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MODELS OF THE RIEMANNIAN MANIFOLDS 0?
IN THE LORENTZIAN 4-SPACE

MASAO MAEDA & TOMINOSUKE OTSUKI

1. Introduction

We denote by O? the 2-dimensional Riemannian manifold defined on the
unit disk D?: u?* + v* < 1 in the uwv-plane with the following metric:

1.1) ds? =1 — u? — v)" (1 — vHdu® + 2uvdudv + (1 — uddv?} ,

which is called the Otsuki manifold (of type number n) following W. Y.
Hsiang and H. B. Lawson who treated it in [3] for any integer n > 2 and in
particular for the case where n = 2. The second auther of this paper studied
it about the angular periodicity of geodesics in [4], [5] and [6].

On the other hand, O} is the hyperbolic plane H? of curvature —1, and (1.1)
is the metric described in the Cayley-Klein’s model of H?. O? is the hemi-
sphere: u®* 4+ v* + w?* = 1 and w > 0, and (1.1) is the metric described in the
plane of the equator: w = 0O through the orthogonal projection.

As is well known, some part of H? but not whole plane can be represented
as a surface of revolution in the Euclidean 3-space E®. In the present paper,
we shall show that O (n > 1) can be represented as a surface of revolution in
E? for the part: > + v* < (2n — 1)/n?, and the whole space can be done as
such a surface in the Lorentzian 4-space.

2. Preliminaries
Putting u = r cos 8, v = r sin 4, we can write (1.1) as
2.1 ds’ = (1 — r)"%4dr* + r*(1 — rH)»"de®

which shows that the metric (1.1) is invariant under the group of rotations
around the origin of D2

Putting E = (1 — r»)*?and G = r(1 — )"}, from

K= —wla e 250

we can obtain the Gaussian curvature K of O, namely,
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2.2) K=0Qn—-1—-n®H1 —rH),

which leads immediately to

Proposition 1. 02 is of positive Gaussian curvature for n > 1, and of
negative Gaussian curvature for 0 < n < }.

Next, we denote the length of curve r = a by l(a). Then

(2.3 l(a) = 2za(l — a?)* v,

from which we can easily obtain
Proposition 2. If n > 1, then l(a) is maximal when a = n™%, and I(n"%) =
2z(ne,_)%, where e,_, = [1 + 1/(n — 1)]""%.

3. A representation of O2 in E*

In the following we suppose n > 1. In the Euclidean 3-space E® with
canonical coordinates x,y, z, let us consider a smooth surface of revolution
M? given by

3.1 p = (f(z) cos 6, f(z) sin 6, 2) .
The induced Riemannian metric on M? from E® is
(3.2) ds* = {1 + (f'(2))}}dz* + (f(2))*d¢* ,

where z, 6 are considered as local coordinates of M?.

Using the polar coordinates r,# of R* regarded as an E?, we consider a
mapping from a neighborhood of the origin of R* to M*: O% > (r,0) — (z,0) €
M?, given by

(3.3) z= o) .

Then from (2.1) and (3.2) it follows that this mapping is isometric if and only
if the following equations are satisfied:

(3.9 A = = {1 4+ (M)}’ (),

(3.5) r*(1 — )" = (fle())” .
Since we may suppose f > 0, from (3.5) we get

(3.6) flp() = r(l — rP¥n—v.

Differentiating (3.6), we have

3.7) f’(so(r))% — (1 — P — )
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and substitution of this in (3.4) gives

(dp/dr)* = r*(l — )"~ ,
where
(3.8) Ar) =2n —1— n¥?.

Since we may suppose that ¢(r) is monotone increasing, we obtain

(3.9 o) = ﬂ (1 — PR=94/2(0dt for0<r< iZn;l .

n
Now let

(3.10) r =12

be the inverse function of ¢(r). Then (3.6) implies

(3.1 f@) = v(@{1 — (P .
Finally, putting

(3.12) p(n ¥ =a, o(W2n —1/n)=b,

we obtain

_ 1 _l 3(n-1) _ 1
S A e
(313) f(b) — \/f;l_.——l (1 _ 2n — l)i(n—l) _ E ’
n

n? ne, _,
. f(b) 2
lim 7 = 2.
= (@ J e
Furthermore from (3.7), (3.8) and (3.9) it follows that
(3.14) (@) =1 — nr?)r-'a@m)*,
(3.15) fO =4, f@=0, f(b)=—cw.

Thus we have

Theorem 1. O2 can be represented as a surface of revolution: (f(z) cos 0,
f(z) sin 8, z) in E* for 0 < r < /2n — 1/n, where z = o(r) and f(z) are given
by (3.9), (3.10) and (3.11).

