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MODELS OF THE RIEMANNIAN MANIFOLDS O2

n

IN THE LORENTZIAN 4-SPACE

MASAO MAEDA & TOMINOSUKE OTSUKI

1. Introduction

We denote by O\ the 2-dimensional Riemannian manifold defined on the
unit disk D2: u2 + v2 < 1 in the wy-plane with the following metric:

(1.1) ds2 = (1 - u2 - v2)n-2{{\ - v2)du2 + luvdudv + (1 - u2)dv2} ,

which is called the Otsuki manifold (of type number ή) following W. Y.
Hsiang and H. B. Lawson who treated it in [3] for any integer n > 2 and in
particular for the case where n = 2. The second auther of this paper studied
it about the angular periodicity of geodesies in [4], [5] and [6].

On the other hand, O2

0 is the hyperbolic plane H2 of curvature — 1, and (1.1)
is the metric described in the Cayley-Klein's model of H2. O\ is the hemi-
sphere : u2 + v2 + w2 = 1 and w > 0, and (1.1) is the metric described in the
plane of the equator: w = 0 through the orthogonal projection.

As is well known, some part of H2 but not whole plane can be represented
as a surface of revolution in the Euclidean 3-space E3. In the present paper,
we shall show that O\ {n > 1) can be represented as a surface of revolution in
Ez for the part: u2 + v2 < {In — l)/n2, and the whole space can be done as
such a surface in the Lorentzian 4-space.

2. Preliminaries

Putting u = r cos θ, v = r sin β, we can write (1.1) as

(2.1) ds2 = (1 - r2)n-2dr2 + r\\ - r2)n~ιdθ2 ,

which shows that the metric (1.1) is invariant under the group of rotations
around the origin of D2.

Putting E = (1 - r2)n~2 and G = r\\ - r2)n~\ from

K=
X dr

we can obtain the Gaussian curvature K of 6ξ, namely,
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(2.2) κ=(2n-l- nr2){\ - r2)~n ,

which leads immediately to
Proposition 1. O\ is of positive Gaussian curvature for n > 1, and of

negative Gaussian curvature for 0 < n < J.
Next, we denote the length of curve r = a by l(a). Then

~l)(2.3) /(α) = 2πa(l - aψn

from which we can easily obtain
Proposition 2. // n > 1, //zeft /(α) w maximal when a = w*, and Z(π"*) =

2π(nen_d-*> where en_λ = [1 + l/(w - I)] 7 1 " 1 .

3. A representation of 6ξ in E3

In the following we suppose n > 1. In the Euclidean 3-space E3 with
canonical coordinates x, y, z, let us consider a smooth surface of revolution
M2 given by

(3.1) p = (f(z) cos θ,Kz) sin θ,z) .

The induced Riemannian metric on M2 from E* is

(3.2) ^ 2 = {1 + (nz))2}dz2 + (Kz))2dθ2 ,

where z9 θ are considered as local coordinates of M2.
Using the polar coordinates r,θ of R2 regarded as an E2, we consider a

mapping from a neighborhood of the origin of R2 to M 2 : O\ 3 (r, θ) —> (z, ̂ ) €
M2, given by

(3.3) z = φ(r) .

Then from (2.1) and (3.2) it follows that this mapping is isometric if and only
if the following equations are satisfied:

(3.4) (1 - r 2 ) - 2 = {1 +

(3.5) r\l - r 2 ) - 1 = (%(r)))2 .

Since we may suppose / > 0, from (3.5) we get

(3.6) f(φ(r)) = r(l - rψn~» .

Differentiating (3.6), we have

(3.7) f(φ(r))ήL = (1 - r*)*<»-»(l - nr2) ,
dr
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and substitution of this in (3.4) gives

(dφ/drγ = r\\ - rψ~*λ{r) ,

where

(3.8) λ(r) = In - 1 - n2r2 .

Since we may suppose that ψ{f) is monotone increasing, we obtain

(3.9) φ(r) = Γ ί(l - tψn-3Wλ(t)dt for 0 < r < ^ 2 n ~ l

Jo n

Now let

(3.10) r = ψ(z)

be the inverse function of φ{r). Then (3.6) implies

(3.11) Kz) = ψ(z){l - (ψ(z))2}*(w-υ .

