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THE CONVERSE TO THE GAUSS-BONNET
THEOREM IN PL

HERMAN GLUCK, KENNETH KRIGELMAN & DAVID SINGER

If M is a compact two-dimensional Riemannian manifold, possibly with
boundary, the Gauss-Bonnet theorem [7], [5], [6], [16] asserts:

curvature -f geodesic curvature + J] exterior angles = 2πχ(M) ,
J M J dM dM

where χ(M) is the Euler characteristic of M, and it is natural to ask if this is the
only relation among these quantities. In this paper we show that in the piece-
wise linear category, the condition is indeed sufficient.

1. History of the problem

Consider first the smooth category. Here the question for closed manifolds
has received a flurry of attention during the past few years, though in some
aspects it traces back to the work of Minkowski [17], [18] in 1897.

Suppose that a closed smooth two-manifold M and a smooth real-valued
function K: M —• R are given, and that one is asked to find a Riemannian
metric for M having K as its Gaussian curvature. Note that the Gauss-Bonnet
"condition" on K cannot be formulated in advance, since there is no area ele-
ment given on M. Nevertheless, some restrictions are imposed. If M has posi-
tive Euler characteristic, i.e., if M is the sphere or projective plane, then the
preassigned function K must certainly be somewhere positive on M. If χ(M)
= 0, i.e., if M is the torus or Klein bottle, then K, if not identically 0, must be
somewhere positive and somewhere negative. If χ(M) is negative, then K must
be somewhere negative. With these restrictions on K, the problem has been
completely solved for all closed smooth two-manifolds by:

Melvyn Berger [4] for orient able manifolds of negative Euler characteristic,
provided K < 0 everywhere

Gluck [8], [9] for the two-sphere provided K > 0 everywhere

Moser [19] for the projective plane;
Kazdan and Warner [10], [11], [12], [13], [14] in all other cases.
Recently Kazdan and Warner have obtained a uniform solution. The problem

Received July 16, 1973. The first author was supported by National Science Foundation
Grant No. 29258 and a Guggenheim Fellowship, and the last author by National Science
Foundation Grant No. 33960X.



602 HERMAN GLUCK, KENNETH KRIGELMAN & DAVID SINGER

for compact two-manifolds with boundary, however, seems not yet to have
been addressed in the smooth category.

In the PL category, the problem takes on a somewhat different aspect. First,
curvature here is the analogue of integral curvature for smooth manifolds, so
the Gauss-Bonnet theorem can be imposed undiluted as a necessary condition.
Second, the problem has a combinatorial character which submits to methods
entirely different from those used in the smooth case. The converse to the PL
Gauss-Bonnet theorem was observed for the two-sphere by D. Singer (unpub-
lished) provided the curvature is everywhere nonnegative for the general case
of the two-sphere by Gluck (unpublished) and proved for all closed two-
manifolds by Krigelman [15].

We give next some general information about PL Riemannian metrics for
PL manifolds in general and then especially for two-manifolds, before formu-
lating and proving the converse to the Gauss-Bonnet theorem for compact PL
two-manifolds with boundary.

2. PL Riemannian metrics

A good background reference for some of the following is Alexandrov [1].
By a polyhedron X we mean a topological space homeomorphic to the

underlying space of some locally finite simplicial complex, together with a
maximal family of PL equivalent triangulations of X. A piecewise linear map
/: Xλ —> X2 between polyhedra is said to be nondegenerate if / is injective on
each simplex for some triangulation of Xx.

A metric (ordinary distance function) on a simplex σ is linear if it agrees
with the metric induced by some linear embedding of σ into a Euclidean space.
A metric simplicial complex consists of the following data:

(1) a locally finite simplicial complex K,
(2) a collection {dσ: a e K} of linear metrics on the simplices of K, subject

to the consistency requirement that if σ is a face of τ then the metric dσ on σ
is the restriction to σ of the metric dτ on τ.