Remark. The profile curve % of the surface of revolution in Theorem 1 is
given by
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(3.16) x=r(1 — e z =) .

Let k, (= the curvature of ¥) and k, be the principal curvatures of this surface.
Then as is well known

k= —@U+ F@Q", o=+ (@I
By using (3.14) and (3.16), we can easily obtain

(3.17) o= 2m—l—nr o VA
A — "2 2(r) a1 —rmmr
from which follow
limk, = + o0, limk,=0.

z—-b z-D

4. A surface theory in the Lorentzian 3-space

In this section, for our purpose we give a brief theory of surfaces in the
Lorentzian 3-space.

Let R? denote the Cartesian product R X R X R where R is the set of real
numbers. On R® with the canonical coordinates x,, x,, x,, the Euclidean 3-space
E? and the Lorentzian 3-space L® are defined by the metrices

E?: ds* = dx? + dxi 4+ dxi, L3: ds* = dx} + dxi — dx%,

respectively. We denote the inner products, in E* and L?, of any two vectors
X = ) X/ox;and Y = 3, Y,d/dx; by

(4-1) (X, Y) = X1Y1 + XzYz + X3Y3 s
4.2) X, Yy =XY, + XY, — X,Y,,

respectively, denote the symmetry of E* with respect to the x,x,-plane by ¢,
and extend ¢ to vectors as follows:

4.3) o(X) = X,0/0x, + X,0/0x, — X,0/0%;, .
Then we have
4.4) X, Y) =X, 0(Y)) = (p(X),Y) .

Let X A\ Y be the outer product of X and Y in E®, that is,

XAY =&Y, - XY) 0 +xy, —x,Y)2
ox, 0x,

0
0x, ’

+ (X1Yz - XZYI)
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and let {X, Y} denote the space spanned by X and Y. Then we obtain easily

Lemma 1. o(X A Y)e{X,Y}if and only if X N\'Y is a null vector of L.

Now let M be a surface in R?, and M, the tangent space at x e M. Let N,
and N, be the normal tangent spaces of M, in E® and L? and denote the
normal bundles of M in E® and L* by N(M) and NM), respectively. By virtue
of (4.4), we have immediately

Lemma 2. ]\Nlm = o(N,).

A point of x € M is said to be regular if N, is linearly independent of M,.
For any tangent vector fields X, Y e the set I'(T(M)) of smooth cross sections
of the tangent bundle T(M) of M, we have

4.5) dyY =VyY + T;Y ,

where dyY is the ordinary derivative of Y with respect to X in R? FyY ¢
I'(T(M)), and TyY e I'(N(M)).

Supposing every point of M is regular in L*, we have the following formula
with respect to L? analogous to (4.5):

(4.6) dyY =V;Y +TxY, PyYe(TM), TiYecl(NM).

Let (x, e, €,, e;) be an orthonormal frame of E* at x € M such that e, ¢ Ny.
Then

@.7 TyY = AKX, Y)e, ,

where A(X,7Y) is the 2nd fundamental form of M in E*.
Proposition 3. For any X,Y e I'(T(M)) at any regular point of M in L3,
we have

AX,Y)

4.8 oY =VyY — 230 7 Proj ,
4.8) Vx x len ey 10j 90(33)
(4.9) Ty = A oy

(e e
(4.10) Proj p(e;) = {e,, e50e; + {e,, e5)e, .

Proof. At a regular point, we easily obtain
4.11) e; = —Proj p(e;) [{ey, 65> + oley) [{es, €3> .
Substitution of (4.11) in (4.5) gives
dyY =VyY + AX,Y) {—Proj p(e)) + o(e))}/<{es, e3> ,
which implies (4.8) and (4.9). q.e.d.
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Now let us consider a surface of revolution around the x,-axis in L® given by
“4.12) p = (xcos @, xsin @, f(x)) .
Take the orthonormal frame (p, e,, ¢,, €;) of E*® given by
e, =1+ ) (cosd,sind, ),
e, = (—sin g, cos 4, 0) = ¢(e,) ,
e; = (1 4+ f)7#—f cosd, —f'sing, 1) ,
ple) = (1 + )74 —f cos 6, —f sind, —1),

from which we obtain

(4.13) {ey e = —1/p= —<e,e), {es, ey =1,
where
(4.14) p=0Q4+ /A —-.

so that (e, e,, ¢(e,)) is an orthogonal basis of L?.
In the following, we consider the case where

(4.15) If)] < 1.
Then putting
(4.16) é=vype, &=ce, &=+pole),

we see that (p, &, &,, €,) is an orthonormal frame of L? in the following sense:
(€, &) =1<(€,8&y= —(é,é>=1,
<él9 éa> = <éza és> = <én éz> =0.

