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THE INTEGRABILITY PROBLEM FOR
PSEUDOGROUP STRUCTURES

ALAN S. POLLACK

CHAPTER I. GENERALITIES

1. Pseudogroup structures and integrability

The first section provides a brief introduction to the general theory of
pseudogroup structures leading to a discussion of the integrability problem.
Throughout the paper, manifolds and maps are assumed to be C°°.

A local diffeomorphism of manifolds M and M' is a difϊeomorphism defined
on open subsets. When no confusion threatens we shall write /: M —• M' even
though the domain of / may be a proper subset of M.

A pseudogroup Γ o n a manifold M is a collection of local diffeomorphisms
of M satisfying five axioms:

1. Composition. If / and g belong to Γ, then f-g belongs to Γ whenever
it is defined, i.e., whenever the domain of / equals the range of g.

2. Inversion. UfeΓ, then f'1 € Γ.
3. Identity. The identity map of M belongs to Γ.
4. Restriction. If / e Γ, and U is any open subset of the domain of /,

then the restriction f\U € Γ.
5. Local definition. A local diffeomorphism / of M belongs to Γ, if each

point in its domain admits a neighborhood U for which the restriction f\ U e Γ.
Γ is transitive if, given any two points x and y in M, there exists an / e Γ

such that f(x) = y.
Pseudogroups properly belonging to the smooth category not only consist of

smooth mappings, but their differential behavior varies smoothly from point
to point. To formalize this, fix any point 0 in M to serve as origin to a
transitive pseudogroup Γ the choice of 0 is indifferent. For each positive
integer k define Bk{M) to be the collection of &-jets with source 0 of all maps
in Γ defined at 0. Assigning to each jet its target provides a projection of
Bk(M) onto M. Denote by Gk(M), or just Gk, the fiber over 0 in Bk(M), the
collection of A:-jets of elements in Γ which fix the origin. Gk is a group under
jet composition, acting on Bk(M) to the right by composition. Moreover, the
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orbits of Gk are precisely the fibers of the projection Bk(M) —• M. Thus at
least in a formal sense Bk(M) is a principal Gk bundle over M, called the k-th
order structure bundle of Γ. Bk(M) is formally a subbundle of the smooth
principal bundle Dk(M, M) of all / -jets at 0 of local diffeomorphisms of M.
We require that the differential behavior of Γ vary smoothly by requiring
Bk(M) to be a smooth subbundle of Dk(M,M), and its structure group Gk to
be a Lie subgroup of the structure group of Dk(M, M).

We are interested in pseudogroups which are defined by a finite number of
smooth differential conditions. Therefore we declare that a pseudogroup Γ on
M is a smooth pseudogroup if its structure bundles are smooth as just ex-
plained, and if it satisfies the following differential form of the "local defini-
tion" axiom:

6. Differential definition. There exists an integer k such that a local
diffeomorphism / of M belongs to Γ if at each point in its domain the &-jet of
/ equals the &-jet of a member of Γ. The smallest such k is called the order
of Γ.

Pseudogroups ΓM and ΓN on manifolds M and N are equivalent if there exists
a diffeomorphism g: M -+N such that g-f g'1 belongs to ΓN whenever /
belongs to ΓM, and g is called an equivalence of ΓM and ΓN. If u is an open
subset of M, then the collection of all maps in ΓM with domain and range in u
constitutes a pseudogroup Γu on u, called the restriction of ΓM to u. A local
diffeomorphism of M onto N is called a /oca/ equivalence of 7 \ and / \ if it
is an equivalence of the restriction pseudogroups on its domain and range. Two
transitive pseudogroups are locally equivalent if there exists a local equivalence
between them.

A Γ structure or Γ atlas on a manifold M' is an atlas of local diffeomor-
phisms of M into M' whose transition functions belong to Γ. Specifically it is
a collection {/J of local diffeomorphisms of M into M'', which satisfy (a)
U range (/*) = M' and (b) fϊ1 >fj 6 Γ for all i and /. We may assume the atlas to
be complete in the sense that any local diffeomorphism of M into M consistent
with condition (b) actually belongs to the atlas.

M is referred to as the model space for the Γ structure on M'. Note that Γ
itself defines a Γ structure on M, termed the model Γ structure.

Let M" be another manifold possessing a Γ structure, and g: M —> M" a
local diffeomorphism. Then g preserves the Γ structures if g-fi belongs to the
Γ atlas on M" whenever ft belongs to the Γ atlas on M/ (and domain (g) D
range (/*)). Every map belonging to the Γ atlas on Mf is structure-preserving
with respect to the model Γ structure on M.

For each k define the k-th order structure bundle Bk(M') of the Γ structure
on M' to be the set of &-jets at 0 of all charts in the atlas which are defined
at 0. The target mapping makes Bk{M') a principal Gk bundle over Λf, Gk

acting to the right by composition. If Dk(M, M') denotes the bundle over M
of all &-jets at 0 of local diffeomorphisms of M into M', then Bk(M') is a
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reduction of Dk(M, Mf) to the structure group Gk.

Any local diffeomorphism / of M into M' extends to a local diίfeomorphism
jk of £>fe(̂ f? ^f) i n t o Dk(M, MO called its k-jeί extension, as follows: if p €
Dk(M,M) has target m in the domain of /, then fk(p) = ]kJJ)'P fk commutes
with the right action of the structure group, so it is a morphism of bundles.
We shall say that a local diίfeomorphism / of M' into M", two manifolds with
Γ structures, is k-th order structure-preserving if its Λ -jet extension fk takes
Bk(M') into Bk(M"). If /: M -> M' belongs to the almost structure on Aί', then
it is k-th order structure-preserving for all k, with respect to the model struc-
ture on M. Conversely, Axiom 6 implies that if / is k-th order structure-
preserving for some k at least as large as the order of Γ, then / belongs to the
Γ structure on M'.

Suppose now that we are not given a Γ structure on M', but only a prin-
cipal Gk subbundle Bk(M') of Dk(M, M) for some k at least as large as the
order of Γ. We think of Bk(Mf) as a k-th order specification of a Γ structure
on M', and refer to it as a k-th order almost Γ structure on M'. (If k = 1 it is
usually called a G-structure on M', where G = G1 is the first order structure
group of Γ.) We are concerned with the following general question: Is a given
k-th order almost Γ structure actually the k-th order structure bundle of a
(necessarily unique) Γ structure on M? As k is greater than or equal to the
order of Γ, this is equivalent to asking whether every jet in Bk(M') may be
represented by a local diffeomorphism of M onto Mf which is k-th order
structure-preserving. If the answer is affirmative, the almost structure is said
to be integrable.

This ίntegrability problem is actually an infinite family of problems includ-
ing many of deep and classical significance in differential geometry. Three of
the best known examples are:

A. Take Γ to be the pseudogroup of local isometries of Euclidean space.
A first order Γ structure on M' determines a Riemannian metric on M', and
conversely every Riemannian metric determines a corresponding first order
Γ structure. An almost structure is integrable if and only if M' is locally iso-
metric to Euclidean space.

B. Let Γ be the pseudogroup of holomorphic local diffeomorphisms of
Cn. Specifying a first order almost Γ structure on M' is equivalent to prescrib-
ing smoothly a complex vector space structure on the tangent space of M' at
each point, an "almost complex structure" on M' in the standard sense. The
almost Γ structure is integrable if and only if M is a complex manifold (with
the prescribed complex tangent bundle).

C. If Γ is the pseudogroup of all local diffeomorphisms of Rn respecting
the leaves of the linear fibration Rn -> Rm (m < n), then first order almost Γ
structures on M' correspond bijectively with smooth (n — m)-dimensional
linear subbundles of the tangent bundle of M', also called differential distribu-

tions of rank n — m on M'. The almost Γ structure is integrable if and only
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if the corresponding distribution is integrable in the sense of Frobenius, mean-
ing that the distribution consists of the tangents to the leaves of a foliation of
M.

Criteria for the integrability of a A -th order almost Γ structure are of three
classes. First is an obvious geometric consistency requirement. If Bk(M') is
integrable, then it will be only one of an infinite sequence of structure bundles
on M'. For / < k the /-th order structure bundle is entirely determined by
Bk(M') Bι(Mf) must be the image of Bk(M) under the natural projection
Dk(M,M') -> Dι(M,Mf). Integrability means that each jet p in Bk(M') is re-
presented by a local difϊeomorphism / of M into M which is Z-th order struc-
ture-preserving for all /: f : Bι(M) —> Bι(M'). Of course the behavior of f is
not determined by the single jet p, but some of it is. If / < k, then p does
specify the k — / jet of f on the fiber of Bι(M) above the source 0 of p. So
we may impose part of the condition that p be representable by a structure-
preserving map, a condition extrinsic to p, by the intrinsic requirement that
the image of Bι(M) in Dι(M, Mf) under the /-jet extension of (one and hence)
any representative of p contact Bι(M') to order k — I along the fiber above
the target of p. If p possesses this property for all / < k, it will be called a
structure-preserving k-jet. For Bk(M/) to be integrable it is then necessary that
it consist purely of structure-preserving jets. This is the consistency limitation
mentioned earlier, which we now assume to pertain whenever we apply the
term "almost structure".

Rather than asking immediately for a structure-preserving local diffeomor-
phism representing a jet p in Bk(M') we may first attempt to find a structure
preserving (k + l)-jet representing p. In general there is an obstruction, a
canonically defined two-form on Bk(M') this obstruction vanishes at p if and
only if p admits a structure-preserving (k + l)-jet extension [1]. Thus the λ -th
order almost structure Bk(M') may be extended to a (unique) (k + l)-st order
almost structure Bk+1(M') precisely when the obstruction form vanishes identic-
ally. The same considerations now apply to Bk+1(M') it is induced by an al-
most structure of order k + 2 if and only if its obstruction form vanishes. We
shall say that a given almost structure Bk(M') is formally integrable if it may
be extended to an entire sequence of almost structure [Bl(M')}, which is uni-
quely determined by Bk(M') as k is assumed at least as large as the order of
Γ. So the second of the three aforementioned criteria for the integrability of
an almost structure, its formal integrability, reduces to the vanishing of a
sequence of obstruction forms. In fact, after a certain point depending only
on the nature of the pseudogroup Γ, all of these obstructions automatically
disappear. Therefore formal integrability depends only on a finite number of
conditions.

In each of the three examples mentioned above, all obstructions save one
are a priori null. In the Riemannian case, the substantial obstruction (the ob-
struction on B\M') to finding three-jets of isometries) is of second order and
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is really nothing but the Riemannian curvature tensor carried from M' up to
B2(M'). Formal integrability of almost complex structures and of distributions
(our other two examples) both depend on the first order obstruction. The
vanishing of this tensor is equivalent to the classical conditions of the New-
lander-Nirenberg and Frobenius theorems respectively.

Beginning with a k-th order almost Γ structure, we have filled in the entire
sequence of structure bundles of the Γ structure which we seek. The final step
in our quest is to determine whether a formally integrable almost Γ structure
is actually integrable; can a Γ atlas on Mf be fitted to the structure bundle
sequence? Formal integrability tells us what the infinite jets, the Taylor expan-
sions, of the elusive Γ structure must be. But are there true local diffeomor-
phisms of M into M' with acceptable infinite jets at all points? This is really
a question about the solvability of certain partial differential equations, equa-
tions whose nature is determined by the pseudogroup Γ and to which the
almost structure supplies inhomogeneous data. The formal integrability of the
almost structure translates into the formal solvability of the corresponding
equations; at every point, the equations are known to have solutions in terms
of infinite jets of diffeomorphisms, or of formal power series.

In our three examples, celebrated theorems guarantee that formal inte-
grability always implies C°° integrability. However, such is not always the case,
for formal solvability of partial differential equations does not always imply
the existence of smooth solutions. In [5] Guillemin and Sternberg exhibit a
formally integrable first order almost structure which is not integrable.