A map i: K! —> K of metric simplicial complexes is a subdivision if:
(a) / is a homeomorphism, linear on each simplex of K', and
(b) da, = dσo (/ x /) for any simplex σf of K! mapping into a simplex σ of

K.
If T: K^ X is a triangulation of X, and K is a metric simplicial complex,

then T is referred to as a presentation of a Riemannian metric on X. The op-
eration of subdivision for metric simplicial complexes generates an equivalence
relation among the presentations of Riemannian metrics on a fixed polyhedron
X. A corresponding equivalence class will be called a Riemannian metric on
X X together with such a Riemannian metric will be called a Riemannian
polyhedron.

If /: Xλ —> X2 is a nondegenerate map, then a Riemannian metric on X2
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may be pulled back via / to one on Xx. For example, a subpolyhedron of any
Riemannian polyhedron becomes a Riemannian polyhedron via the inclusion
map. Thus the subpolyhedra of Euclidean space, for example, become
Riemannian polyhedra in the obvious way.

The elementary geometry of Riemannian polyhedra unfolds in a manner
similar to that for smooth Riemannian manifolds. For example, a Riemannian
metric on the polyhedron X may be used to define the notion of path length,
from which we derive the induced metric (ordinary distance function) dx on
X. It is easy to check that the corresponding metric topology on X agrees with
its usual (weak) topology as a polyhedron. A Riemannian polyhedron is com-
plete if the induced metric is a complete metric.

If Y is a subpolyhedron of a Riemannian polyhedron X, we can compare
the induced metric dγ on Y with the restriction of dx. In general dγ(p, q) >
dχ(p, q) if they are identically equal we say Y is totally geodesic in X.

We offer the following facts as orientation to the reader. They will not be
used in the present paper, so proofs are omitted.

(1) Every Riemannian polyhedron has a triangulation, each of whose sim-
plexes is totally geodesic.

(2) Shortest paths between points in a Riemannian polyhedron, if they
exist, are always PL. In the complete case, they always exist.

(3) In a complete Riemannian polyhedron, every closed and bounded sub-
set is compact.

(4) A Riemannian metric on a subpolyhedron Y c X can always be ex-
tended to one on X; if Y is complete, X can be chosen to be complete. In
either case, we can make Y totally geodesic in X.

(5) Any point of a Riemannian polyhedron X has a neighborhood U which
is convex in the following sense: Between any two points of U there exists a
shortest path (in general not unique), and all such shortest paths run entirely
in U.

An isometric map f: X -^Y between Riemannian polyhedra is a nondegen-
erate PL map such that the metric on X agrees with the pullback via / of the
metric on Y. An isometry is an isometric homeomorphism, or equivalently, an
isometry with respect to the induced metrics dx and dγ.

The following construction will be used repeatedly in our arguments. Let Yλ

and Y2 be disjoint subpolyhedra of the Riemannian polyhedron X, and let
h: Yx —> Y2 be an isometry. Then the quotient space X/h, in which each point
of Y1 is identified with its image under h in Y2, becomes a Riemannian poly-
hedron in a natural way such that the natural projection map π: X —> X/h is
isometric. In fact, suppose the triangulation T: K —> X is a presentation of
the Riemannian metric on X, such that

(1) Yx and Y2 appear as subcomplexes,
(2) h: Yx —• Y2 is simplicial,
(3) the resulting cell structure on X/h is that of a simplicial complex.
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Such triangulations are easily obtained: If T' is any presentation of the
Riemannian metric on X, we may subdivide so that (1) is satisfied. Subdivide
further so that h is simplicial then (2) will be satisfied. Passing to the second
barycentric subdivision, (3) will be satisfied as well. The resulting triangulation
of X/h by a metric simplicial complex exhibits the Riemannian structure on
X/h, which is easily seen to be independent of the particular triangulation T
of X.

A special case of this construction occurs when h: Yλ —> Y2 is an isometry
between subpolyhedra of disjoint Riemannian polyhedra Xx and X2 we simply
regard X = Xλ U X2> A further specialization occurs when Xλ and X2 are dis-
joint copies of the same Riemannian polyhedron X, Yλ and Y2 are the cor-
responding copies of the same subpolyhedron Y, and h: Yλ —» Y2 is the
"identity". Both of these cases occur frequently in what follows.