Proposition 4. For a surface M of revolution around the x,-axis in L}
vgith the~ profile curve x, = f(x,) such that |f'(x,)| < 1, its principal curvatures
k, and k, satisfy the following equations:

(4.17) I;I = — ¢k, , ];2 = —pk,,

where k, and k, are the principal curvatures of M considered as a surface in E*.

Proof. Let us compute the principal curvatures &, and %, of the surface M
in L*® by means of the frame (p, &, é&,, &;) stated above. Define the 2nd funda-
mental form A(X,Y) of M in L? by

(4.18) TxY =AX,Y)é,, X, Yel'TM)).
From (4.9), (4.13), (4.16) and (4.18), it follows that
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(4.19) AX,Y) = —vV AKX, Y) .
Putting
X =Xe + X, = Ylél + X’zéz s Y=Ye + Ye, = I71‘?1 + fvzé'z >

we have

~

X1=/1_%X1, X~.2=X25 lel-‘_%Yl’ I‘}2=Y2'

Thus by noticing that 4(X,Y) = kX,Y, + kX,Y,, AX,Y) = i, X.¥, +
k&,X,Y,, from (4.19) we can easily obtain (4.17).

Proposition 5. Let M be a surface in L* such that every point is regular.
With respect to an orthonormal frame (p, é,, &,, &,) of M in L*, we have

~ ~

(4~20) Rmz = fiquz - Ialelz s

where /Lﬂ = A, é,).
Proof. For any X,Y,Z ¢ I'(T(M)), we have

dyY = VY + AX,YV)é,, RX,VZ:=VsVyvZ —VyW3yZ — VixiZ,

where R is the curvature tensor of M in L*. From the above first equation follow
immediately

dydyZ =V ¥vZ + A(Y,Z)dxé, (modé&,), dyé, e I'(T(M)) .

Substitution of these equations in the identity dxdyZ — dydxZ — dix y;Z = 0
gives

4.21) RX,Y)Z = AX, Z)dyé, — A(Y,Z)dx&, .
On the other hand, we have
{d; 8, 8;) = —(&;,ds,8;) = — <&, Teaéﬁ>
= —A@, &) ey = 4, .

Hence we can easily obtain (4.10) from R,,,: = (R(é,, €,)é,, &,>.
Using Proposition 5 for the surface in Proposition 4, we obtain

K= _Rmz = —/In/zzz = —kik, = —pkik, ,

where K is the Gaussian curvature of M.
Supposing the curve x; = f(x,) as is shown in Fig. 1, i.e.,

(4.22) —1<f(x) <0, f'(x) >0,

we have
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X3

Xy = f(x)

0] %

Fig. 1

R S ORI S (S CRUE

and therefore

(4.23) K= —7"A — »7/x, .

5. A representation of O in L*

We showed in § 3 that the subdomain of 02 (0 < r < v/2n — 1 /n) is repre-
sented as a surface of revolution in E®? but we could not extend it over

r=+/2n — 1/n. In this section, we shall do it in the Lorentzian 4-space
L* (D E®) defined by the metric:

5.1 ds* = dx* + dy? + dz? — dw?

on R* with the canonical coordinates x, y, z, w as a surface of revolution around
the zw-plane.

Using the complex coordinate = u + iv on D? we can write the metric
(1.1) of O? as

(5.2) ds* = {(1 — g ~{7'dy* + 2Q2 — yidnd7] + 7/d7’} .

Putting £ = x + iy and { = z + iw, by Theorem 1 we can write the represen-
tation of O%2(0 < r < +/2n — 1/n) in E* C L* as

(5.3) g = p(1 — gp)te-n | € = I: (1 — F-920)dt ,

where E° is considered as a hypersurface of L* defined by w = 0.
Noticing the expressions of the righthand side of (5.3), we define a mapping

O:(W2n—1/n<r<1)—L'CL
given by

(5.4 &=y —pier, (=b+ ifh___l/ (1 — =y —2(Ddt

where L is given by z = b ((3.12)) in L*.
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Theorem 2. The mapping (5.4) is an isometric imbedding of O% (v2n —1/n
< r<1)into L3

Proof. From (5.3) an elementary calculation gives
dgdf + dgdl = (1 — y)"7Pdy’ + 22 — ydydy + n'd7?} .