It is the purpose of this paper to show that all formally integrable almost Γ
structures are actually integrable whenever Γ is a fiat pseudogroup—essen-
tially any smooth pseudogroup on Rn which contains the translations. (Flat
pseudogroups are defined in Chapter II. All of the standard pseudogroups on
Euclidean space, including our three examples, are flat.) This integrability
theorem was proved for analytic almost structures in 1909 by Elie Cartan,
using the Cartan-Kahler theorem (which he created for this task) to solve the
differential equations. The proof is accessible in Chapter III of [12]. In the
C°° category the result has been obtained for various classes of flat pseudo-
groups; in particular the following solutions are important for us.

1. A pseudogroup is of finite type if Bk+λ(M) = Bk(M) under the natural
projection map for some sufficiently large k. For such pseudogroups Victor
Guillemin [1] proved the integrability theorem using geometric techniques.

2. Note that G1, as one-jets of maps fixing 0 e M, is represented on the
tangent space of M at 0. A pseudogroup for which this representation is irre-
ducible is called an irreducible preudogroup. Algebraic analysis, presented in
[12], shows that an irreducible flat pseudogroup is either of finite type or be-
longs to one of twelve classically studied species. As the integrability theorem
is valid for each of these classical pseudogroups, it is established for all irre-
ducible pseudogroups.
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The technique used in this paper was also developed by Victor Guillemin.
It consists of introducing a quotienting procedure locally into the category of
almost structures by which a given almost structure may be resolved into suc-
cessively simpler ones. Eventually one of these will be irreducible, and being
formally integrable it will be integrable. Then an inductive argument shows
how to extend a local diffeomorphism of one of these structures to a chart
preserving the next structure in series, leading finally back to the original
almost structure. The crucial constraints governing the process are linear par-
tial differential equations whose coefficients are constant because Γ contains
the translations. Such equations are vulnerable to a powerful local existence
theorem of Malgrange and Ehrenpreis, which together with the Frobenius and
Newlander-Nirenberg theorems constitutes our entire arsenal of partial differ-
ential equation weaponry. The essential panoply is completed by some alge-
braic results of Victor Guillemin.

2. Quotients of pseudogroups and almost structures

Suppose that M is a fiber bundle over N. A local diffeomorphism fM of M
is said to respect the fibration if there exists a local diffeomorphism fN on N,
called the quotient of fM, making the following square commute:

i, I
If the origin in N is taken to be the image of the origin in M, the quotient
concept induces a surjection from the bundle Dk(M, M) of all k jets at 0 of
fibration respecting local diffeomorphisms on M, onto Dk(N,N).

If ΓM is a transitive smooth pseudogroup of fibration respecting maps on
M, we would like to define a quotient pseudogruop Γ^on N to consist of the
quotients of elements of ΓM. However it is not clear that this even makes sense,
for the collection of quotient maps may not be closed under composition; two
quotient maps may be composable while the elements of ΓM inducing them
have nonoverlapping domains and ranges. Unable to easily construct the de-
sired object, we follow common mathematical procedure by formulating in-
stead a definition. A smooth pseudogroup ΓN on N will be called the quotient
pseudogroup of ΓM if for all k the projection Dk(M, M) —• Dk(N, N) maps
Bk(M) onto Bk(N). If it exists, ΓN is obviously unique and strictly minimal
among smooth pseudogroups on N which contain the quotients of all elements
of ΓM. As ΓM is transitive, ΓN must also be. ΓM will be said to be fibrable if
a smooth quotient pseudogroup exists, and will be referred to as an extension
of ΓN. (We remark that the order of ΓN may exceed the order of ΓM.)

In the analytic category, Kuranishi and Rodrigues [7] have shown that every
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fibration respecting pseudogroup is locally fibrable. Furthermore, using the
Cartan-Kahler theorem they proved that any element of ΓN close enough to
the identity in the Ck topology, for sufficiently large k, is locally a quotient of
a map in ΓM. We shall see that a fibration respecting flat pseudogroup is easily
fibered, and will actually prove that every element of the quotient pseudogroup
is locally the quotient of a map belonging to ΓM.

The collection Γo of all maps in ΓM which induce the identity on N, forms
a pseudogroup termed the kernel pseudogroup of the quotient ΓM—>ΓN. To
a large extent, the kernel pseudogroup holds the secret of the extension; this
vague statement will become quite clear through the remainder of the paper.
If Γo contains only the identity (plus its local restrictions), ΓM is called a pro-
longation of ΓN, and is essentially isomorphic to it.

Let K denote the fiber through 0 in M. The restrictions of all maps in ΓM

which carry the single fiber K into itself constitute a pseudogroup on K, although
it is not obvious that it is a smooth pseudogroup. There is no real difficulty with
the smoothness of its structure bundles, but Axiom 6 is not evident. Again we
introduce a definition. A smooth pseudogroup Γκ will be called the fiber pseudo-
group of ΓM if the restriction map of Dk(M, M)\K onto Dk(K, K) maps Bk(M)
onto Bk(K) for all k. (Of course we take the origin of M to be the origin of K as
well.) When it exists, Γκ is surely unique, and minimal among smooth pseudo-
groups containing the restrictions of maps in ΓM which preserve K. Again, for
flat pseudogroups there will be no difficulty establishing the existence of a
smooth fiber pseudogroup.

If ΓM is transitive and possesses a fiber pseudogroup Γκ, then it induces,
by restriction of its maps to K, a Γκ structure on every fiber of M —> N. We
shall say that a fibration respecting local diffeomorphism of M preserves fiber
structures if its restriction to any fiber, considered as a map into the image
fiber, preserves the Γκ structures. In particular, all elements of ΓM preserve
fiber structures. If ΓM is also fibrable, we shall call it a Γκ extension of its
quotient pseudogroup.

Γκ and ΓN tell us quite a bit about the transitive smooth pseudogroup ΓM:
it consists of certain local diίϊeomorphisms of M which preserve fiber struc-
tures and induce maps belonging to ΓN. But it is crucial to recognize that the
quotient and fiber pseudogroups do not completely specify ΓM to qualify for
membership, a map on M must not only behave properly along each fiber and
permute fibers in an acceptable manner, but its action on the fibers must vary
consistently with certain constraints which we have referred to as the "secret"
of the extension. Information about these constraints is provided by the kernel
pseudogroup Γo. Thus Γκ extensions of ΓN may range from the one extreme
where Γ o = {identity} and ΓM is a prolongation of ΓN, to the opposite extreme
where ΓQ contains all maps preserving the fiber structures and inducing the
identity on N. In the latter case one can easily show (from Axiom 6) that ΓM

contains all lifts of elements in ΓN which preserve the fiber structures we
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refer to this pseudogroup as the trivial Γκ extension of ΓN.
Similar considerations apply to almost structures. If Mf —> iV' is another

bundle, define Dk(M, M') to be the bundle of all &-jets at 0 of fibration respect-
ing local difϊeomorphisms of M into M. Suppose ΓM has a quotient pseudo-
group ΓN, and Bk(M/) is a &-th order almost TM structure on a manifold M /.
Bk(Mf) is a fibrable almost structure if there is a fibration M' —> N' such that
Bk(M) c Z)fc(M,M'), and furthermore if there exists a Λ -th order almost ΓN

structure Bk(N') such that the natural quotient projection Dk(M, Mf) —>
/>*(#, NO carries Bk(M') onto Bk(N') The almost ΓV structure on M' is locally
fibrable if every point in M has a neighborhood upon which the induced al-
most ΓM structure is fibrable. The following result will be of use.

Proposition 2.1. // the transitive smooth pseudogroup ΓM is fibrable, then
every formally integrable almost ΓM structure is locally fibrable, and the local
quotients are formally integrable almost ΓN structures.

The proof of this theorem, to be found in [11], is a straightforward applica-
tion of a metamathematical generality central to this subject: since any for-
mally integrable almost ΓM structure is identical with the model up to infinite
order at all points, any naturally defined jet condition which holds true on the
model must hold true on all formally integrable almost ΓM structures. For
example, to fiber the underlying manifold in Proposition 2.1 one simply in-
vokes the Frobenius theorem, which asserts that local fibrability is a two-jet
condition. A similar instance of this principle is the next theorem, whose proof
is also in [11].

Proposition 2.2. Suppose the fibrable smooth pseudogroup ΓM admits a
smooth fiber pseudogroup. Then every fibrable almost ΓM structure Bk(M')
naturally restricts to an almost Γκ structure on each fiber of M', which is
formally integrable if Bk(Mf) is.

Now suppose that ΓM is a fibrable pseudogroup, and Bk(Mf) a fibrable al-
most ΓM structure. Suppose further that there is a local diffeomorphism fN: N
—> N' preserving the λ -th order quotient ΓN structures. Can one locally find a
map fM: M —> M around any point in M/, which preserves /:-th order struc-
tures and completes the following commutative square?

M -f~M-> M'

I , 1
We shall refer to this as the lifting problem. Its affirmative answer for all

fibrable almost ΓM structures and all such structure preserving maps fN will
be called the lifting theorem for the quotient ΓM —> ΓN.

We are primarily interested in studying the integrability theorem for various
smooth pseudogroups ΓM, which avers that all formally integrable almost ΓM

structures are actually integrable. Recall that this is a local question; Bk(M')
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is integrable if and only if every point in M' is in the range of a structure pre-
serving local diίϊeomorphism from M to M\ In view of Proposition 2.1 we may
recognize the fundamental formula which will allow us to pursue the inte-
grability theorem by inductive techniques:

Integrability theorem for ΓN + Lifting theorem for ΓM —> ΓN

=Φ Integrability theorem for ΓM.

A special case of the lifting theorem is easily proven, and will be of tech-
nical value in more subtle instances. The proof is in [11].

Proposition 2.3. Suppose that ΓM is the trivial Γκ extension of ΓN, and
that the integrability theorem is true for Γκ. Then the lifting theorem is true
forΓM->Γr

The technical application we have in mind for this is the following. Suppose
ΓM is any Γκ extension, and Bk{M') a fibrable formally integrable almost ΓM

structure. ΓM is contained in the pseudogroup ΓM of all local diίfeomorphisms
of M which preserve fiber structures, the trivial Γκ extension of the pseudo-
group of all local diffeomorphisms of N. Of course, the integrability theorem
for this huge pseudogroup on N is true, and so Proposition 2.3 together with
the fundamental formula implies the validity of the integrability theorem for
fM. By enlarging its structure group, we may embed Bk(Mf) in a formally
integrable almost ΓM structure Bk(M'). Then the integrability theorem for
Bk(Mf) gives us in particular the following fact:

Proposition 2.4. Suppose that ΓM is a Γκ extension, and that the inte-
grability theorem is true for Γκ. Then any jet in a fibrable, formally integrable
almost ΓM structure Bk(M/) may be represented by a fibration respecting local
diβeomorphism of M into Mr which preserves fiber structures.

3. The Lie algebra of a pseudogroup

As the local properties of a finite dimensional Lie group are characterized
by a more tractable algebraic entity, its Lie algebra, so too for smooth pseudo-
groups. In fact, one may consider a Lie group to be a pseudogroup of local
transformations on a manifold, namely, left translations acting on the under-
lying space of the group itself. Viewed thus, the Lie algebra consists of global
vector fields who local one-parameter groups belong to the pseudogroup. For
general pseudogroups we do not wish to entangle ourselves in global ques-
tions, so we sheafify the definition of Lie algebras. The Lie algebra sheaf ££
of a smooth pseudogroup Γ on M is the sheaf of smooth vector fields on M
whose local one-parameter transformation groups belong to Γ. Vector fields
belonging to J£? will be called Γ vector fields.