3. Curvature of PL fwo-manifolds

Good background references for the next two sections are Banchoίϊ [2], [3].
Suppose now that M is a PL Riemannian two-manifold (possibly with

boundary). For any point p of M, let a(p) denote the sum of the angles around
p; this is independent of the presentation used to compute it.

If p is an interior point of M, the curvature at p is defined to be k(p) =
2π — a(p), a real number less that 2π. The rationale for this definition comes
from the case of a convex polyhedral surface M in R3. Here this intrinsic defi-
nition coincides with the extrinsic definition of curvature at p as the area of
the "spherical image" of p, that is, the area of the set on S2 of unit outward
normal vectors to support planes of M at p, thus paralleling the smooth case.

If q is a boundary point of M, the exterior angle at q is defined to be e(q)
= π — a(q), a real number less than π.

Notice that if T: K —> M is a presentation of the Riemannian metric on M,
then nonzero curvatures and exterior angles can occur only at the vertices of
this triangulation. Interior (boundary) points of M at which the curvature
(exterior angle) is zero are said to be flat.

Note also that if we change the scale on a PL Riemannian two-manifold by
multiplying all linear dimensions by a fixed positive constant, then angles in
simplices remain unchanged, and hence so do all curvatures and exterior angles.
This reflects the fact that integral curvature in the smooth category is also un-
affected by a change of scale.

The pasting operation X —> X/h described in the preceding section will be
applied to two-manifolds M as follows. Let Yλ and Y2 be disjoint subpolyhedra
on 3M, and h: Y1 —> Y2 an isometry. If we assume that each of Yλ and Y2 is
a finite disjoint union of arcs and simple closed curves (thus eliminating the
possibility of isolated vertices), we can conclude that M/h is itself a two-mani-
fold.
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An interior point of M goes to an interior point of M/h with the same cur-
vature. A point of dM — (Yx U Y2) goes to a boundary point of M/h with the
same exterior angle. Finally, let qx e Y1 and q2 = h{q^ e Y2 with exterior
angles eγ and e2, and let q be the class of qx in M/h. We compute the curva-
ture (or exterior angle) at q as follows:

If qx e dY19 that is, if qx is an endpoint of an arc in Y19 then q is in d(M/h)
and

e(q) = π — a(q) = π — a(qλ) — a(q2)

= π — a(qλ) + π — a(q2) — π = e1 + e2 — π .

Otherwise, q lies in the interior of M/h with curvature

k(q) = 2ττ — fl(#) = 7r — α(^) + π — a(q2) = eλ + e2 .

These constructions are illustrated in Fig. la and Fig. lb respectively.

Fig. la Fig. lb

A word of explanation is in order concerning diagrams. When a diagram
shows a boundary arc as a straight line segment, this certifies only that the
manifold is flat at each interior point of the arc. Furthermore, although the
objects are pictured in the plane, they will in general only be assumed to exist
in abstracto, and the identifications pictured, for example, in Fig. 1 represent
the quotient operation X —» X/h.

4. The Gauss-Bonnet theorem and its converse

Gauss-Bonnet theorem. Let M be a compact PL Riemannίan two-mani-
fold. Let k(p), p e M, denote the curvature at an interior point p of M, and
e(q), q e dM, the exterior angle at a boundary point q of M. Then
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Σ *(P) + Σ e(q) = 2πχ(M)

where χ(M) is the Euler characteristic of M.
Proof. Well known, as follows. Consider first the case that M is closed,

and let T: K—>M be a presentation of the Riemannian metric on M. Suppose
that K has V vertices, E edges and F faces. Observe that 3F = 2E.

Let kt be the curvature at the /-th vertex of K, and αro a typical angle of a
triangle at that vertex. Then

Σ ctΔ = 2πV - πF
3

= 2π(V - | F + F) = 2ττ(F - E + F) = 2ττχ(M) .

