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A CONGRUENCE THEOREM FOR CLOSED
HYPERSURFACES IN RIEMANN SPACES

HEINZ BRUHLMANN

Introduction

We consider two closed oriented surfaces F and F in Euclidean 3-space E*
and a differentiable map @: F — F preserving the orientation. The word dif-
ferentiable always means differentiable of class C~. Furthermore, we assume
that the set of points on F where the lines (p, p), p = @(p), are tangent to F
does not have inner points. Then the following theorems are known:

A) If all the lines (p, p) are parallel and H(p) = H(p) (H and H are the
mean curvatures of F and F respectively), then the surface F is obtained from
F by a single translation, i.e., the distances pp are the same for all points p
on F (H. Hopf and K. Voss [8]).

B) If all the lines (p, p) go through a fixed point O (which does or does
not lic on F or F) and if rH(p) = FH(p) (r and 7 are the distances of p and
p from 0), then F is obtained from F by a homothety, in other words the ratio
7/r is constant (A. Aeppli [1]).

In order to generalize these two theorems we consider the following case:
Let R**! be an (n + 1)-dimensional Riemann space, and &@(p,s) be a one-
parameter group of transformations of R™*! into itself. Furthermore, let F™
and F™ be two n-dimensional hypersurfaces of R**! such that the points of F*
are given by the formula:

p= o, fp), peF",

where f(p) is a differentiable function of F”. To generalize the condition for
the mean curvatures, we have to introduce an additional family of hyper-
surfaces, one for every point of F*, given by the formula:

Fr = o(F, {(p)) .

Then the point p = @(p, f(p)) lies on the hypersurfaces F* and F; and we
define:

H(p) = mean curvature of F* at p ,
H(p) = mean curvature of 7 at p .
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We denote by S the set of points of F* where the vector tangent to the orbit
of @(p, s) through p lies in the tangent space of F*. For this general case, the
following two theorems are known.

I) If H(p) = H(p) for all pe F*, ®(p,s) is a group of homothetic trans-
formations, and the set S of the exceptional points is nowhere dense in F”,
then F* and F" are congruent mod @; in other words, f(p) = const. (Y.
Katsurada [9]).

I) If H(p) = H(p) for all pe Fr, and the set S is empty, then F* and F”
are congruent mod @ (H. Hopf and Y. Katsurada [7]).

Theorem II is not a generalization of Theorem A, since in this case we
always have exceptional points. However it suggests that Theorem I is true
without the additional assumption of homotheticity.

Theorem I has been proved by Y. Katsurada by using the method of dif-
ferential forms. For the proof of Theorem II the authors use the strong max-
imum principle of E. Hopf [5]. In [10], K. Voss gave a proof of Theorem A,
using a generalized maximum principle. However, his proof worked only in
the case where F and F are real analytic surfaces. Later, P. Hartman [3] gave
a proof without using the assumption of analyticity, by generalizing the strong
maximum principle for elliptic differential equations. In this paper we give a
proof of the following theorem, which is a generalization of Theorem II since
we may have exceptional points, but which is not a generalization of Theorem
I since the assumption on the exceptional points is stronger than that in
Theorem 1.

Theorem. Let F*, F", F; be closed oriented hypersurfaces in R"*! as ex-
plained above, and assume all maps to be orientation-preserving. Furthermore
let o(p) = (w, ), where w is the vector tangent to the curve O(p,s), —e <
s < + &, at p, and @ is the normal vector of F" at p. If grad ¢ #* 0 whenever
¢ =0on F*, and H(p) = H(p) for all p e F*, then the hypersurfaces F* and
F* are congruent mod 9.

1. Variation of the mean curvature

Let F* be a hypersurface in an (n 4+ 1)-dimensional Riemann space R™*!
given locally by the equations

xt = x¥(u®) , i=1,.--,n4+1;, a=1,v.-,n.