If / is a local diίϊeomorphism of M, then its differential defines a transfor-
mation f^ of vector fields X on its domain into vector fields f^X on its range,
and expί (f*X) = /-(expί X)-f~ι. In particular, for / belonging to Γ,X is a Γ
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vector field if and only if f^X is. Thus the Lie algebra sheaf of Γ is invariant
under the action of Γ.

The nature of j£f may be further explored through the concept of &-jet
extensions of vector fields. If X is a smooth vector field defined (in an open
set) on M, and exp, X its local one-parameter group of transformations on M,
then the &-jet extensions (expέ X)k define a one-parameter group o n D f e =
Dk(M, M). We define the k-jet extension Xk of X to be the smooth vector field
generating (exp£ X)k. So by definition: cxpt (Xk) = (exρt'X)k.

Because Γ is a smooth pseudogroup, a local difϊeomorphism of M belongs
to Γ if and only if its &-jet extension map preserves the structure bundles Bk

= Bk(M) for all k. Since (exp; X)k = expt (Xk), we observe

Proposition 3.1. A vector field X on M is a Γ vector field if and only if
its k-jet prolongation Xk is tangent to Bk for all k.

From the readily verified relations (Z + Y)k = Xk + Yk and [Z, Y]k =
[Xk,Yk], Proposition 3.1 implies that J£? is in fact a sheaf of Lie algebras.

If p is any point of Dk with target m, the assignment X —> Xk(p) defines a
linear map from the germs of vector fields at m to the tangent space TpD

k. If
X vanishes to order k + 1 at ra, then Xk(p) = 0 so by passage to the quotient,
the map X —» Zfc(/?) induces a linear map from the vector space Jk

m{TM)
of &-jets of vector fields at m to the tangent space TpD

k. It is well known [4]
that PJTM) -> ΓPD* is an isomorphism.

In particular, if p and ςr in Dk both have the same target, then the tangent
spaces of Dk at p and q are both isomorphic to PJTM) and hence isomorphic
to each other. In fact, the isomorphism TvD

k —> ΓQDfc is just the differential
of the global transformation of Dk defined by the right action of the element
p~ιq in the structure group of Dk. This follows from the observation that each
extension vector field Xk on Dk is invariant under the right action of the struc-
ture group for expf (Xk) corresponds to the left action of (expj X)k and
therefore commutes with the right action of the structure group. Hence right
multiplication by p~ιq carries Xk{p) into Xk(q).

The space of infinite jets of vector fields is defined as the inverse limit
JZ(TM) = \\mPJJM). If each PJTM) is topologized discretely, /£(ΓM) is a
complete infinite dimensional topological vector space. The &-jet maps X —>
jk

m(X) from the vector space of germs of vector fields at m into J^iTM) are
consistent with the projections JUTM) -> P^iTM), and hence by the universal
property of JZ(TM) they induce an infinite jet map X -> j~(X) € /~(ΓΛf). Of
course, in the C°° category this map is surjective.

If X and Y are two vector fields at m, the A:-jet of [Z, Y] at m is completely
determined by the (k + l)-jets of Z and Y. Therefore the Lie bracket defines
a bilinear map [ , ] : Pm

+1(TM) x Pm

+1(TM) -* PJTM). Passing to the inverse
limit, the bracket operation makes JJTM) into a complete topological Lie
algebra.

For all k, designate with excusable ambiguity the &-jet of the identity map
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of M at 0 by /. The isomorphisms J$(TM) —> TtD
k transform the bracket into

a bilinear operation [ , ] : TίD
k+1 X TίD

k + ί -+ Tβ1" characterized by the
equality [Xk+1(ί), Yk+ι(i)] = IX\ Yk](0 for all vector fields X, Y defined about
0 on M. Also note the isomorphism J^(TM) —• lim TtD

k.

Return to the smooth pseudogroup Γ on M, with structure bundles Bk. The
bracket operation takes TtB

k+l x TtB
k+l -> 7γBfc. For if Xk+1 and Yk+1 are

tangent to Bk+1 at /, then Xk, Yk, and therefore [AT*, Yk] are tangent to 5* at
i. Thus the closed subspace L = lim T^β* of J%(TM) is a Lie subalgebra. L is
called the formal Lie algebra of /\ As all infinite jets of vector fields at 0 are
actually representable by smooth vector fields (i.e., ft is surjective), observe
that L = {β(X): Xk is tangent to Bk along the fiber Gk above 0, γk}.

If / is any local diffeomorphism of M, and X a vector field on its domain,
then (f^X)k = (fk)^Xk. In particular, suppose / belongs to Γ and fixes the
origin; then (f*X)k is tangent to Bk along the fiber Gk if and only if X is.
Therefore L is invariant under the induced isomorphism/^: JQ(TX) -> J^iTX).

Define L (0) to be the subalgebra of infinite jets of vector fields belonging to
L which are zero at 0. If X(0) = 0, then Xk(ί) is tangent to the fiber of
Dk —> M, and conversely. Therefore the natural projection L —» TiBk takes
L(0) onto the tangent space T^G* to the fiber. TtG

k may be identified with the
Lie algebra of right invariant vector fields on Gk in fact, if Jo(X) € L(0), then
the restriction of Xk to Gk is a right invariant vector field on Gk. Thus L
completely determines the Lie algebras of all of the structure groups of Γ.

The infinite jet map of germs of vector fields at 0 into J£(TM) carries the
stalk j£?0 of j£? at 0 into L. For any reasonable smooth pseudogroup, fi(J?0)
is dense in L. In particular, this is always true in the analytic category, and
at least for flat pseudogroups in the C°° category.

We have now defined four fundamental objects in the theory of smooth
pseudogroups: pseudogroups themselves, structure bundles, Lie algebra
sheaves, and formal Lie algebras. The interrelations of these concepts are
obviously intimate, although not as precisely delineated as the interplay be-
tween a Lie group and its Lie algebra. Our approach focuses on the formal
Lie algebra, for it is most amenable to algebraic analysis. First we shall inter-
pret JZ(TM) from a more convenient algebraic viewpoint.

If F * is the dual of a finite dimension real -vector space V, then denote by
Fk(V*) the space of homogeneous polynomials of degree k on V and the k-ίo\ά
symmetric product of F * . Thus F(V*) = ΠΓ=o^ f c(^*) is the ring of formal
power series on F . Giving each Fk the discrete topology, F is a complete
infinite dimensional real commutative algebra. If F is taken to be the tangent
space F m of M at m, F may be naturally identified with the ring J^(R) of
infinite jets of real valued functions at m. (If {x19 ••-,*„} are local coordinates,
and {Xi = dXiirή)} the corresponding basis for V*, then F(F*) is just the ring
of formal power series in AΓ1? , Xn. The infinite jet of a function corresponds
to its formal power series expansion in terms of these coordinates.)
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Define Der F to be the Lie algebra of continuous derivations of F. With the
topology of pointwise convergence (Xn —> X in Der F if and only if XJ —• Xf
in F for all / <= F), Der F is a complete topological Lie algebra. The grading
of F induces a grading Der F = ΠΓ=-i Der1 F, where Der1 F — {X € Der F :
Xfjc c fk+ι for a u £j T h e g r a (jing j s consistent with the Lie algebra structure:
[Der' F, Derfc F] c Der' + fc F. As a subspace of Der F each Der1 F is discrete,
and the topology on Der F is just the product topology. Introduce the notation
Der(fe) F for the subalgebra [] ι^k Der1 F. For each fc > 0, Der(fe) F is an ideal
of Der(0) F.

Every v eV defines a linear functional on F * and thus a linear map of F 1

= F * into F° = R. Since F 1 and F° generate F, i; extends uniquely to a con-
tinuous derivation of F with degree — 1, which we continue to denote by v.
Moreover, every continuous derivation of F is a sum of derivations of the form
fv with f e F and v eV. So there is a natural isomorphism Der F — F ®V
identifying Der1 F = F ι + 1 (g) F.

For a more concerete description, let {d/dX19 , d/dXn} be the basis dual
to a basis {X19 , Z n } for F * . Each d/dX* € F acts on F as the formal deriva-
tive of power series with respect to Xt. Der F is the Lie algebra of formal
power series vector fields ίιdjdXι + + fnd/dXn, the coefficients /4 belong-
ing to F. Der* F is the set of formal fields in which each ft is a homogeneous
polynomial of degree / + 1.

If F is taken to be Vm = T m M, Der F may be naturally identified with
J^(TM). Any vector field Y at m determines a derivation on the ring of real
valued functions at 0, thereby inducing a derivation of /~(i?) = F. In terms
of coordinates {x19 ,xn} on M, Y = y1d/dx1 + + ynd\dxn where each
yt is a function. The corresponding element of Der F is the analogous formal
power series vector field in which each yt is replaced by its infinite jet, or
formal power series expansion, at m.

The kernel of the surjection Der F(Vl) ^ JZ(TM) -> Pm(TM) is Der(fc) F,
so we may identify PJTM) with Der F(F*)/Der ( f c ) F{Vl). Der(0) F(V*) (con-
sistent with the notation introduced earlier) corresponds to the subalgebra of
JQ(TM) consisting of infinite jets of vector fields which vanish at the origin.
Thus at the point m = 0, Der(0) F/Der( fe) F may be identified with the Lie
algebra of the structure group of Dk.

If g is any local difϊeomorphism of M at m, composition with g defines an
isomorphism of the ring of germs of functions at g{m) into the ring of germs
of functions at m. Passing to infinite jets, this yields an isomorphism F(Vg{m))
-^F(Vm). Furthermore, the collection of all isomorphisms of F(Vg{m)) —•
F(Vm) may be identified by this procedure with the set of infinite jets of
diffeomorphisms having source m and target g(m). Any such isomorphism a
defines an isomorphism a^: Der F ( F m ) —> Der F(Vg{m)) by a^(X) = a~ιXa.
When a is identified with JZig),^* is J u s t the isomorphism g^: J^(TM) —>
Jgim)(TM) induced by the map g^. on the germs of vector fields.
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CHAPTER II. FLAT PSEUDOGROUPS

1. Connceted flat pseudogroups

A flat pseudogroup Γ is a smooth pseudogroup on a real vector space M,
which contains the translations and has a graded formal Lie algebra. By defi-
nition, a subalgebra L of DerF(F*) is graded if L = Π Γ = - i L n D e r * F

Define Lfc = L Π Derfc F and Uk) = f] *;>* Lι. As Γ contains the translations,
L" 1 is all of V = T0M, and of course Γ is transitive. In general, we shall refer
to a graded subalgebra of Der F(V*) which contains V as a /to subalgebra.

Every flat subalgebra L of DerF(F*) may be realized as the formal Lie
algebra of a flat pseudogroup. In fact, one may easily recognize a maximal
flat pseudogroup on M, whose formal Lie algebra is L. At each point m € M
define the subalgebra Lm of Der F(V*) to be O J ^ L , where Vm = TmM and
τ m is the diffeomorphism "translation by ra". We observed in the last section
that if Γ is any pseudogroup with Lie algebra L and / an element of Γ such
that /(0) = 0, then fJL = L. It follows that if Γ contains the translations, and
g is any element of Γ whatsoever, then g^Lm = Lg{m) for all m in the domain
of g. (Consider / = τ~lm)'g-τm.) Therefore the pseudogroup consisting of all
local diffeomorphisms g of M satisfying this property contains every flat pseudo-
group with formal Lie algebra L.