Now suppose that dM Φ 0, and form the double 2M of M by identifying
two disjoint copies of M along dM via the identity map. Then 2M is a closed
manifold, so by the first part of the proof,

k{p) = 2πχ(2M) = 2π[2χ(M) - χ(3M)] = 4ττχ(M) .

On the other hand, by the remarks at the close of the last section,

Σ k(p) = 2 Σ k(p) + Σ 2e(q)
qζ.dM

Σ

Hence

qζ.3M

The object of this paper is to prove the
Converse to the Gauss-Bonnet theorem. Let M be a connected compact

PL two-manifold, pl9 , pr points of M, and q19 , qs points of dM. Let
k19 , kr and e19 -es be real numbers such that

(1) ki < 2π for all i,
(2) ej < π for all /,
(3) ΣUki+Σs

J=,e3 = 2π1{M).
Then there exists a PL Riemannian metric on M which has curvatures kt at
the points pt and exterior angles e$ at the points q3 and is flat elsewhere.

The proof, which occupies the rest of this paper, will consist in the construc-
tion of a PL Riemannian manifold Mf homeomorphic to M, with interior
points p'19 - - -,Pr and boundary points qi, , q'8 such that

(a) for each boundary component B of M with points qt, , qu in cyclic
order around B, there will be a corresponding boundary component B/ of M'
with points q[, , q'u in cyclic order around B',



CONVERSE TO THE GAUSS-BONNET THEOREM 607

(b) in the orient able case, the cyclic orderings around different boundary
components are required to induce the same orientation of the manifold,

(c) the curvature of M' at p't is ki9 and the exterior angle of M' at q'j is ej9

(d) M! is flat elsewhere.
By the homogeneity of manifolds, there will exist a homeomorphism of M

onto M' taking each pi to /?• and each qό to q'j. The Riemannian metric on M
obtained via pullback will then satisfy the required conditions.

5. Organization of the proof

The proof is subdivided into four parts. § 6 deals with the 2-disc. Using this
we treat the two-sphere with holes in § 7 by induction on the number of holes.
From this, the case of compact surfaces is derived for the orientable case in § 8
and for the nonorientable case in § 9.

6. The disc

Let real numbers k19 , kr, e19 , es be given such that each ki < 2τr, each
eά < π, satisfying

The problem is to produce a PL Riemannian 2-disc with curvatures k19 , kr

at some r interior points and exterior angles e19 , es at some s boundary
points in that cyclic order, and being flat elsewhere. We first consider two special
cases, and then complete the proof by an induction argument.

Case I: r = 0, i.e., the disc is to have flat interior. Suppose each eό > 0.
Let θn = Σ%i eJ> 0 < n < s. In the plane R2, construct the lines tangent to
the unit circle with inclinations θn, 0 < n < s (θs = 2π, so there are s distinct
lines). They determine a convex disc D, circumscribed about the unit circle,
with exterior angles e19 , es.

The proof now proceeds by induction on s. We may assume that some
βj < 0, else the previous argument suffices. Furthermore, since ΣSj=ι ej — ^π9

not all e/s are negative; so assume without loss of generality (cyclically per-
muting if necessary) that es < 0, es_λ > 0. Write es_λ = δλ + δ2 such that δ19

δ2 > 0 and es_2 + δλ < π. Let e] = ej9 1 < / < s — 3, e's_2 = es_2 + δ19 e's_λ =

es + δ2 (this is <π since es < 0 and d2 < es_γ <π). ΣT=i e'j = 2π> s o b y i n d u c "
tion there is a disc D' with exterior angles e'j at points q'j, 1 < / < s — 1. Let
ABC be a triangle with ^A = δ19 ^B = δ29 <ίC = π — es_19 and the length
of side AB equal to the length of the flat boundary arc from q's_2 to q's_x. Iden-
tifying these two edges (Fig. 2) gives the desired disc D. This completes Case
I.
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Fig. 2

Case II: r>0,et>0 for all i. Suppose first, by renumbering if necessary,
that 0 < ex < e2 < < es < TΓ. We construct a disc with these exterior angles
(perhaps in the wrong order) and then give an easy construction for rectify-
ing the order. Let ε0 = |τr, εh = Σ o " 1 ( - l ) W - t for 1 < h < s - 1, 2εs =
Σ Γ 1 (— !)*£*-* + r̂? εs+i = 1 ^ for 1 < / < r. This definition is motivated as
follows: ε, = e19 £ l + ε2 = e29 and in general ε^ ! + ε3 = e3 for 2 < j < s.
Finally, εs_x + 2εs - TΓ = es. Therefore

s+r

o
+ Σ

2
kt =

One checks that the ordering on the e/s insures that 0 <εj <π for / < j and
^π < εs < TΓ.