Finally, putting

(3.12) p(n-*) = α , ^(V2n - 1/n) = b ,

we obtain

1 ) " - ' >m = ' (i -1)
V / i \ n / Vnen-ι

(3.13) ^"ΞLί 2»
ne,,

lim

Furthermore from (3.7), (3.8) and (3.9) it follows that

(3.14) f(z) = (1 - ni*)r-Kλ{r)y* ,

(3.15) f (0) = + oo , f(a) = 0 , f (b)

Thus we have
Theorem 1. O^ can fee represented as a surface of revolution: (f(z) cos #,

/(z) sin θ, z) in Ez for 0 < r < V2n — 1/w, w/zer̂  z = <p(r) and f(z) are given
by (3.9), (3.10) and (3.11).

Remark. The profile curve # of the surface of revolution in Theorem 1 is
given by
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(3.16) x = r(l - rψn~l) , z = φ(r) .

Let kx (= the curvature of # ) and /:2 be the principal curvatures of this surface.
Then as is well known

k, = -f (Z){1 + (f (z))2}~3/2 , *, = jc-'fl + (f(z))2}"1/2

By using (3.14) and (3.16), we can easily obtain

* , =
(1 _ r*)n'Wλ(r)

from which follow

lim kx = + oo , lim k2 = 0 .
z-δ z—δ

4. A surface theory in the Lorentzian 3-space

In this section, for our purpose we give a brief theory of surfaces in the
Lorentzian 3-space.

Let R3 denote the Cartesian product R X R x R where R is the set of real
numbers. On R3 with the canonical coordinates x19 x2, x3, the Euclidean 3-space
E3 and the Lorentzian 3-space L3 are defined by the metrices

E3: ds2 = dx\ + dx\ + dx\ , L 3 : ds2 = dx\ + dx\ - dx\ ,

respectively. We denote the inner products, in E3 and L3, of any two vectors

X — Σ Xid/dXi and Y = Σ Yid/dXi by

(4.1) (X, Y) = XJλ + X2Y2 + X,Y3 ,

(4.2) <z, y> = Z.Γ, + z2y2 - x3γ3,

respectively, denote the symmetry of E3 with respect to the qxj-plane by \φ,
and extend φ to vectors as follows:

(4.3) φ(X) = X1d/dx1 + X2d/dx2 - X3d/dx3 .

Then we have

(4.4) <Z, Y> = (X9 φOO) = (φ(X), Y) .

Let X A Y be the outer product of X and Y in £ 3 , that is,

X A Y = (X2Y3 - X3Y2)^- + (X3Yλ - X1Y^4-
OXi υX2

dx.
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and let {X, Y) denote the space spanned by X and Y. Then we obtain easily
Lemma 1. ψ{X Λ Y) e {X, Y} if and only if X Λ Y is a null vector of ZΛ
Now let M be a surface in R3, and Mx the tangent space at x <= M. Let Λ^

and iV-p be the normal tangent spaces of Mx in E3 and L3, and denote the
normal bundles of M in E3 and L3 by N(M) and N(M), respectively. By virtue
of (4.4), we have immediately

Lemma 2. Nx = φ(Nx).
A point of x e M is said to be regular if Nx is linearly independent of Mx.

For any tangent vector fields X, Y e the set Γ(T(M)) of smooth cross sections
of the tangent bundle T(M) of M, we have

(4.5) dxY = VXY + TΣY ,

where dxY is the ordinary derivative of Y with respect to X in R3, FXY e
Γ(Γ(M)), and TXY e Γ(N(M))

Supposing every point of M is regular in D, we have the following formula
with respect to L3 analogous to (4.5):

(4.6) dxY = VXY + TXY , VXY e Γ(T(M)) , TXY e Γ(N(M)) .

Let (x, e19e2, e3) be an orthonormal frame of E3 at x e M such that e2eNx.
Then

(4.7) TxY = A(X,Y)e3,

where Λ(X, Y) is the 2nd fundamental form of M in E3.
Proposition 3. For any X,Y <ε Γ{T(M)) at any regular point of M in L3,

we have

(4.8) VXY = FXY - A(X> Y) Proj φ(e3) ,
<e e}

(4.9) TXY = A}X> Y) φ(e3)

(4.10) Proj φ(e3) = <^, ^ ^ i + < 2̂

Proof. At a regular point, we easily obtain

(4.11) έ?3 = - P r o j <p(e2)/<e3, e3} + φ(e3

Substitution of (4.11) in (4.5) gives

dxY = VXY + A(X, Y) {-Proj φ(e2)

which implies (4.8) and (4.9). q.e.d.
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Now let us consider a surface of revolution around the x3-axis in Ώ given by

(4.12) p = (x cos θ, x sin θ, f(x)) .