More significant is the existence of a minimal flat pseudogroup whose formal
Lie algebra is L. A pseudogroup Γ will be said to be connected if its structure
groups Gk are all connected. We shall demonstrate that any flat subalgebra L
of Der F(V*) has a unique connected flat pseudogroup Γ on M. Note that if
f is any other flat pseudogroup on M corresponding to L, then the structure
group Gk of Γ and the structure group Gk of Γ have the same Lie algebra,
namely, the image of L(0) in TtD

k. Therefore Gk must be contained in Gk as
its identity component. As both Γ an Γ contain the translations, it follows
that the structure bundle Bk of Γ is contained in the structure bundle Bk of
Γ for the fiber of Bk over m e M is τ^G fc, and that of Bk is τk

mGk. Any mor-
phism of Dk preserving a subbundle of Bk must preserve Bk itself, so the / -jet
extension of every element of Γ preserves Bk. Because this holds for all k, and
Γ is a smooth pseudogroup, Γ c Γ. Thus every flat pseudogroup on M with
formal Lie algebra L contains the connected pseudogroup Γ. The importance
of this is

Proposition 1.1. The integrability theorem is true for all flat pseudogroups
if it is true for all connected flat pseudogroups.

Proof. This presumes, of course, the claimed existence of connected flat
pseudogroups for every flat algebra L. Let Γ and Γ be as above, and suppose
Bk(M') is a formally integrable almost Γ structure. Given any point m 6 M',
shrink Mr sufficiently around m so that Bk{M') may be trivialized. Let Bk(M')
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be any connected component of Bk(M'). Bk(M') is a formally integrable almost
Γ structure on M', so if the integrability theorem holds for Γ, then there exists
a local difϊeomorphism /: M-> Mf hitting m such that /*: Bk{M) -* Bk(Mf).
As fk is a local morphism of Dk(M, M) -> Z)fc(M, MO, we conclude f: B\M)
-> £*(Λf) as well, q.e.d.

The construction of the connected pseudogroup Γ is self evident. The struc-
ture group Gk must be the connected subgroup of the structure group of Dk,
whose Lie algebra is the image of L(0) in 7\Z)fc. The bundle Bk must be the
unique translation invariant subbundle of Dk with group Gk that is, the fiber
of Bk over m e M is τk

mGk. Finally, we must define Γ to be the pseudogroup
of all local diίfeomorphisms of M whose &-jet extensions preserve Bk for all k.
Γ is obviously a pseudogroup containing the translations. The fact that Γ
satisfies Axiom 6—that it has finite order—results from an algebraic finiteness
property of the Lie algebra L (derived ultimately from Hubert's basis theorem)
the proof is in [11].

An immediate consequence of the definitions, plus Proposition 1.3.1, is the
following characterization of the Lie algebra sheaf Jδf of Γ.

Proposition 1.2. A vector field X on M is a Γ vector field if and only if
ίZPO € Lm at every point m in the domain of X.

Of great significance is the fact that /JΓĈ Ό) i s dense in L. The difficulty of
establishing this in general is an annoying complication in the approach to
arbitrary smooth pseudogroups through their infinitesimal transformations,
and conversely the ease with which it may be proved in the flat case is one
of the major reasons for limiting our attention to graded algebras. Note that
L has plenty of formal vector fields which are actually convergent and there-
fore define analytic vector fields about O e M . In fact, since L is graded, its
polynomial vector fields ®κ=_1L

lc are dense in L. Consequently the following
lemma suffices to prove the denseness of /JΓ («£?<,)•

Proposition 1.3. If X is an analytic vector field on an open ball in M
whose infinite jet j£(X) belongs to L, then X is a Γ vector field.

Proof. Apply the Campbell-Hausdorfϊ formula (see [11]).
From the proposition one can also show that every jet in Gk is in fact

representable by a diffeomorphism belonging to Γ. It follows that the bundle
Bk is truly the structure bundle of Γ (see [11]).

We conclude this section by observing the following link between the pseudo-
group Γ and the algebraic structure of L:

Proposition 1.6. Every closed ideal I of L is invariant under the action of
Γ: f^l = I for all f € Γ which fix the origin.

Proof. Since / is closed and {Vk)} is a neighborhood basis at 0 e L, it
suffices to show that /*/ = / modulo L(fc) for all k. But jk+1(f) e Gk+1 implies
that there are polynomial fields X19 - - - ,Xte L such that /^ agrees with
( e x p X ^ (expZj)^ modulo L(k). As / is a closed ideal, it is invariant
under each ( e x p Z J ^ = exp ( a d Z J .
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2. Fibrations of connected flat pseudogroups

Suppose that M —> N is a fibration of the vector space M respected by the
connected flat pseudogroup ΓM, and that the fiber K through 0 e M is con-
nected. Since ΓM contains the translations, K is a subgroup and therefore a
vector subspace of M. Furthermore, N = M/K, and the fibration is just the
canonical projection. Let LM be the formal Lie algebra of ΓM.

The tangent space W of K at 0 is invariant under the differentials of all
maps in ΓM which fix 0. Equivalently, W is a subspace of V invariant under
the linear ίsotropy group of ΓM9 the first structure group Gι(M) considered
naturally as a subgroup of GL(V). Thus W is also invariant under the linear
isotropy algebra L°M =—>gl(V), the Lie algebra of G\M). Conversely, any
L°M invariant subspace of V defines a linear fibration of M respected by ΓM.
(Note that the representation of L°M on V induced by the representation Gι(M)
—> GL(V) is just the bracket operation of L°M and L^1 = V.)

We wish to manufacture flat pseudogroups ΓN on N and Γκ on A! (neces-
sarily connected) which serve as quotient and fiber pseudogroups of ΓM. To
do so is easy; we simply look for the corresponding formal flat algebras.

The tangent space to TV at 0 is U = V/W, and U* may be identified with
the annihilator of W in V*. It is evident that the representation of L°M on
F * = F\V*) is dual to its representation on V = L~ι by Lie bracket. Thus
W is an L°M invariant subspace of V if and only if £/* is an L°M invariant sub-
space of V*. The following is easily proven:

Lemma. U* is an L°M invariant subspace of V* if and only if F(JJ*) is an
LM invariant subring of F(F*) .

Thus, if £/* is an L°M invariant subspace of V*, then restriction to F(U*)
defines a representation LM —> Der F(C/*). The image LN of LM, called the
quotient algebra of LM, is clearly a flat subalgebra of Der F(U*). ΓN is defined
to be the corresponding connected flat pseudogroup on N.

If XM is a vector field on M, whose one-parameter group respects the fibra-
tion M —> N, then there is a quotient vector field XN on N related to it by the
differential of the fibration map. In fact, XN is the infinitesimal generator of
the one-parameter group on N consisting of the quotients of the transforma-
tions in the one-parameter group of XM. The graded homomorphism LM —•
Der F(U*) which we have constructed algebraically is just the infinite jet com-
pletion of the natural quotient map of germs of ΓM vector fields at 0 into
germs of vector fields at 0 in N.

The fact that ΓN is really the quotient pseudogroup of ΓM is an easy con-
sequence of the naturality of its definition. The requisite property is that Bk(N)
be the image of Bk(M) under the quotient map Dk(M, M) -+ Dk(N, N), for
which it suffices to show that the homomorphism of structure groups takes
Gk(M) onto Gk(N). As the latter are both connected Lie groups, this is auto-
matic from the commutative diagram:



370 ALAN S. POLLACK

When we have proved the lifting theorem for the quotient ΓM —> ΓN, we
will obtain as a special case the satisfying fact that ΓN really consists only of
the quotients of the maps in ΓM, at least locally, that is, at every point in its
domain any fN e ΓN is locally the quotient of a map fM e ΓM.

The definition of the fiber pseudogroup Γκ is similar. If XM is a vector field
on M, whose one-parameter group maps K into itself, then XM is tangent to K
and restricts to a vector field Xκ on K. The one-parameter group of Xκ is, of
course, just the restriction to K of the one-parameter group of XM. To find
the appropriate flat algebra Lκ on K, simply mimic as follows the restriction
process on the level of infinite jets of vector fields.

The ring of germs at 0 of real functions on K is naturally isomorphic to the
ring of germs of functions on M modulo the subring of germs which vanish
along K. Passing to infinite jets, there is an isomorphism of F(W*) with the
quotient of F(V*) by the ideal ί/*F(F*). The subalgebra of LM preserving
U*F(V*) is W®L$; W preserves C/*F(F*) because it kills U*9 while L<°>
does because it maps U* into F(1)(C/*). So there is a representation W ®L{$
—> Der F(W*), which is the algebraic version of the restriction procedure on
infinite jets of vector fields. The fiber algebra Lκ is taken to be the image of
W + L$ } it is obviously a flat subalgebra of Der F(W*). That the correspond-
ing connected flat pseudogroup Γκ is actually the fiber pseudogroup of ΓM

follows from the natural commutative diagram:

Dk(M,M)\K

Lf > T.GKK) ^-> Dk(K, K) .

Of particular interest are linear quotients M —> N which are minimal among
those respected by ΓM, equivalently those for which W is a minimal L°M

invariant subspace of V. As the representation of LG

K on W is just the restric-
tion to W of the action of L°M on V, minimality is further equivalent to the
assumption that W is irreducible under L°κ. In general, a flat algebra L such
that L~ι is irreducible under L° is called an irreducible algebra, and corre-
sponding flat pseudogroups are irreducible pseudogroups. Such algebras are
quite well understood.

Proposition 2.1. To any irreducible fiat albegra L one of the following
four alternatives must pertain:

1. Lk = Ofor all k> 0.
2. V φ 0 but Lk = Ofor k> 1, and L is simple.
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3. L is infinite dimensional and simple.
4. L is infinite dimensional, [L, L] is simple, and the codimension of

[L, L] is at most two.
Furthermore, the infinite dimensional cases are completely characterized.

There are precisely twelve classes of infinite dimensional irreducible flat Lie
algebras, and the corresponding pseudogroups are all classical ones [10], [12],
A reference for the finite dimensional algebras is [6]. As mentioned in the first
chapter, the integrability theorem is known for all irreducible flat pseudo-
groups.

Irreducible algebras of the first type are said to be affine; those of the remain-
ing three types are primitive. Irreducible flat pseudogroups are also said to be
affine or primitive, depending on their formal Lie algebras. When M —• N is a
minimal linear fibration, ΓM and LM will be called affine extensions or primitive
extensions of ΓN and LN according as the classification of Γκ or Lκ.

The inetgrability theorem for arbitrary flat pseudogroups depends upon
three inputs to our "fundamental formula": the lifting theorems for affine and
primitive extensions, and the known integrability theorem for irreducible flat
pseudogroups. The primitive lifting theorem is indeed that, primitive rather
than subtle; it can be established with little difficulty but a bit of tedium, using
the techniques of Singer-Sternberg [12] and a theorem on minimal ideals in
infinite dimensional Lie algebras [2]. The proof of the affine lifting theorem,
which requires deep results from partial differential equation theory, will com-
prise the remainder of this paper.

CHAPTER III. THE AFFINE LIFTING PROBLEM

1. The kernel algebra

If the secret of a flat pseudogroup extension ΓM*A—* ΓN resides in the kernel
pseudogroup, the secret of the kernel pseudogroup resides in turn in the kernel
algebra, then there is an L ideal in A, which contains all other L ideals in
LM —> LN. In this chapter we adhere to the notation used heretofore, with the
additional assumption that ΓM is an affine extension of ΓN.

A simple algebraic observation will be useful. If A is any subspace of a Lie
algebra, then there is an L ideal in A, which contains all other L ideals in
A. Specifically, it consists of the set of elements a e A for which ad xx ad x2

• ad xt(a) e A no matter what the finite set {xl9 •• , j c ί } C l might be. If
A is a graded subpsace of a graded algebra L, then this ideal is also graded.

The fiber algebra Lκ is assumed in this chapter to be affine. Therefore
L^) = 0, so Lκ = W + g, where g = L°κ is the fiber isotropy algebra, a Lie
subalgebra of gl(W). As the action of g on W is irreducible, standard results
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in the theory of linear groups imply that g is either semisimple or the direct
sum of a semisimple algebra with a center. Moreover the center consists either
of all real multiples of the identity map in gl(W), or else W has a complex
vector space structure for which the center consists of all complex multiples
of the identity.