By Case I, there is a disc D' having points q0, , qs+r on its boundary such
that e(qj) = ε̂  , in that cyclic order, and being flat elsewhere (Fig. 3a). Take
two copies of Df and identify along the arc from qs to qs+r to q0 (Fig. 3b).
The resulting disc D" has interior curvatures k19 , kr at points correspond-
ing to <?s+1, , qs+r and is flat elsewhere in the interior. Ώ" has exterior angles
ε1? , εs_1? 2εs — 7r^s_1? , εL at points pl9 , ps, p's_γ, , ̂  on the bound-
ary in that cyclic order. Attach s — 1 triangles to D", as in Fig. 4, in the fol-
lowing way: Each triangle Ύi has angles ei9 e ί + 1, and TΓ - e ί + 1 at vertices Au

Bu Ct for 0 < i < j — 1 the last triangle Ts_λ has angles εs_1? 2εs — π and
TΓ — es. This is possible by the definition of e4. For ί odd identify the edge AiBi

with p ^ ί + 1 by adjusting the scale of Tt suitably; for i even identify Aβi with
PiP'ί+i' The resulting disc D"r has exterior angles e l 5 , es in some order. Note
that whenever some εd = 0, / < s or when εs = JTΓ, the corresponding triangles
are degenerate. This offers no difficulty in the argument; in effect, no triangle
is added at that stage, but the argument is still valid.
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2εs-τr

Fig. 4

To complete the construction, we observe that any two adjacent exterior
angles may be permuted by the method displayed in Fig. 5 repeated applica-
tion of this construction produces a disc D from D"' which now has the correct

Fig. 5



610 HERMAN GLUCK, KENNETH KRIGELMAN & DAVID SINGER

curvatures and exterior angles, and these latter in the correct cyclic order
around the boundary. This completes Case II.

We now consider the general case. Let k19 , kt, , kr be the desired
curvatures, and e19 , es the exterior angles. Assume that kt > 0 iff / < t.
The proof proceeds by induction on t.

Let t = 0. This case is proved by induction on s.

Since Σί=i K < 0, Σ}=i ej > 2 ^ , so s > 3, and if s = 3 then all e3 are
positive, which is done by Case II. Assume the result for s — 1. If all βj > 0,
Case II applies. Otherwise there is some es < 0 such that ej+ί > 0. Now the
construction from Case I (Fig. 2) which was used for r = 0 applies verbatim.

Suppose now that the result is known for t — 1. (The following argument
was discovered by David Stone, to whom we are grateful.) Suppose a disc is
to be constructed with curvatures k19 - - -, kt, - - -, kr and exterior angles e19 ,
es. By induction there is a disc Df with interior curvatures k2, , kt, , kr

and exterior angles e15 , es, \kx, \kx, in that order. By Case I there exists a
disc D" with curvature kλ and exterior angles π — \kλ, π — \kλ. Adjusting the
scale of D" and amalagmating them as illustrated in Fig. 6 yields the desired
disc D = D' U £>".

D=D'UD"
Fig. 6

This completes the proof of the converse to the Gauss-Bonnet theorem for

the disc.

7. The 2-sphere with holes

The argument here proceeds by induction on H, the number of holes.
If H = 0, then M is the sphere. In this case we are given real numbers k19

- - -,kr, each less than 2τr, with Σ ί ^ i = 4ττ. Construct a PL Riemannian
disc D having exterior angles \kl9 , \kr around the boundary and being
flat elsewhere. The existence of D was proved in the preceding section. Then
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the double of D along its boundary is the desired 2-sphere.

