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PROPER G-SPACES

WAYNE E. DYDO

Introduction

By a G-space we will mean a completely regular topological space X on
which a locally compact topological group G acts continuously on the left. If
G is a Lie group, X is a difϊerentiable (C°°) manifold, and the action is differ-
entiable, then we call X a differentiable G-space. We will assume that the reader
is familiar with the concepts of Cartan G-space, proper G-space, and slice de-
fined by Palais in [5].

Among the many results of [5] is the fact that if X is a separable metrizable
proper G-space with G a Lie group, then each orbit of X is closed, each
isotropy group is compact, and there is a metric defined on X with respect to
which G acts on I as a group of isometries.

In § 1 we prove the following converse of this result.
Theorem A. Let X be a connected locally compact metric G-space with

G a second countable Lie group acting effectively on X as a group of iso-
metries. If there is a p in X with Gp closed and Gp compact, then X is a proper
G-space.

For a G-space X on which G is a Lie group acting freely, the triple
X(X/G, G) is a principal fibre bundle if and only if X is a proper G-space.
This result appears in § 4 of [5].

The differentiate version of this result is also true. Specifically, we prove
the following theorem in § 2.

Theorem B, Let X be a differentiate G-space with G acting freely on X
and dim G > 0. Then X is a proper G-space if and only if X(X/G, G) is a
differentiate principal fibre bundle.

In § 3 we show that the parallelizability theorem of L. Markus (see [4]) is a
special case of Theorem B.

0. Notation

Let X be a G-space. For p in X and g in G, let gp denote the image of the
pair (g, p) under the action of G. Let Gp = {gp \ g <= G}, Gp = {g e G | gp = p}.
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Call Gp the orbit of X through p and Gp the isotropy group of G at p. The
orbit space provided with the quotient topology is denoted by X/G.

1. Proof of Theorem A

In this section X will denote a connected locally compact metric space, G a
second countable Lie group, and I(X) the isometry group of X provided with
the compact-open topology.

The proof of the following lemma may be found on pp. 47-49 of [3].
Lemma 1. Let {<pn} be a sequence in I(X), and p a point in X. Suppose

{ψn(P)} converges in X. Then there is a subsequence of {ψn} converging in I(X).
Lemma 2. Assume that G acts effectively on X as a group of isometries,

so that we identify G with a subgroup of I(X). If there is a p in X with Gp
closed in X and Gp closed in I(X), then G is closed in I(X) and all orbits of
X are closed. Moreover X/G is metrizable.

Proof. Give I(X)/GP (left coset space) the quotient topology. Then Gv

closed in I(X) implies that I(X)/GP is Hausdorfϊ. Regard G/Gp as a subset of
I(X)/GP. The manifold topology of G contains the subspace topology of G
inherited from I(X). It follows that the manifold topology of G/Gp contains
the subspace topology of G/Gp inherited from I(X)/GP.

Gp closed implies that sp: G/Gp —> Gp denned by sp(gGp) = pg is a
homeomorphism.

Let {gn} be a sequence in G, and φ in I(X) with gn —> φ in I(X). Then gnp
-• φ(p) in X. Let φ(p) = gp for some g in G. Then s~\gnp) = gnGp -> gGp

= SpKgp) in G/Gp with the subspace topology. Therefore gnGp —> gGp in
I(X)/GP. But gn-^φ implies gnGp->φGp in I(X)/GP. Therefore I(X)/GP

Hausdorff implies that gGp = ψGp. In particular φ is in G. Thus G is closed
in I(X). This immediately implies that all the orbits are closed.

Let d be the metric of X, and π: X —> X\ G the projection. For p and q in
X set d(π(p),π(q)) = d(Gp,Gq). One easily verifies that d is a metric for
X/G, which induces the quotient topology, q.e.d.

Assume that X is a G-space. For p in X set J(p) = {q e X \ 3 sequences {pn}
and {gn} in X and G respectively such that pn —> p, gnpn —> g, and {gn} has no
convergent subsequence in G}. Call J(p) the prolongational limit set of p. We
use J{p) to characterize Cartan G-spaces.