Since in L, (5.1) can be written as ds* = Re (dédé + dcde), from (5.2) it thus
follows that (5.4) is an isometric immersion of O (v/2n — 1 /n<r<1)in L.
We can easily see that (5.4) is one-to-one. q.e.d.

Now, the first equation of (5.4) shows that the image of the mapping (5.4)

is a surface of revolution in L* around the zw-plane. The profile curve of the
surface in L?® is given by

(5.5 x=r(l — pa0 | = f il — PR =i
2n—-1/n

Differentiating (5.5) we obtain

5.6 Codw A0
dx 1 — nr?
dw _ 2n—1—nr
(57) W - (1 _ nr2)3«/—(1 _ rZ)n-32(r) .

Since n > 1 and 1 — nr? < 0 for v/2n — 1/n <'r, (5.6) and (5.7) imply

aw| —o0, M __q,
dx lr=va@m=i/n dx |r=1
-8 d d V2n —1
>0, —1<f<co fr¥'Tlr<1.
dx? dx n

The last inequality shows that the profile curve satisfies the condition in
Proposition 4. By means of (5.5), (5.6), (5,7) and (2.2), and using w(x) for
f(x,) in (4.23) we can easily see that in L® the Gaussian curvature K of the
surface of revolution is equal to the Gaussian curvature K of O..

Thus putting (5.3) and (5.4) together we get an isometric imbedding of O;,
into L*, the image of which is a surface of revolution around the zw-plane
with the profile curve € = €, U ¥, where %, and €, are given by

x = r(l — rte-v |
(5.9) Gy dz = olr) = L 11 — H*=9yaddt ,

w=0, O<r<+2n—1/n),
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x=r(1l — rz)é(n—l) , z=">b,

5.10) %,: r S —
G0 %y [ - epoy=3tar, (12n_1 <r< 1) .
Ya2n=1/n n
w
fl «— tz)g(n—:)‘/_ (1) dt
r=1

&/2’1 - ll(ne‘n—l)

1/vne,_,

r=1/vn r=+2n—1/n
Fig, 2

Proposition 6. The profile curve € = €, U %, is C* and not C*. The sub-
arcs €, and €, are C°.
Proof. We have

d_x = (1 — nA)(1 — P |

dr
‘;Zf = —(n — Dr(3 — nrH(1 — rHt-o
r

For %,, we have

d_Z =r(l — rZ)é(n—a)\/x_(rj , d’z _ (1 — r2)%(n-—5)P(r)

dr dar? Va(r) ’
where
(5.11) Pr)=2n—1— (4n* — 5n + 2)r* + n*(n — Dr*.
Since P(r)|,-vzz=i/n = —(Q2n — D(n — 1)?/n2 < 0,
we get
G612 % 4o, 42, g, V-1
dr dr? n
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Next, for €, we have

dw e d*w (1 — )2 =9pP()
— (1 — P2y 3)¢_2 , - s
FranACe 0> V=10
so that
(5.13) d—w—>+0 dzw—)-}—oo aSr—>M+O.
dar dr? n

These relations imply the proposition.

In conclusion, we obtain

Theorem 3. The surface of revolition in L* around the zw-plane with the
profile curve € = €, U ¥, given by (5.9) and (5.10) is a C'-model of O? and
the parts corresponding to €, and %, are analytic models of O (0 <r <
v2n — 1/n) and O% (v/2n — 1/n < r < 1), respectively.

Examples. 1) When n = 2, ¥, and ¥, are given by

Sx:r«/"l—rz
241 — 2 + /3 — 4r?
Gy:lz = {3 — VI = /3= 4r —lo :
z {«/_ VI —rv3—4r + g T T
w=0, for0<r<ivi.
and

1 1) 1 2+ 43
S U OV S 0 D S eey . VA< I
. 2(“/_ 2) T Tz

b=1v3 —1log2 + 4/ 3);
x=r/1 =1, z=">b,
Cridw = 4r — W1 —PV/4rr —3 — Lsin ' 2¢/1 — 1,
for i/3 <r<1.

II) When n = 3, %, and ¥, are given by
Cy: x=r(1 —1ry), Z=21—7{5«/———(5—-9r2)3/2}, w=0,

for0<r<+5/3,

or

SPRNEE S EE S
*= {3 + ( 27 %) % 27 ’
for 0 < z < 54/5/27,
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and

1 545
=__—_(Bv5 —-2¢/2), b= ;
= ) 27

€: x=rl—r), z=b, w=(@F—-5/9%, fory/5/3<r<1,

or
x=(4/9 — w)(5/9 + w2, for 0 <w < 8/27.
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