The case where H = 1, that is, where M is the disc, was dealt with in the
preceding section. Henceforth we assume H > 2 and proceed by induction on
H. Using the inductive assumption, we will construct a PL Riemannian mani-
fold Mf which is a sphere with H — 1 holes. M will then be constructed from
M! by identifying two edges on one of the boundary components of Mf.

Let e19 , et be the desired exterior angles on the first boundary component
of M, and et+19 , et+n those on the second component. Let ej9 t + n + 1 <
/ < s be the remaining angles, and k19 - » -,kr the desired curvatures. There
are two cases.

Case I : Among the boundary curves of M there are at least two on which
a strictly negative exterior angle is to appear. Assume without loss of generality
that ex < 0, and et+1 < 0. Construct M' (with H — 1 holes) having the follow-
ing data: curvatures k19 , kr exterior angles eλ + π, e29 , et9 et+1 + π9

Ct+2> ' ' ' > et+n a t points qλ, , qt + n on one boundary component and exterior
angles ej9 j > t + n distributed appropriately on the remaining boundary com-
ponents. It is clear that these data are admissible for a sphere with H — 1
holes (note that e1 + π < π and et+1 + π < π). Choose a point x on the
boundary arc from qx to qt+n and a point y between qt and qt+19 such that the
subarcs from qx to * and y to <?ί+1 have the same length (Fig. 7a). Identify these
subarcs as in Fig. 7b to obtain M.

Fig. 7a Fig. 7b

//: All exterior angles on one boundary component are positive
without loss of generality assume βj > 0 for 1 < / < t. If Case I does not ap-
ply, this must occur. It is possible that t = 0. Proceed as in Case I except that
one boundary component has exterior angles \π,\π9el9 , et9 \π, \π, et+ί,
• , e t + n at vertices A,B,q19- ,qt,C,D,qt+1, , q t + n . If arc AB has the
same length as arc CB, identify them as in Fig. 8 to produce the desired mani-
fold M. Otherwise, assume without loss of generality that arc CD is shorter
than arc AB. Our objective is to modify Mf in such a way that the lengths of
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Fig. 8

these two sides are equalized. This construction is illustrated in Fig. 9, which
is idealized in the usual way.

Let x = length of CD < length of AB = y. For any small ε > 0, construct
a triangle T and quadrilaterals βi , 1 < / < t, as follows: T has angles ε,
i(ττ + ^i) and (̂TΓ — eλ) — ε at vertices E09 Fo and Go, and the length of EQF0

equals that of Bqx. For i < t, Qi has angles \(jz + e^), ̂ (π + ei+1), j(π — eί+1)
—ε, and \{π — et) + ε cyclically at vertices Ei9 Fi9 Gi and Ht. The last
quatrilateral Qt has angles |(ττ + et), \π, \π — ε, and |(ττ — et) + ε at Et,Ft,
Gt,Ht. The lengths of the sides are adjusted so that EiFi matches <M*+1 and
FiGi matches Ei+ίHt+1. Consecutively adding the discs T, Q19 , Qt as in Fig.
9 is now possible. This process reproduces the exterior angles e19 , et in
new locations, absorbs their old locations as flat interior points, and increases
the length of side CD. As long as

ε <i(π — max {e19 , et})

the construction can be carried out. As ε approaches this limiting value, the
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side CD lengthens indefinitely. Hence for some specific ε, it will be lengthened
to precisely y.

Now we may identify side AB and the new side CD to produce the required
sphere with H holes just as in Fig. 8. Note that the end points of these two
sides become flat boundary points. Note also that the case t = 0 is handled by
this argument.

Since for any proposed data either Case I or Case II must apply, this com-
pletes the inductive proof, and the converse to the Gauss-Bonnet theorem is
now established for spheres with holes.