The kernel / of LM —• LN is a graded ideal of LM with 7"1 = W. In partic-
ular, I is an ideal in W + L$ }, so its image in Lκ must be of the form W +
h, where h is an ideal of g, the kernel fiber isoίropy algebra. Being an ideal
of g,h also admits a decompositionh = h0® hx® Θ hr, whereh1 9 ,hr

are simple ideals, and the center h0 is either zero, R- identity, or C identity.
As W is an ideal inW + h, its preimage A in / is an ideal of /. However

A need not be an ideal of L, so we define IA to be the largest L ideal in A.
Note that IA is abelian. For W is abelian, hence [IA,IA] is in the kernel of
W + L$ —> W + g. But because LM z> V, L$ can obviously contain no non-
trivial ideal of L; therefore UA,IA] = 0. It is also easy to check that IA

contains W, by direct application of the specific description of lA given at the
beginning of the section.

Define LM = LM/IA, and I = I/IA. The map / —> W + h induces a Lie
algebra homomorphism 7 -> h = h0 0 hx Θ Θ hr. For each / = 0 ,1 , , r
define /^ to be the largest LM ideal inside the preimage of hj in J . Victor
Guillemin has shown [3] that the graded ideals Jj mimic the decomposition of
h by the ideals hj. That is,

Proposition 1.1. 1. J = 70 φ Ίλ © .. 0 7 r.
2. 77ιe image of Ίj in h is precisely hά m fact, the degree zero map Ί) —>

hj is an isomorphism.
3. For j > 0 Λere are no nontrivial proper closed subideals of LM in Ίj.
4. 70 w abelian.
Recall the following form of Shur's Lemma. Suppose k is a real simple Lie

algebra, and Δ the collection of all linear maps of k, which commute with ad x
for every x e k. Then either Δ is isomorphic to R, in which case k is said to
be of real type, or Δ is isomorphic to C, and k is said to be of complex type.
Δ is an artifice for intrinsically discovering the largest field of scalars over
which k may be considered to be defined. Thus k is of complex type precisely
when it has a complex Lie algebra structure extending the real structure.

The adjoint representation of LM induces a representation LM —> Der (7^) for
any /. Thus Ίj is a module over the Abelian Lie subalgebra V C LM. Now
assume hό to be of real type, and define V3 to be the commutator of Ίj in
V:Vj = {veV: vϊj = 0}. Define Uf c F * to be the annihilator of Vj. Since
Vj D W, Uf C £/*, the annihilator of W. In [2] Guillemin proved the follow-
ing characterization of the ideal Ίj.

Proposition 1.2. // hj is of real type, then Ίj = hj (g) F(Uf), where Uf C
17* is the annihilator of the commutator of Ίj in V.

Of course hj (x) F(Uf) is naturally a Lie algebra, being the tensor product
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of a Lie algebra and a commutative associative algebra. For the complex case,
we first quote [2]:

Proposition 1.3. // hj is of complex type, then 1ό has a unique complex
Lie algebra structure consistent with the complex structure of hό and making
each derivation ad x, for x εLM, complex linear.

So the representation LM —» Der (ϊj) defined by x —» ad x extends to a
complex linear representation LM (x) C —» Der (ϊj). In particular, Jj is a V ® C
module. (Throughout the paper, tensor products are taken over R unless
otherwise annotated.) Define Vά to be the commutator of Ij in V (8> C,
Vj = {z e V (x) C: zlj = 0}, and define Uf C (F (x) C)* = F* (g) C to be the
annihilator of Vj. Since V3 ZD W ® C, Uf is a complex subspace of U* ® C.
The complex analogue of Proposition 1.2 is [2]:

Proposition 1.4. // hj is of complex type, then Ίό = hd ®c F(Uf), where
the complex subspace Uf of U* ® C is the annihilator of the commutator of
Jj in V®C.

2. Description of affine pseudogroup extensions

The intent of this section is to analyze more specifically the behavior of the
pseudogroup ΓM along fibers, especially the behavior of the kernel pseudo-
group. We begin by discussing the fiber pseudogroup Γκ.

The first structure group G\K) of Γκ may be considered naturally embedded
in Gl(W) as the connected subgroup with Lie algebra g c gl(W). As Vκ — 0
for / > 0, each of the higher structure groups Gι(K) is isomorphic to G 1 ^ )
under the natural projection. It is very easily seen that Γκ itself consists pre-
cisely of the global affine transformations of K belonging to the group A = G
+ T, plus the restrictions of these transformations to open subsets of K, where
T is the group of translations of K, and G is the group of linear maps of K
whose differentials at 0 belong to G\K). (Since K is a vector space, one may
identify T with K and W, whereby G is identified with Gι(K). However,
hopefully for notational and conceptual clarity, we will continue to use the
symbols separately in their appropriate contexts.) Note that the flat pseudo-
group Γκ is of finite type, so the integrability theorem is known for formally
integrable almost Γκ structures.

Fix forever a linear section of the projection M —> N, or equivalently a
decomposition M = N X K. Then any map fM e ΓM, since it preserves fiber
structures, must have the simple form fM(n, z) = (fN(n), a(n)z), where fN € ΓN

is the quotient map and a: N —> A is a smooth map. The mystery is the nature
of the function a, the manner in which the action of fM along fibers is permitted
to vary from one fiber to the next. To some extent the function a may be
rigidly controlled by fN; for example, if ΓM is a prolongation of ΓN, a is
uniquely specified by fN. However in general there is some flexibility in the
function a, and it is this flexibility which is characterized by the kernel pseudo-
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group Γo. In fact, it is clear that all maps in ΓM which cover fN are given by
(n,z) —» (fN(ή),a(ή)b(n)z), where b:N—>A ranges over all functions for
which (n, z) —> (n, b(n)z) belongs to Γo.

Thus presupposing the existence of at least one lift fM e ΓM of an element
fN 6 ΓN we see that the kernel pseudogroup parametrizes the collection of all
lifts. In order to extend this simple observation to almost structures, we wish
to examine the &-jet representation of Γo. Obviously if gM e Γo fixes the origin,
then its &-jet at 0 belongs to the kernel of the homomorphism Gk{M) -^ Gk(N).
In fact, such k jets arising from Γo completely exhaust the kernel:

Proposition 2.1. Every jet in the kernel of the homomorphism Gk(M) —>
Gk(N) has a representative in the kernel pseudogroup.

Proof. See [11].

How does the kernel pseudogroup act on fibers? Note in general that if
fixing) = (fN(n),a(n)z) and fM(0) = 0, then a(0) zA belongs to its linear
subgroup G and is just the image of Jl(fM) under the fiber restriction homo-
morphism G\M) -> G\K) ~ G. Define H as the image in G of the kernel C1

of G\M) —> G\N). Then it is clear that every element of the kernel pseudo-
group is of the form (n, z) -»(n, b(ή)z) where b: N —• H + T c A. As the
Lie algebra of C1 is 7°, the Lie algebra of H is the image of 7° in g, namely,
the kernel fiber isotropy algebra h.

The structure of H is rather rigidly prescribed. As noted earlier, because g
is irreducibly represented on K it must be of the form g — g0 0 gλ 0 © g8,
where each gt is simple for / > 0, and the center g0 is either 0,R- (identity),
or C (identity) for some complex structure on K. Correspondingly the group
G is a product G = Go X G1 X X G s, where each Gt is simple for i > 0
and Go is the center. Since G is connected, each of these subgroup factors
must also be connected. In particular Go is either the identity, all positive real
multiples of the identity, or all nonzero complex multiples of the identity for
some complex structure on K. Now h = hQ 0 hλ 0 0 hr is a Lie subalgebra
of g. For / > 0 each hj must be one of the simple components gt of g hence
there is a unique Lie subgroup Hj of G with Lie algebra hj9 namely, the cor-
responding connected simple subgroup Gt. The center Ho of H is a subgroup
of Go with Lie algebra h0 it need not be connected in instances when Go is
complex. In sum, H = Ho X Hι x X Hr where each Hj is a simple con-
nected normal subgroup if / > 0 and Ho is some Lie subgroup of the nonzero
complex numbers.

3. Constructing the ladder

We shall approach the lifting theorem for affine pseudogroup extensions by
performing a preliminary prolongation of the problem to a bundle of "fiber
1-jets". A whole ladder of intermediate structures will be naturally defined,
and any given structure preserving map of quotient spaces will be carried up
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the ladder rung by rung. So suppose that M' is fibered over N', Bk(Mf) a fibra-
ble, formally integrable almost ΓM structure on M' with quotient B (N'), and
fN: N —> N' a structure preserving map of the quotient structures. Around
any given point in M' we seek a structure preserving local difϊeomorphism fM

completing a commutative square:

N -KN' .

The integrability of the induced almost structures on the fibers of M' pro-
vides local charts of the affine space K into each fiber of M'. As a convenience,
we shall assume that each fiber is actually globally diffeomorphic to K via one
of these charts. This entails no loss of generality, for the lifting theorem which
we seek to prove is local, and the given almost ΓM structure on M' is at least
locally equivalent to an almost structure on a space whose fibers admit global
affine structure preserving diίfeomorphisms onto K (see [11]).

Consider heuristically the important special case in which M' = M and N'
= N. Then the lifting problem reduces to showing that any fN e ΓN is locally
a quotient of an element fM <= ΓM. Such an fM is specifically represented, via
the fixed decomposition M = N X K, as fM(n,z) = (fN(n),a(ή)z),a(n) e A.
The question of constructing fM is a matter of manufacturing a suitable func-
tion a: N —> A. If one such lift exists, then all other possibilities are (n, z) —>
(fN(ή),a(n)b(n)z) where the map (n,z) —> (n,b(ή)z) belongs to the kernel
pseudogroup. In particular b: N —• H + T. So for each n, the image of a(ri)
in A/(H + T) — G/H is uniquely determined by fN. As for the remainder of
the function a, its "component" in each factor of Ho x Hx X x Hr + T
is arbitrary within the constrains imposed by the kernel pseudogroup. Therefore
we are led to study the possibility of finding an acceptable function a by seek-
ing its various pieces within the realm of the kernel pseudogroup. The general
situation is quite analogous except that some inhomogeneous data intervenes.

The formally integrable almost ΓM structure on M/ determines a formally
integrable almost Γκ structure on any fiber K!n of M', where n e N' is its image
below. Define a bundle P/ —> N' by taking for the fiber over n e N' the set of
all global structure preserving charts from K to K'n. P; is a principal A bundle
over N\ which is smooth because the almost Γκ structures vary smoothly from
fiber to fiber. P' is also a principal G bundle over Mf the bundle projection
assigns to the chart p e P/ of K onto K!n the point p(0) e Mf. (In fact, Pf may
be identified with the bundle \JN, B^K'J over \JN, K'n = M'.) On the model
space the corresponding bundle is denoted by P.

Suppose fM: M —> Mr is a lift of fN which at least preserves fiber almost
structures. (In particular, any lift which actually preserves the almost ΓM struc-
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tures must preserve fiber structures.) Then fM defines by composition a local
difϊeomorphism fP: P —> P' which is just the one-jet extension of fM along each
fiber; fP will be refered to as the fiber extension of fM. fP commutes with the
right action of A, i.e., it is an A morphism, and it lifts fN:

I
M-^->Mr

I
Conversely any A morphism / P : P —• P' is induced by some map fu: M->M'
which preserves fiber structures specifically, fM(n, z) = fP(τn)(z) where τn\ M
—> M is "translation by rC\ To find an fM which preserves not only fiber struc-
tures but actually the almost ΓM structure, we prolong Bk(M/) to Pf and search
for a morphism fP which preserves the prolonged structure.