Lemma 3. X is a Cartan G-space if and only if p $ J(p) for all p in X.
Proof. Assume that I is a Cartan G-space. Let p e J(p) with pn —> p,

8nPn —* P> a n d {Sn} having no convergent subsequence in G. Let U be an open
neighborhood of p with (C/, V) = {g e G\gU Π U Φ φ] relatively compact.
For large n, pn and gnpn are in £/ so that gn is in (£/, U) and hence {gw} con-
tains a convergent subsequence, a contradiction.

Conversely assume that p $ /(/?) for all /? in X. For p in M suppose Gp is
not compact. Then there is a sequence {gn} in Gp having no convergent sub-



PROPER G-SPACES 567

sequence in Gp and hence in G since Gp is closed in G. But this implies that
p e J(p) by letting pn = p, a contradiction. Thus for all p in X, Gp is compact.

If X is not a Cartan G-space, then there are a p in M and a sequence {£/„}
of open neighborhoods of p with Un+ι a Un, (Un, Un) not relatively compact,
and Πn=i Un = {P} Choose an open neighborhood C/ of e in G (where e is the
identity) so that Gp c £/ and £/ is relatively compact. Then there is a gn in
(C/n, Un) — U. gn in (Un, Un) implies that there is a pn in £/TO such that gnpn is
in Un. Πn=i ^ = {P} implies that p n -> p and gnpn -> p. Since p $ J(p), {gn}
has a convergent subsequence, say fej with gnk^>g. Then gnkpnk-^p, pnic-+P,
gnk —* g imply that p = gp. Thus g is in Gp, and hence gWA. is in U for large wΛ,
a contradiction.

Proo/ 0/ Theorem A. Identify G with a subgroup of I(X). Let Γ m be the
manifold topology of G, and Ts the subspace topology inherited from I(X).
Then the identity c:( G, Γm) —> (G, Ts) is a continuous homomorphism. Thus
by [2, Corollary 3.3, p. I l l ] c is also open, so that Ts = Γ m . Hence G p com-
pact implies that Gp is closed in /(^Q. By Lemma 2, G is closed in l(X) and
Z / G is Hausdorίf.

Suppose that for q in X, q e /(<?) with <7W -> <?, gw<grn -* ^ and {gn} having no
convergent subsequence in G. Let d be the metric of X. Then d(g, gnq) <
d(q, gnQn) + d(gnqn, gnq) = d(^r, ̂ n ^ n ) + d(qn, q) -> 0. Thus gw^ -^ r̂. By
Lemma 1, {gn} contains a subsequence convergent in I(X) and hence in G
since G is closed and Ts = Tm. This contradicts the assumption on {gn}. Thus
q <£ /(<?) for all qmX.

Hence Theorem A follows from Lemma 3 and Theorem 1.2.9 of [5].

2. Proof of Theorem B

Proof. Assume that X is a proper G-space. Since G acts freely on X, there
exist complete vector fields Vt on X, i = 1, , m = dim G, such that for all
p in M, {Vi(p)} is a basis for the tangent space Tp{Gp). Therefore given p in
M we can find a coordinate chart (U,y = y19 ,)>J), ft = dimX, about p
with y(p) = 0 and Vt(p) = 3/33>i(p), i = 1, , m. Let S* = {$ e C/|;y<($) =
0, / = 1, , m}. Then S1* is a submanifold of X, p e S*, and by making £/
smaller if necessary we may assume that for all q in 5*, Tq(X) — Tq(Gq) 0
Tq(S*). By § 2.2 and Proposition 2.1.7 of [5] there exists an open set Sp in 5*
such that Sp is a slice at p. It is easily verified that the map ap: G X Sp-^GSP

defined by ap(g, q) = gq is a diffeomorphism.
Let 7r: Z -> Z / G be the projection. Then 7r is open. For each p in X, choose