Take the orthonormal frame (p, e19 e29 e3) of Ez given by

e1 = (l +/«)-* (cos M i n 0 , f ) ,

e2 = (—sin θ, cos θ, 0) = p(e2) ,

e3 = (1 + f ) - * ( - f cos 0, - f sin θ, 1) ,

^ 3 ) = (1 + n~K-r cos θ, -fύnθ, -1) ,

from which we obtain

(4.13) <ez,ezy = ~l/μ= -<έ?i,έ?i> , <^2^2> = 1 »

where

(4.14) ^ = (1 +H/(l-fO.

so that (e15 e29 <p(e3)) is an orthogonal basis of ZΛ
In the following, we consider the case where

(4.15) \f(x)\ < 1 .

Then putting

(4.16) ex = V μ e1, e2 = e2 , e2 = V μ <p(e3) ,

we see that (p9e19e29 e3) is an orthonormal frame of L3 in the following sense:

ζe19 e,} = <e2, e2} = — <g3, g3> = 1 ,

<e 1 ? e3> = <£2, e3> = <?!, e2y = 0 .

Proposition 4. For <z surface M of revolution around the x3-axis in U
with the profile curve x3 = f(xj such that \f(Xι)\ < 1, its principal curvatures
kγ and k2 satisfy the following equations:

(4.17) kx = -μ3/% , k2 = -μ1/2k2 ,

where kx and k2 are the principal curvatures of M considered as a surface in £ 3 .
Proof. Let us compute the principal curvatures kx and k2 of the surface M

in U by means of the frame {p,e^e2, e3) stated above. Define the 2nd funda-
mental form A(X, Y) of M in L3 by

(4.18) TΣY= A(X, Y)e3 , X,Y € Γ(T(M)) .

From (4.9), (4.13), (4.16) and (4.18), it follows that
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, Y) .

Y = Yλeλ + Y2e2 = Yxex + Ϋ2e2 ,

x2 = x2, Ϋ1 = μ-±γλ, f2 = y 2 .

^ Thus by noticing that A(X, Y) = KX.Y, + k2X2Y2, A(X, Y) = A ^ ? ! +
k2X2Ϋ2, from (4.19) we can easily obtain (4.17).

Proposition 5. Let M be a surface in U such that every point is regular.
With respect to an orthonormal frame (p, e19 e2, e3) of M in L3, we have

(4.20) ^M2i2 = AnA22 A12A12 ,

where Aaβ = A(ea, eβ).
Proof. For any X, Y, Z € Γ(Γ(Λf)), we have

άxY = VXY + A(X, Y)e3 , R(X, Y)Z: = VXVYZ - VYVXZ - FίX>Y1Z ,

where R is the curvature tensor of M in L3. From the above first equation follow
immediately

dxdγZ = VXVYZ + A(Y, Z)dxez (mod ez) , dxe
xe2

Substitution of these equations in the identity dxdγZ — dγdxZ — dίZιY1Z = 0
gives

(4.21) A(X, Y)Z = A(X, Z)dγe3 - A(Y, Z)dxe3 .

On the other hand, we have

<diae39eβy = -<e39d§aeβy = -<e39f8aeβ>

= —A(ea9eβχe3,e3y = Aaβ .

Hence we can easily obtain (4.10) from i£12i2: = <^(21 } e2)ex, e 2 ).
Using Proposition 5 for the surface in Proposition 4, we obtain

K. = *M2i2 ^ AnA22 = fCιK2 — μk\k>2 ?

where K is the Gaussian curvature of M.

Supposing the curve x3 = f(x^) as is shown in Fig. 1, i.e.,

(4.22) - 1 < fix,) < 0 , f'(Xl) > 0 ,

we have
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Fig. 1

+ n
72Λ-3/2 k2 =

and therefore

(4.23) = -mi - n-2/χ1.

5. A representation of O\ in L4

We showed in § 3 that the subdomain of O\ (0 < r < V2n — 1/n) is repre-
sented as a surface of revolution in E3, but we could not extend it over
r = V2n — \\n. In this section, we shall do it in the Lorentzian 4-space
U(Z) E3) denned by the metric:

(5.1) ds2 = dx2 + dy2 + dz2 - dw2

on i?4 with the canonical coordinates x, y, z, w as a surface of revolution around
the zw-plane.