Let q e Bk(M/) be any jet in the almost ΓM structure on M'. According to
Proposition 1.2.4 the jet q may be represented by the local difϊeomorphism
fM: M -H> M' which preserves fiber structures, and thus induces a morphism
fP:P-+ P'. Providing P with an origin OP, the identity map of K, the &-jet
of fP at Op is entirely determined by q we shall call it the fiber extension of
q. The fiber extensions of all jets in Bk(M') constitute a bundle Bk(P/) -> P',
and in particular on the model space a bundle Bk(P) —» P.

Define D*(P, P') to be the bundle of Jfc-jets of local morphisms of P into P'
with source OP. All of its elements are jets respecting the fibrations P -+ M
and Pf —> M', so our usual quotienting procedure defines a projection Dk(P, Pf)
->D f c (M,M0. Restricted to Bk(P') a Dk(P,P'), the projection has image
Bk(M') and in fact is inverse to the fiber extension map used to construct
Bk(F).

Suppose now that fP: P —> P' is the fiber extension otfM: Λί-*M'. (Implicit
is the assumption that fM preserve fiber structures.) Then the following diagram
of &-jet extensions commutes:

fP
Dk

c(P,P) • D*e(P,F)

MM)^Dk(MM')

Since Bk(P') -* Bk(M') is bijective, we note that fP: Bk(P) -> Bk(P') if and
only if fk

M: Bk(M) —> Bk(M'). As it is clear that any local diίfeomorphism fP
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of P into P' for which /J,: Bk{P) -> Bk(F) must be a local morphism and
therefore a fiber extension of some such map fM, we conclude that the problem
of integrating Bk(M') is equivalent to that of integrating the prolongation
Bk(P').

The use of the word "prolongation" is consistent with earlier use. In fact,
Bk(P) is the k-th structure bundle of the pseudogroup ΓP on P consisting of
all fiber extensions of elements of ΓM, and ΓP is a prolongation of ΓM. The
argument immediately preceeding shows, for the special case where M' = M,
that any local difϊeomorphism of P preserving Bk(P) is actually the fiber
extension of an element of ΓM consequently ΓP does satisfy axiom 6, so is a
smooth pseudogroup on P. For an arbitrary Aί\ the bundle Bk(F) is a &-th
order almost ΓP structure on F'. As Bk(Mf) is formally integrable, so is Bk{Pf)
its higher order bundles are the fiber extensions of the higher order bundles
o n M ' .

Via the composite projection Bk(P) —> Bk(M) —> Bk(N), the structure group
Gk(P) maps into but not onto Gk(N). Define Gk(P) to be the entire preimage
in Bk(P) of Gk(N). Thus Gk(P) consists of Λ:-jets at OP of elements of ΓP

which take the fiber over 0 in P —> N into itself. But we may assume that any
local morphism of P is defined on an A invariant domain, and obviously the
A -jet of such a morphism at any point of the fiber through OP is determined
by its &-jet at OP. Therefore composition of local morphisms preserving the
fiber through OP defines a group structure on Gk(P) making Gk(P) —> Gk(N) a
homomorphism.

The decomposition M = NχK induces a trivialization P = N X A, where
n^>τn is the global section corresponding to (n9i) a N X A, with / the
identity of A. If fM e ΓM has the specific representation fM(n, z) = (fN(n)> b(ή)z),
then its fiber extension on N X A is fP(n,ά) = (fN(ή),b(ή)ά). Any two jets
in Gk(P) are &-jets at OP = (0, /) of fiber extensions fP and gP, where fN(0)
= 0 = giv(0), and the group product JlP(fP) ik

Op(gP) in G*(P) is the £-jet at
Op of the morphism fP-gP.

Any local morphism of P into Pf may also be considered to have an A
invariant domain, so Gk(P) as well as Gk(P) acts on Bk(Pf) to the right. In fact,
Bk(P') is a principal Gfc(P) bundle over Pf and a principal Gk(P) bundle over
N\

We decompose the bundle P/ —> N' by the right action of A. First define Q!
to be the quotient of Pf by the right action of the normal subgroup T of A,
so the points of Q' are the orbits of T in Pf. Q' -• N7 is a principal 4̂ /T = G
bundle, and P r —> β ' a principal T bundle.

R'o is then defined as the quotient of Q by the normal subgroup HQ of G.
i?o —• W is a principal G/75/o bundle, and Qf -^ Rr

Q a principal HQ bundle.
Continuing, define R'j for / = 1, . ., r to be the quotient of / ί ^ by Hj. R'j
-> iVr is a principal G/Ho x Hι x X H^ bundle, and R'j_x —> .R̂  a
principal #y bundle.
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For the model structure the corresponding bundles are denoted Q, R , etc.
It we use the letter S to denote any of these models, the pseudogroup ΓP on P
respects the fibration P —> 5, and the collection of quotient maps defines a
pseudogroup Γs on S. We are not yet in a position to affirm that Γs satisfies
Axiom 6 except, as already observed/for S = P. This will emerge in the course
of the argument; however, we shall see that its validity for all S is equivalent
to the lifting theorem for the special case of the model almost structure.

Each bundle S has an origin Os, the image of the origin of P. The jets in
Dk

c(P, Pf) all respect the fibration P —> 5, so the general quotient procedure
yields a projection Dk(P, Pf) -> Dk(S, S'). Define the bundle Bk(S') -> S' to be
the image of Bk(P/) under quotienting. In particular, Bk(S) is the k-th order
structure bundle of Γs. The groups Gk(S) and Gk(S) are the images of the
analogous groups on P Gk(S) is the preimage of Gk(N) with respect to the
quotient projection Bk(S) —• Bk(N). Note that, except for P', the spaces S' are
not bundles over M' although they do fiber over N'. Bk(S') is a principal Gk(S)
bundle over S' and a principal Gk(S) bundle over N'.

Denote by Γ% the pseudogroup of all local morphisms of S whose &-jet
extensions preserve Bk(S). (Note that any local map of S whose /:-jet extension
preserves Bk(S) must in fact be a local morphism.) We known Γ*P = ΓP, but
as mentioned above the other equalities Γ% = Γs are deeper. Γ*s is a smooth
pseudogroup on S which may be called the formal completion of Γs. Bk(S) is
the k-th order structure bundle of both Γs and Γ%. In fact, since ΓP = ΓP it
is clear that all of the structure bundles of Γs and Γ% are identical. Bk(S/) is
a formally integrable almost Γs or Γ% structure on S'. (Its higher order almost
structures are of course those induced by the higher order almost structures
corresponding to Bk(M').)

Our strategy should now be evident. Beginning with a prescribed structure
preserving map fN, we attempt successively to find morphisms

5 -f-U S'

I , 1
such that j%: Bk(S) -> Bk(S')- Once we reach the bundle S' = P\ we will have
established the lifting theorem for all affine extensions. Pictographically, we
shall ascend the following ladder (for reference, the structure groups of each
level as a principal bundle over the level immediately below have been in-
cluded) :
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p ^p'

Q ->β/

I j }«.
Ro -> Ro

i }».
R,—-+Rf,

1
Rr

i
N

f«

I

J

4. One small step . .

The first step up the ladder is effortless, for the pseudogroup on Rr is a
prolongation of the pseudogroup on N. In this section, the only ladder bundle
to be discussed is Rr, so we shall delete the subscript and simply refer to it as
R. Every element of the pseudogroup ΓR is induced by the fiber extension of
an element of ΓM. If the quotient map in ΓN is the identity, then the action
along each fiber of M belongs to H + T. As R = N X A/(H + T), the action
on R is also trivial, so indeed ΓR is a prolongation of ΓN.

On the jet level this implies that the homomorphism Gk(R) -> Gk(N) is
bijective. It is surely surjective, for the homomorphisms in the commutative
triangle
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are surjective. Any element pR e Gk(R) is induced by the fiber extension of a
jet pM € Bk(M) whose target belongs to K. We may compose pM with a trans-
lation to bring its target to the origin and still not alter the induced jet on R
thus pM may be taken in Gk(M). The image of pR in Gk(N) is the identity if
and only if the same is true of pM. However, according to Proposition 2.1, if
pM belongs to the kernel of Gk(M) —> Gk(N), then it is the &-jet at 0 of an
element fM e Γo. As observed just above, the quotiented fiber extension fR of
fM on R is then the identity, so as pR is by definition the &-jet of fR, pR =
identity. Thus Gk(R) —> Gk(N) is injective as well as surjective.

Consequently, we note that the projections Bk(R) —> Bfc(Λ0 and Bk(R/) —>
Bk(N') are bijective. Now suppose that fN: N -*N' is a structure preserving
map. Then its &-jet extension /& is a G*(N) local morphism of Bk(N) -
Define fB to be the unique map lifting f%:

fk

Bk{R) —^> B*(Λ')

B*(N) —

Perforce, f% is a Gfc(Λ) morphism, which we need only to demonstrate to be
the &-jet extension of its quotient map fB: R—*R'.

The reason fB is indeed the Λ-jet extension of fR is that this condition is a
functorial jet criterion. Let f^1: Bk~\R)-+Bk~\Rf) be the quotient map
induced by fB9 and p% any jet in Bk(R/). That the jet p% preserves lower order
bundles (i.e., that Bk(R') is admissible as an almost structure) follows imme-
diately from the analogous property of any jet pk

M e Bk(M/) which induces pB.
Therefore pR defines a linear isomorphism (pB)% of the tangent space of
Bk~\R) at ί, the (k — l)-jet of the identity map of R, onto the tangent space
of Bk~1(R/) at the projection pB~

x of pB. The same is true, of course, for jets
qk

R € Bk(R). It is a standard fact (see [4]) that f% is the Λ-jet prolongation of
fR if and only if the following triangle commutes no matter which point qB is
selected from Bk(R):
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By pushing this critical triangle down to the level of N > N' via the bijec-
tions Bk(R) -> Bk(N),Bk(R') — Bk(N'), we obtain the triangle

Here commutativity holds because i% is in fact the &-jet extension of fN. It
follows that commutativity holds above, so that fR: R—>R' in a local morphism
whose A -jet extension is the prescribed map fB. As fB: Bk(R) —> Bk(R'),fR is
the desired lift of fN.

5. The simple quotients of real type

This section begins with some relevant generalities. Suppose S is any of the
model bundles in the ladder, and Os its origin. There is a natural surjection
of LM onto the tangent space of S at Os defined by the usual procedure of
prolonging vector fields. If X is a ΓM vector field, and exρ£ X e ΓM is its
local one-parameter group of transformations, then the vector field Xs is
defined to be the infinitesimal generator of the quotiented fiber extension
group of transformations (expί X)s on S. Passing to jets of vector fields, this
prolongation process defines in particular a surjection LM —> TOs(S). (Surjec-
tivity is obvious, for the map is nothing but the surjective extension map LM —>
TiB\M) followed by the derivative of the projection B\M) -• {JN B\Kn) =
P-+S.)

Every one-jet ps 6 G^S) may be identified with a linear isomorphism (ps)#
of TOs(S). The jet ps is represented by the map fs e Γs induced by an element
ίu £ ΓM> a n d by definition (ps)^ = dfs. Necessarily fM(0) = 0, and from the
equality ((fM)*X)s = (fs)*Xs i s derived the commutativity of the square:

TOs(S)^>TOs(S).

If E is a closed ideal of LM, then its image (Es)Os in TOs(S) is invariant under
the action of G\S). For by Proposition II. 1.6, if fM e ΓM fixes the origin, then
{jM)^.E — E. Consequently the subspace (Es)Os extends uniquely to a distribu-
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tion Es on S by the action of B\S): if s e S, then (Es)s = (Ps)*(Es)Os for any
one-jet ps € B^S) with target s. Since any other jet in B\S) with the same target
differs from ps by an element of G\S), (Es)s is well defined. In the same way,
the almost structure B\S;) defines a distribution Es, on S'.