8. Compact orientable two-manifolds

Let M be a compact orientable two-manifold with H > 0 boundary com-
ponents. The genus G of M is defined to be the genus of the closed manifold
M constructed by adding a disc to fill in each boundary component. Since
χ(M') = 2 - 2G and also χ(M') = χ(M) + H, we have χ(M) = 2-2G-H.
The case G = 0 is just that of a sphere with H holes, which we have consid-
ered in § 7. Thus we may assume G > 0 in the present section.

Suppose first that H = 0, that is, M is a closed orientable manifold. The
theorem in this case (as well as in the nonorientable case) was proved by
Krigelman in [15]. The argument to follow is different.

Suppose that we must produce a closed orientable two-manifold of genus G
with preassigned curvatures &1? , &r. Thus Σ kt = 2ττ(2 — 2G). Construct
a sphere S with G + 1 holes and exterior angles \kx, , \kr around one
boundary component and being flat elsewhere. This is possible since 2πχ(S) =
2^(2 - (G + 1)) = 2τr(l - G) = Σ \K Then M = 25, the double of 5, is
the desired manifold.

Now we may assume H > 0 and G > 0. Let the preassigned data be curva-
tures k19 - , kr and exterior angles e19 , et es. (Semicolons here
indicate the distribution of exterior angles amongst the several boundary com-
ponents.) Then the following data are admissible for a manifold of genus G — 1
with H holes: curvatures k19 , kr and exterior angles

\π, , \π (eight angles), e19 , et , es .

Indeed,

Σ ki + Σ ej + 4π = 2ττ(2 - 2G - H) + 4π = 2ττ(2 - 2(G - 1) - H) .

By induction on G (the case G = 0 having been handled previously) we may
assume the existence of a manifold Mr realizing these data, schematically dis-
played in Fig. 10.

Suppose the lengths a = a!, c = & and b = d. Then we may identify a with
a! and c with c' to produce an orientable manifold of genus G — 1 with H + 2
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Fig. 10

boundary components. The two flat boundary components b and d, being equal
in length, may be identified to produce a manifold of genus G with H bound-
ary components, having the originally prescribed curvatures and exterior angles.
The construction which follows modifies the lengths a, , d so as to produce
the desired equalities, after which the above identifications are made to finish
the argument.

If we ignore for the moment the desired equality of b and d we can apply
the construction introduced in [15] to equalize a with a! and c with d'. For
instance, if a! < a we may attach along the edge b a right triangle with legs of

Ί

J
a—a a

Fig. 11

length b and a — a! (Fig. 11), and similarly for c and &'. After this construc-
tion, if the new lengths b and d are equal we may perform the appropriate
identifications as described above. If they are unequal, say b < d, we modify
the previous construction as follows (Fig. 12): First add along edge af ( < a)

a rectangle whose dimensions are a! and Vd2 — b2 + b2 — b. Then add a right

triangle with sides a — a! and Vd2 — b2 + b2 and hypotenuse d. (Recall that
b2 - b2 = (a - ay.)
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Finally we identify the two sides of length a with each other, the two sides

of length c with each other, and then the two resulting boundary curves of

length d with each other, producing the desired manifold.

9. Compact nonorientable two-manifolds

Let M be a compact nonorientable two-manifold with H > 0 boundary com-

ponents. Filling each of these in with a disc, we obtain a closed nonorientable

manifold M' of genus G > 1. We call G the genus of M as well. Since χ(M')

= 2 — G and χ(Mf) = χ(M) + H, we have

χ(M) = 2 - G - H .

Here M is a sphere with G cross-caps attached (i.e., the connected sum of G

projective planes) and with H holes.

Suppose we must produce such a manifold with preassigned curvatures kl9

• , kr and exterior angles e19 , es. Since a sphere with H + G

holes has the same Euler characteristic, there exists by § 7 such a manifold

with curvatures k19 - —,kr, exterior angles e19 , es on the first H boundary

components, and G flat boundary components. Since a flat Mobius band ob-

viously exists with any boundary length, we may cap off the G flat boundary

components with appropriate Mobius bands (cross-caps) and produce a non-

orientable manifold of genus G with H boundary holes, having the required

curvatures and exterior angles.

This completes the proof of the converse to the Gauss-Bonnet theorem.
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