Sp and αrp as above. It is readily verified that π\Sp maps Sp homeomorphically
onto the open set π(Sp), and if we set ψp = π\Sp~\ then for p and q in X with
rcCSp) Π π(Sq) φ φ, ψqoψ-1: ψp(π(Sp) Π τr(^)) -^ ψ β WS p ) Π π(Sq)) is a
diffeomorphism. Since {π(Sp)} covers X/G, by choosing as coordinate charts
parirs of the form (U,ψ) where (V, ψ) is a coordinate chart in some Sp,
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U = π(V) and φ = ψ o ψp we have a C°° atlas on X/G such that each ψp is a
difϊeomorphism. By Theorem 1.2.9 of [5] X/G is Hausdorff. Thus X/G is a
differentiable manifold. It is easily verified that π is C°° and π~\π(Sp)) « 7r(5p)
X G by gg -> (π(g), g) where g e G and (7 e 5 P . Hence X(X/G, G) is a different-
iable principal fibre bundle.

Conversely, if X(X/G,G) is a differentiable principal fibre bundle with G
acting on X on the left, then X/G is Hausdorff and if p is in X, choose U to
be an open neighborhood of π(p) in X/G with /3: TΓ'^E/) « U X G. Let /3(p) =
(π(p), g) and Sp = β~\U X {#}). It is readily verified that Sp is a slice at /?, and
from Theorems 1.2.9 and 2.3.3 of [5] it follows that X is a proper G-space.

Corollary. Let X be a paracompact differentiable manifold, and Rm a
Euclidean m-space. Then X is a differentiable proper Rm-space if and only if
X is dίffeomorphic to a product N X Rm.

Proof. If X is a differentiable proper i?m-space, then from Proposition 1.1.4
of [5] Rm acts freely on X. By Theorem B, X(X/Rm,Rm) is a differentiable
principal fibre bundle. By Theorem 4.3.1 of [5] Rm acts on I as a group of
isometries with respect to a Riemannian metric. From Lemma 2 it follows that
X/Rm is paracompact. Thus the corollary follows from the following theorem
whose proof may be found on pp. 58-59 of [3].

Theorem. // X(X/Rm,Rm) is a differentiable principal fibre bundle with
X/Rm paracompact, then X(X/Rm,Rm) admits a cross section. If s is a cross
section, thenf: X/Rm X Rm—>X defined by f(y, t) = ts(y) is a diffeomorphism.

The converse is obvious.
Corollary. Let X be a Riemannian manifold, and V a complete Killing

vector field on X. Assume that the action of R (— R1) on X induced by the one-
parameter group of V is free, and that one integral curve of V is closed. Then
X is diffeomorphic to a product N X R by a diffeomorphism f with f%(V) =
d/dx where {x} is the usual coordinate system on R.

Proof. From Theorem A it follows that X is a proper differentiable i£-sρace
where the action is given by the one-parameter group of V. The above corol-
lary yields the existence of an /: X « X/R x R where f~ι is of from (y, t) —• ts(y)
for s a cross section of X(X/R,R). An easy computation shows that f*ι(d/dx)
= V.

3. Parallelizability

In this section X will be a connected paracompact differentiable manifold,
and V a complete vector field on X. Via the one-parameter group of V, X is
a differentiable .R-space denoted by X(Vy

In [4] Markus defined the concepts of a completely unstable complete vector
field and a complete vector field without separatricies. From Theorem 2 of [4]
and Theorem 1.2.9 of [5] it follows that V is completely unstable if and only
if X(V) is a Cartan jR-space, and that V is completely unstable without separa-
tricies if and only if X{V) is a proper i?-space (see [1] for details). Thus the
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first corollary to Theorem B and the proof of the second corollary to Theorem
B give the parallelizability theorem of Markus (Theorem 4 of [4]).

Theorem. Assume that V is completely unstable and without separatricies.
Then XjR is a dίβerentiable manifold, and there is an f: X « X/R x R such
that f%(V) = d/dx where {x} is the usual coordinate system on R.

Remark. Let g be a Riemannian metric on X, and Lvg the Lie derivative
of g with respect to V. Assume that Lvg is again a Riemannian metric and
that V never vanishes. Then XiV) is a proper i^-space. If X vanishes at some
point p, then p is unique, X — {p}{V) is a proper i?-sρace, and X is difϊeomor-
phic to a Euclidean space. For details see [1].
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