At each point m e M the formal Lie algebra Lm of infinite jets of vector
fields at m was defined to be the translate of LM. The ideal E is carried to an
ideal Em of Lm, and we shall speak of a vector field X on M as an E field if
JZ(X) £ Em for all m. (In particular, L^ fields are just ΓM vector fields.) By
construction, if X is an E field on M, then its extension Z# on S is a section
of the tangent subbundle Es furthermore, with the Campbell-Hausdorff for-
mula one can easily show that the extensions of E fields on S span Es at every
point. This yields several bits of information. First, since the fields Xs are all
invariant under the right action of the structure group of S —> N9 the distribu-
tion Es is right invariant. Second, the distribution Es is integrable in the sense
of Frobenius. For if X and Y are E fields, then so is [X, Y]. As [Xs, Ys] =
[X, Y]s> the Frobenius condition is satisfied by a spanning set of vector fields
everywhere, which suffices to guarantee the integrability of Es.

One may conclude from the integrability of Es that the distribution Es, is
also integrable, and moreover that every jet in the almost structure Bk(S') is
representable by a morphism from S into 5' which preserves the distributions.
(Complete the pseudogroup Γs to the Frobenius pseudogroup of all maps
preserving Es, enlarge Bk(S') to a formally integrable almost Frobenius struc-
ture, and apply the Frobenius theorem.) Thus Es and Es, determine foliations
on S and S' respectively, and the almost structure on S' consists of certain jets
of foliation-respecting morphisms.

Several trivialities might be noted. The whole discussion above is entirely
natural. Therefore, if S is a bundle lower in the ladder than S, then the triangle

commutes. For the bundle Q (and hence all lower bundles), the map LM —•
TθQ(Q) kills the abelian ideal IA and thereby induces a surjection LM —>
TθQ(Q). For the polynomial vector fields are dense in IA, and the one-parameter
group of any polynomial field in IA acts on each fiber of M by translation
since Q = P/T, the induced one-parameter group on Q is the identity.
Similarly, for each bundle Rj the map LM —> T0.(Rj) kills the ideal Jo 0 Ίλ

Θ Θ Ίj.

We now turn our attention to the problem of finding a lifting map
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fj-1 n/

Rj ίj > R!

where fj is an extant structure preserving morphism, and fj_λ is required to be
a structure preserving morphism as well. In this section the simple algebra hj
is assumed to be of real type, and the index / is fixed throughout.

As Ίj —• T0.(Rj) is zero, the image of I3 in TOj_x(Rj_^ is vertical, tangent
to the fiber of Rj_ι —> Rj. This fiber is just the group Hj, and the map of Ίj
into the Lie algebra of Hά is just the surjection Ίj —> hj defined in § 1.

Part of a horizontal complement to the vertical tangent space allows invariant
definition. The adjoint representation of LM —» Der (LM) induces a represen-
tation LM —> Der (7^). Define the ideal E of LM to be the kernel of this repre-
sentation. We claim that the distribution ER._X on Rj_λ is horizontal. For the
image E of E in LM is just the commutator of Ίj, E = {x eLM: [x, Ίj] = 0},
and therefore E is disjoint from Ίj. (As Ί) = hj is simple, E Π Ί] = 0. Then
E Π Ίj is a proper closed subideal in Ίj which must be zero according to
Proposition 1.1.) Therefore the image of E —• T0._1(Rj_ί) does not intersect
the vertical component, so at least at Oά_λ the distribution ER._X is horizontal.
Because both the vertical distribution and ER._X are preserved by the action of
Bί(Rj_ί), they are everywhere disjoint. Likewise the distribution EB> on R'j_λ

is horizontal.
The distributions ER._X. and ER>._χ on Rj_x and R/

j_1 are integrable by
preceeding general considerations. Any structure-preserving lift fj_ιm. Rj-ι —>
R/

j_ί of /̂  must respect the foliations defined by these distributions. We now
show that this is the only constraint governing the lift. The key item is the
use of the algebraic structure theorem for Ίj to characterize the kernel pseudo-
group of the quotient ΓR._x^>Γ*Rj. The kernel is shown to be the entire collec-
tion of morphisms of Rj_L which respect the foliation and induce the identity
on Rj.

Let Uf be the subspace of the dual U* to the tangent space U of N at 0
defined by Proposition 1.2, so that Ίj = hj <g) F(Uf). The annihilator of Uf
is a subspace of U, which may be considered as the tangent space of the leaf
through 0 in a linear foliation of N. (In fact, it is easy to check that under
the projection Rj_1—> N, this foliation of N is induced by the foliation by
ERJ-X o n Rj-i ) From the fact that Ίj = hj (x) F(Uf), we can easily deduce
that the pseudogroup ΓR._X contains every morphism of the bundle Rj_L =
N X G/(H0 x x Hj_ΐ) of the form (n, a) —> (n, h(n)a) where h: N —> Hj
is any function being constant on the leaves of the foliation of N. In fact, since

Hj is connected we can locally write h(n) as a product (exp X^ri))
(exp Xt(ή)) around any point N, which we may for convenience take to be the
origin, where each Xt is a function from N to hj which is constant on leaves
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of the foliation of N. Since M is fibered over N, the functions Xt may be
defined on M by requiring that they be constant on the fibers of M —• N. Then
for each i = 1, , t the infinite jet ft(Xi) belongs to hj (g) F(Uf) — Jj. Let
Yi e LM be any preimage of j£(Xi) under the surjection LM —» Z^, and for any
specific index / let Zt be the unique polynomial vector field on M of degree at

most /, which equals Yt modulo L$. Then fM = exp Zi exp Zt belongs

to ΓM and has the form (n,z) -* (n, b(n)z), where b: N —> Hs is a function
constant on the leaves in N, and /J(Z?) = jι

0(h). Thus the /-jet of the given
morphism of Rj_λ at points above 0 e N equals the Z-jet of the induced mor-
phism fR._x e ΓR._X. By translating to other points in N, we conclude that the
given morphism may be approximated everywhere by elements of the pseudo-
group Γ Rj_x up to arbitrary order, so that the morphism itself must belong to

1 Rj-i

As every morphism θ of Rj_ί inducing the identity on Rj is of the form
θ(n, a) = (n,h(ή)ά), where h: N-+Hj9 to complete our characterization of
the kernel pseudogroup of ΓBj_x —> ΓBj we need only to demonstrate that if θ
respects the foliation on Rj_19 then in fact h must be constant on the leaves
of the foliation of N. Let u e U be any vector annihilated by Uf. Since M =
N X K, we may extend u to a constant vector field on M. Then u is an E
field, so its extension uRjl to a vector field on Rj_x is a section of the distri-
bution ERj_x. By naturality, uR._1 projects under the map Rj^-*Rj to the
vector field uR. on Rό. Since θ: Rj_1—> Rj_ι induces the identity on Rj,
θ^uRj_x also projects to uRj. Thus ( 0 * ^ . ^ ) — uR._x is vertical with respect to
Rj_x —» Rj. But the distribution -EjBy_1 is horizontal, so if θ preserves ERj_1 we
must have θ^uR._1 = uRjl. This equation is equivalent, in terms of the specific
representation of θ on the trivialized bundle Rj_19 to the relation uh — 0,
where the constant vector field u on N operates on the function h in the usual
way for vector fields. But uh = 0 for all u e U annihilated by Uf if and only
if h is constant along the leaves of the foliation in N.

Now we are ready to construct the lift fj^: Rj_λ —• 2^_χ. Just choose it to
be any morphism covering fά and mapping leaves of the ER._X foliation inR ά _ x

into leaves of the EB>}_X foliation in R!5_x. Such an fj_1 may always be found
at least locally. For at any point rj_ί in i^^_x above a point r7 in Rj9 the
horizontal space ERjl maps bijectively onto the space ER. at rά via the projec-
tion Λj. ! —> Rj. Therefore this projection locally restricts to a diίϊeomorphism
of leaves of the ER._X foliation in Rj_ι onto leaves of the E5 foliation in Rj. A
similar assertion holds for R!j_λ^> R!j. As the morphism fj: Rj —> R'j preserves
structure, it must map leaves of the ER. foliation into leaves of the ER>. folia-
tion. Therefore a lift fj_ι may be locally found mapping leaves of the ERjx

foliation into leaves of the EB>_χ foliation. Because ERjl and ER^X are both
invariant under the right action of the structure group of Rj_ί-+ N9fj_ι may
also be required to be a morphism.

To prove fj_ι preserves the A -th order almost structures we must show that
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it pj_1eBk(Rj_ι), then pfj_γ = fj^ipj.j belongs to Bk(R/

j_1). Let pj be the
image of Pj_λ under the projection Bk(Rj_1) -> Bk(Rj). Then ft = fkj(pj)
belongs to Bk{R/

j) because fj preserves structure. Let q/

J_1 be any point above
p'j in the fibration Bk(R'j_1) -• Bk(R]). Then (^_ 1)-y y_ 1 is the &-jet of a
morphism of Rj_19 which induces the identity on Rj and which respects the
foliation of Rj_v (For both pf

ό_λ and qfj_λ are foliation respecting jets.) There-
fore, by the characterization of the kernel pseudogroup, (q'j_ι)~1p'j_1 belongs
to GiRj.j). Hence ^ _ x = ^ _ i ((^_i)"y y_i) belongs to B*(Λ/

i_1) as desired.

6. The simple quotients of complex type

When the group Hά is of complex type, the lift

κj-i * κj-ι

1
R, -Jί-+ R;

is accomplished by a straightforward complexification of the procedure de-
veloped in the last section for the real type quotients. The distributions now
are subbundles of the complexified tangent bundle, and must be tamed by a
complexification of the Frobenius theorem, an amalgam of the real Frobenius
theorem with the Newlander-Nirenberg theorem. First we complexify the
general discussion of the previous section.

Again let S be any bundle in our ladder, and consider the complex linear
map LM®C —> TOs(S) (x) C. Any ideal E of the complex Lie algebra LM®C
induces right invariant distributions Es and Es, on S and S' just as before, Es

and Es, now being complex subbundles of T(S) (g) C and T(S') (x) C respectively.
The standard Frobenius theorem says that a real linear subbundle Es of

T(S) is locally equivalent to a translation invariant tangent subbundle on a
Euclidean space, via local difϊeomorphisms of the Euclidean space into S, if and
only if the vector field sections of Es are closed under the Lie bracket opera-
tion. The complex analogue of this, proved in [8] by reduction to the two
special cases of classical Frobenius theorem and the Newlander-Nirenberg
theorem, is the following.

Theorem 6.1. A complex linear subbundle Es of T(S) ® C is locally equi-
valent to a translation invariant subbundle of the complexified tangent bundle
of a Euclidean space, via local diffeomorphisms of the Euclidean space into
S, if and only if the sections of Es and of the associated bundle Es + Es are
both closed under Lie bracket.

With analytic input from this complex Frobenius theorem and algebraic in-
put from Proposition 1.4, the lift is now established by mimicry of the real
case. The essential fact is that the kernel pseudogroup of Γ^- i —> Γ*Rj is again
uncomplicated; here it consists of all morphisms (n, a) —> (n, h(ή)a) where
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h(ή) = h(x, y, z) is constant in certain variables y, holomorphic in some com-
plex variables z, and arbitrarily smooth in other variables x. The details are
carefully worked out in [11].

7. The center

The problem of finding a structure preserving morphism fQ lifting a given
structure preserving morphism fRo

Q -fQ-+ Q

is of a more substantial nature than the earlier lifting questions. Choose any
morphism fQ lifting fRo. (This may always be done locally, which suffices.) Then
all other lifts are of the form fQ s, where s is a morphism of Q inducing the
identity on Ro. By means of the trivializations Q = N X G and Ro = N X
G/Ho, the morphisms of Q inducing the identity on Ro may simply be con-
sidered as functions s: N —• Ho. (Thus given s: N -*H0 the corresponding
morphism of Q is in, a) —> (n, s(ή)a).) It will be shown that fQ-s preserves
structure precisely when the function s satisfies a certain formally solvable in-
homogeneous constant coefficient linear partial differential equation, where-
upon a theorem of Malgrange and Ehrenpreis will conjure the solution.