Using the complex coordinate η = u + iv on D2, we can write the metric
(1.1) of O\ as

(5.2) ds2 = i ( l - 2(2 - ψj)dη<tη

Putting ξ = x + iy and ζ = z + /w, by Theorem 1 we can write the represen-

tation of O\ (0 < r < Λ/2Π — I jn) in E3 C L4 as

(5.3) ξ = η(\ - = Γί(l - ί)^»-
Jo

where E3 is considered as a hypersurface of L4 denned by w = 0.
Noticing the expressions of the righthand side of (5.3), we define a mapping

O\
n _ ι/n < r < 1)_>L3 c L4

given by

(5.4) £ = ? ( ! -

V2n-l/n

where L3 is given by z = b ((3.12)) in ZΛ
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Theorem 2. The mapping (5.4) is an isometric imbedding of O\ (V2n —1/n
r < 1) into U.
Proof. From (5.3) an elementary calculation gives

dξdξ + dζdζ = i( l - 2(2 - ηη)dηdτj

Since in L4, (5.1) can be written as ds2 = Re (dfdf + dζdζ), from (5.2) it thus
follows that (5.4) is an isometric immersion of O\ (V2n — 1/n < r < 1) in ZΛ
We can easily see that (5.4) is one-to-one, q.e.d.

Now, the first equation of (5.4) shows that the image of the mapping (5.4)
is a surface of revolution in L4 around the zw-plane. The profile curve of the
surface in U is given by

( 5 . 5 ) x = r(l- w = Γ /(I - tψn-3W-
J V271-1/Λ

λ(t)dt .

Differentiating (5.5) we obtain

dw _ rV~^W)
(5.6)

(5.7) d2w

dx2

l - n r 2 '

2n - 1 - nr2

- πr 2 )V-( l - r2)n~zλ(r)

Since n > 1 and 1 - nr2 < 0 for V2n - \\n < r, (5.6) and (5.7) imply

dw
~~d

(5.8)

= 0 , = - 1 ,

dx
for < r < 1 .

The last inequality shows that the profile curve satisfies the condition in
Proposition 4. By means of (5.5), (5.6), (5,7) and (2.2), and using w(x) for
/CxJ in (4.23) we can easily see that in L3 the Gaussian curvature K of the
surface of revolution is equal to the Gaussian curvature K of O\.

Thus putting (5.3) and (5.4) together we get an isometric imbedding of O\
into L4, the image of which is a surface of revolution around the zw-plane
with the profile curve # = ^ 0 U #i where #Ό and ^ are given by

(5.9)

x = r ( l -

w = 0

- Γίd - t
Jo
(0 < r < - 1/n) ,
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(5.10)

x — r^L — T j 2 V , z — u ,

w = [ ί(l - tψn-*W^λ(t)dt ,

Proposition 6. The profile curve & = <£„ U ^ iί C1 and noί C2. The, sub-
arcs <£<, and <#! are C.

Proof. We have

dx

dr

d2x

dr2

= (1 - nr*)(l - r2

= _ ( n _ l)r(3 -

For #„, we have

dr dr2 Mr)

where

(5.11) P(r) = 2n - 1 - (4«2 - 5n + 2)r2 + n\n - l)r4 .

SinceP(r)|r_vsί=-V. = ~ ( 2 " - D(« - DV«2 < 0 >

we get

- 0 .
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Next, for c€ι we have

V—

so that

(5.13)
dw

~dr~
+ 0,

d2w
+ OO

These relations imply the proposition.
In conclusion, we obtain
Theorem 3 The surface of revoliίion in U around the zw-plane with the

profile curve <g = ^ 0 U <Sι given by (5.9) and (5.10) is a O-model of O\ and
the parts corresponding to ^ 0 and (ίf1 are analytic models of 0^(0 < r <
\lln — 1/n) and O\ (V2n — 1/n < r < 1), respectively.

Examples. I) When n = 2, ^ 0 and <Sι are given by

and

^ } + j log 2 ^ ~ζ + V3 - W

+ /T
1 +

Z = ί) ,

- 3 -

for i y T < r < 1 .

II) When n = 3, ί?0 and ̂  are given by

: x = Kl -

for 0 < r < VT/3 ,

or

X = < —

1/2

for 0 < z < 5/Ύ jll ,
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and

— ( 5 / T - 2^/T) b = 5 λ Λ 5 ~;a = — ( 5 / T - 2^/T) , b = ;

27 27

<g\: x = r{\ - r2) , z = ft , w = (r2 - 5/9)3/2 , for vΊΓ/3 < r < 1 ,

or

x = (4/9 - w2/3)(5/9 + w2/ψ2 , for 0 < w < 8/27 .
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