13) the condition (3.6) becomes the
first equation of (1.19). Thus Proposition 5 generalizes Theorem R (2).

Proposition 6.  If a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits a nonconstant function p, then

‘ —1
(3.7) [ Kiotav < "= L prav

equality holding if and only if M is conformal to a sphere.
Proof. (3.7) follows from (2.10), and the equality holds if and only if (1.14)
does, that is, if and only if M is conformal to a sphere.

Corollary. If a compact orientable Riemannian manifold M of dimension
n > 2 admits a nonconstant function p such that

(3.8) [ [Kuwtot = "= Laaor]av 0,
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then M is conformal to a sphere.

Proposition 7. If a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits an infinitesimal nonhomothetic conformal transformation v*
satisfying (1.2), then

(3.9 jM K;ip'p'dV < J (2Kp + Z,K)yav ,

4(n—1)

equality holding if and only if M is isometric to a sphere.

Proof. This follows from (2.5), (2.13) and Theorem S.

From Proposition 7, we have

Proposition 8. If a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits an infinitesimal nonhomothetic conformal transformation v
satisfying (1.2) such that

(2Kp + Z,K)’ldV > 0,

.i 1
oy [ Kot =y

then M is isometric to a sphere.

If #,K = 0, then (3.10) becomes (1.12), and consequently Proposition 8
generalizes Theorem L. For this generalization, see also Ackler and Hsiung [1].

If moreover K = const., then (1.3) follows from (2.24) and (1.12). Thus
Proposition 8 generalizes Theorem F. :

Proposition 9. If a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits an infinitesimal nonhomothetic conformal transformation v*
satsfying (1.2) and (1.15) with a constant k satisfying

(3.11) (Kp + 2Ky < 4ntk?p

then M is isometric to a sphere.
Proof. Substituting (1.15) in (2.26), eliminating .[ 0:v*dV from the result-
M

ing equation and the equation obtained by integrating V,(ov?) = pV ,v* + p,v*
over M, and using (2.23) we readily obtain

(.12) nkj pdV = (n — 1)j guplpidV .
M M

On the other hand, from (1.15), (3.11) and (3.12) it follows that

J K;ip'p'dV =k J 8yp'0'dV =
M M

mj QKp + LKV .
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Thus, by Proposition 8, M is isometric to a sphere.

If #,K = 0, then (3.11) becomes (1.16), and consequently Proposition 9
generalizes Theorem P.

Proposition 10. If a complete Riemannian manifold M of dimension n > 2
admits a complete infinitesimal nonhomothetic conformal transformation v* sat-
isfying (1.2) and (1.20), then M is isometric to a sphere.

Proof. From (2.12) and (1.20) we have

1

Viz—
io n_2

(e + dp)gyi »

and consequently, by Theorem S, M is isometric to a sphere.

Proposition 10 generalizes Theorem R (3).

Proposition 11. If a compact orientable Riemanian manifold M of dimen-
sion n > 2 admits an infinitesimal nonhomothetic conformal transformation v"*
satisfying (1.2), (1.5) and

> _.1—f [2nK’0* + (n + 2KpZ K + (Z,K)JdV ,
2n(n — 1) Ju

then M is isometric to a sphere. °

Proof. Under these assumptions, (2.28) implies (3.10), and consequently
Proposition 11 follows from Proposition 8.

If #,K =0, then (3.13) reduces to (1.13), and consequently Proposition
11 generalizes the first part of Theorem M.

Proposition 12. If a compact orientable Riemannian manifold M of dimen-
sion n > 2 admits an infinitesimal nonhomothetic conformal transformation v*
satisfying (1.2), (1.6) and (3.13), then M is isometric to a sphere.

Proof. Under these assumptions, (2.34) implies (3.10), and consequently
Proposition 12 follows from Proposition 8.

Proposition 12 generalizes the second part of Theorem M.
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