Bk(Q) and Bk(Qf) are principal Gk(Q) bundles over N and N' respectively.
Since the λ -jet prolongation of any morphism on Q commutes with the right
action of Gk(Q), one needs only to demonstrate that (fQ-s)k carries one point
in each fiber of Bk(Q) -> N into Bk(Q') in order to conclude that (fQ s)k: Bk(Q)
—>Bk{Q'). The easiest point to examine in the fiber over n e N is obviously
the λ -jet at Os of the morphism induced by "translation by n" on M denote
by in this jet whose target is (n, ί) <= Q, i being the indentity of G.

The image ln of in under Bk(Q) -* Bk(RQ) is the &-jet of the morphism in-
duced by "translation by n" on Ro, with target (n, 1) e Ro, where 7 is the identi-
ty of G/Ho. Because fRo preserves structure, we conclude that fBo(ιn) e Bk(Ro).
Pick a jet pn with target fQ(n, i) e Q which belongs to Bk(Qf) and covers fRβn)
via Bk(Q') —> Bk(Rβ the existence of pn results from the surjectivity of Gk(Q)
-^Gk(RQ). Then fQ preserves the &-th order structures if and only if for all
n € N9 ί%(in) belongs to the fiber of Bk(Qr) over the point fQ(i, ή) e Q\ or
equivalently j%(in) = pn-qn for some element qn e Gk(Q). As fQ(in) and pn both
project to f%βn) e Bfc(i?o), the element qn must belong to the kernel Gξ(Q) of
Gk{Q) —> GklR0). The choice of p w , which may be made smoothly in n (at least
locally), provides the inhomogeneous data for the differential equation fξ(in) =
pn qn, which must be solved for some smooth assignment n-+qn if ]\ is to
preserve the &-th order structure.
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Having chosen pn to be data for fQ, data for the other candidates fQ>s may
be generated naturally. For note that the morphism of Q corresponding to a
constant function N —>c e Ho belongs to ΓQ. (For by definition any c e H is
the restriction to K of a linear transformation C on M belonging to ΓM and
inducing the identity on N. If (n, z) € N X K = M, then C(n, z) = C(n, 0) +
C(0, z) = (n, xn) + (0, c(z)) = in, c(z) + xn). So the action of C on the fiber
Kn — n x K belongs to c + Γ C v4, and hence the extension of C to a mor-
phism in Γq is just the map corresponding to N —> c.) Therefore the &-jet of
the constant morphism corresponding to an element c € Ho defines an element
ck e Gk(Q), which acts on Bk(Q!) to the right. In particular, for any s: N ->H0

and any point n e N, the element s{n)k e Gk(Q) acts on Bk(Q'). The target of
pn'S(n)k is fQ(n,s(n)) = (fQ s)(n9 ί).

So the morphism fQ s of Q into Q! preserves ^-structure precisely when the
function s: N —> Ho solves the partial differential equation (fQ s)k(ίn) e pn s(ή)k

• Gk(Q), or (sin)'1)16 p'1 /ξ ^^0'̂ ) e GkiQ). Let us isolate the unknown function
s from the inhomogeneous data. Note that for fixed n e N, Pΰ1' i\n,i)(fQ) is the k-
jet of a morphism of Q with source (n, 0 and target (0, 0 = OQ. Its projection in
Ro is, by choice of pn9 the jet ίRQ(inY

ι /£0(ΐ0) = t 1 . Therefore p " 1 jk

in^(fQ) is the
Λ -jet at (n, i) e g of a morphism of the form (x, a) -+(x — n, pn(x — a)a),
where (x,a) e N X G = Q and the function ρn: N —• //0 is any function whose
&-jet at 0 € iV is a specific value. (Note that ^^(0) = 1.) Substituting the fact
that in is the jet of (x, a) —> (x + n, «) at (0, 0 e β, we see that (ιy(n)~1)fc Pΰ1

'fQ-sk(in) is the λ -jet at (0, 0 ^ Q °f the morphism (x, a) —> (JC, s{n)~ιpn(x)
>s(x + n)ίz). In accordance with our identification of morphisms of Q which
induce the identity on RQ, with the corresponding HQ valued functions on N,
we may consider the group Gk(Q) to be a subgroup of the commutative group
JkiH0) of λ-jets of iyo valued functions on N with source 0 eN and target 1 eHQ.
Considered thus, the condition on s is that the Λ:-jet at 0 € N of the function
x —> s^rcT^OcM;*: + n) belong to GkiQ). The / -jet of pw: N —> Ho is all that is
specifically determined about ^ call it rw. If c e Ho is any element, let the
same symbol denote the / -jet at 0 € TV of the constant function N —• c 6 Ho.
As usual, let τw denote "translation by n". Then we may recapitulate the
differential condition on s in the following explicit form.

Summary. A local morphism fQ s of Q into Q/ preserves the k-th order
almost structure if and only if, for all n, the function s: N ->H0 solves the k-
jet equation

( * ) jko(s-τn) sin)-' rn e GkiQ) C Jk(H0) .

To understand the equation (*), note that by the definition of Gk(Q), the
morphism of Q corresponding to a function s: N —>H0 belongs to Γ%. if and
only if jkis-τn)'Sin)~ι e GkiQ) for all n. Thus (*) is nothing but the structure
equation for the kernel pseudogroup of Γ*Q —> ΓRo with inhomogeneous data rn.
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Because ^ ( 0 ) = 1, each pn maps N into the identity component of Ho. Also,
if s satisfies (*) so will s multiplied by any constant function therefore there
exists a solution s: N -» Ho if and only if there is a solution mapping N into
the identity component of Ho. In short, we may assume Ho to be connected,
in which it consists either of {1}, the positive real numbers, or the nonzero
complex numbers. (If Ho = {1}, Q = RQ and there is nothing to prove.) If s
satisfies (*), so will s multiplied by any function N ->H0 which solves the cor-
responding homogeneous equation (i.e., whose morphism of β preserves
structure). Therefore there exists a solution to (*) if and only if there exists a
solution for which the jet j^(S'τn)'S(ή)~1'rn belongs to the identity component
of GJ(β) at (one and hence) every n. Consequently we may also assume GJ(β)
to be connected.

We now transform (*) into linear form by applying the logarithm. If Ho is
the positive reals, then we may use the real log: H0-*R. This transforms
functions from N to Ho into functions from N to R, and the commutative
multiplicative group /J(#o) into the vector space /J(Λ) of Λ>jets at 0 of real
valued functions on N. As logGJ(β) is a connected Lie subgroup of Jξ(R), it
is a vector subspace. Then we see that (*) has a solution s: N -• HQ if and only
if there is a solution t = log (s): N —• R of the linear equation jξ(t τn) — t(n) +
\ogrn e logGJ(β). This may be made to look more familiar if we let D be a
linear map of Jξ(R) onto some Rι whose kernel is log GJ(β). Defining for any
t:N-+Rjhe function Dt: N -* Rι by (Dt)(ή) = D(jk

Q(t.τn) - t(n))9 the
operator D is nothing but a real constant coefficient linear partial differential
operator on N. Denote by u(n) the value — D(rn). Then for a real center Ho

we may state our

Conclusion. There exists everywhere local morphisms of Q into Q pre-
serving the k-th order structures if and only if there exists locally real valued
functions t on N satisfying the constant coefficient linear partial differential
equation Dt = u.

When Ho is complex, there is no more difficulty. Since all of the rn and all
of the elements of GJ(β) are /:-jets of complex functions on N with source
O e N and target 1 e Ho, we may use the standard branch of the logarithm
defined in any neighborhood of 1 to transform these jets. Then the local
existence of a solution s for (*) is equivalent to the local existence of a complex
valued function t on N satisfying jo(t τn) — t(ή) + log rn e log G Q ( 0 . (For if
any solution t exists near the point n e N, then there exists a solution with
t(ji) = 0. Since exp = (log)"1 in a neighborhood of 0 <= C, if t(n) — 0 then
s = exp (/) solves (*) near n. Conversely, if (*) has a solution near «, then it
has a solution for which s(n) = 1, and therefore t — log (s) solves the linear
equation.) So the conclusion above remains valid with the understanding that
R must be replaced by C.

We are finally prepared to invoke [9]:
Theorem 7.1. Let D be a constant coefficient partial differential operator
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defined near the point n in the vector space N, and let u bev any smooth l-tuple
of functions also defined near n. Then the equation Dt = u has a smooth solu-
tion t defined around n if and only if the equation is formally solvable in a
neighborhood of n. That is, for all x in some neighborhood of n and all posi-
tive integers i, the equation Ji(Dt) = ji(ύ) is solvable.

The theorem, due to Malgrange and Ehrenpreis, is valid in either the real
or complex category. One may trace through the derivation of our equation
Dt = u to show that its formal solvability is equivalent to formal integrability
of Bk(Q'). For, if for each / there exists a solution to fjβt) = Jl(u) at x, then
the k-]et extension of the morphisms fQ (exp t) of Q into Q takes Bk(Q) to
image manifolds in Dk(Q, Qf) which contact Bk(Q') at points above x e N to
arbitrarily high order. Conversely, the existence of a sequence of morphisms
satisfying the latter condition and lifting fRo implies the existence of the requisite
sequence of functions t. Thus the known formal integrability of Bk(Qf) allows
us to apply Theorem 7.1 and to find the lift fQ.

8. Final step: The Abelian quotient

The construction of the final lift

is nearly identical with the construction of fQ in the last section. Once more
the only condition is an inhomogeneous form of the constant coefficient partial
differential equation characterizing the kernel pseudogroup of ΓP —> Γ*Q. In
fact, this lift is somewhat easier than the last to accomplish, since the equa-
tion is linear at inception; there is no need to transform logarithmically.

Again begin by choosing any morphism fP lifting fQ. The morphisms of P in-
ducing the identity on Q are then identified with smooth functions on N with
values in the translation group T of K, and all morphisms of P into P' lifting
fq are given by fP-s for some s: N —>T. Now repeat the argument of § 7,
changing the referents Q, Ro, and HQ to P, Q, and T respectively, to conclude
that the morphism fP s preserves the almost structure if and only if s satisfies
the &-jet equation ik(s'Zn)-s(n)~l-rn e Gk(P) for all n. Here rn is a / -jet at 0
of a T valued function on N with source 0 e N and target the identity of T,
and the kernel Gf (P) of Gk(P) -* Gk(Q) is considered to be a subgroup of the
group Jk(T) of &-jets of Γ-valued functions with source 0 e N. (All elements
of Gk(P) must have the identity in T as target.)

The multiplicatively written group T is canonically isomorphic to the addi-
tive vector group K, so we may transform the above equation into the linear
equatin of &-jets of K valued functions
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( * ) %(s>τn) - s(n) + rn e Gk(P) C J*(K) .

Because we may modify any solution s of (*) by any solution of the corres-

ponding homogeneous equation (where rn = 0), (*) is solvable if and only if

it remains solvable when G%(P) is replaced by its identity component. There-

fore we may assume Gk(P) to be connected and hence a vector subspace of

Jk(K). Choose a linear map D of Jk(K) onto some Rι with kernel Gk(P), set

u(n) = —D(rn), and let D be the constant coefficient partial differential

operator on K valued functions defined by φs)(n) = D(jk(s-τn) — s(n)). Then

there exist local morphisms P —> P/ everywhere lifting fQ and preserving &-th

order structure if and only if the equation Ds = u is everywhere locally solvable

on N. As before, the formal solvability of the equation is equivalent to the

known formal integrability of Bk(F). Application of Theorem 7.1 (interpreted

in the category of K valued functions) completes the proof.
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