Then the tangent space to the surface is spanned by the # linearly independent
vectors ¢, = (dx%/du*)d/dx. For the covariant derivative of the vector-field
t, in the direction of ¢, in R™*! we get

o°x? i 0x ox*\ 9

D ta, = V a — ( F —
? e ou“ou’ + ous out / oxt

and for the second fundamental form
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_ _ o°xt . oxd oxk\
o = Py = s + T o )

where n = n‘9/ox? is the normal to the hypersurface, and g;; is the metric

tensor of the space R**!. The formula for the mean curvature of the hyper-
surface is

H =gl /n=1n,

where g is the inverse of g,, = g,;(0x*/ou)ox’ /ou’.
Now let @(p, s) be a one-parameter group of transformations of R**!, and
F" and F" be two hypersurfaces such that

Fr = {0(p,{(p)), p € F"}

as in the introduction. We introduce an additional family of hypersurfaces,
depending on a point p € F” and a parameter ¢, 0 < ¢ < 1, given by the equation

Fr(p, ) = {&(q, tf(q@) + (1 — Df(p))|q e F"} .

Since @(p, tf(p) + (1 — Df(p)) = D(p, f(p)) = p, the point p lies on all the
hypersurfaces F*(p, #), p fixed and 0 < ¢ < 1. Furthermore we have, for t = 1,

F*p,1) = {0(q,f(@)) |q € F"} = F",
and, for t = O,

F(p,0) = {0(q,f(P))|q e F"} = F .

From these relations we get
H(p) — H(p) = of‘—dﬁ;—’;’idt ,
where H(p, 1) is the mean curvature of F*(p, #) at the point p.
The variation of the mean curvature gives
dH(p,1)/dt = l,,dg**|dt + g**dl,,/dt ,
and by differentiating the relation g**g,, = 67 we get
dg*|dt = —g“g* dg,,/dt = —g~g’{(dt,/dt, ;) + (1,,dt,[dD)} .

Furthermore, by taking the covariant derivative of the relations (n,n) = 1
and (n, t,) = 0, we obtain (n, D,n) = 0 and (D n,1t,) + (n,D,t,) = 0 or D,n
= 2%, with 22 = —(n, D,t)g". Hence

Dan = __(n’DatT)gﬁTtﬁ >
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dg:ﬂ laﬂ = _g“"gﬁr{<%, t&) + <t7” %)} (Datp, n) — 2gaﬁ(Dan’ tﬂ) .

In order to compute the second term in the above expression for dH(p, 1)/dt,
differentiating the relations (n,n) = 1 and (n, ¢,) = O with respect to ¢ we get
(dn/dt,n) = 0 and (dn/dt, t,) + (n,dt,/dt) = 0, or dn/dt = 2*t, with 2* =
—(dt,/dt, n)g**. Hence

dn/dt = —(dt,/dt,n)g*t, ,

dl d d dt
o B — gor & D gm) = gL Doty n) — gori, (%o, n),
Y gdt( »n) =9 ar o) T e

where 1%, = (D,t;, t,)g7. Finally we get the following formula for the variation
of the mean curvature:

dH aﬂ< d ) ( dt ) . <dt6 )
2 = — D, n 29°#(Dn, —2 } — g« ,nj.
a I\ g P ) T2 a) 9 g

Now using the definition of the hypersurfaces F*(p, 1) :
F*(p, 1) = {0(q, tf(@) + (1 — Df(p))|q e F"},
or in local coordinates
xi(ue, ) = ', tfw) + (1 — Hf(p)) ,
where f(p) is independent of the u®, we get
X\ = oxi |ous = 00" |u= + 130" |ds)df |ou*

so that for the tangent vectors 7, of the hypersurface F*(p, #) at the point p we
have

t, = (09" /ou"|, + w't of [ou=)a/ox* ,
where w* = 00(p, s)/ds|,_,, and by differentiating with respect to ¢
dt,/dt = wof/ou" , w = w'od/ox" .
Furthermore
D, t, = (oxi/ou? + I'' xixE)d/ox* ,

SO

d d ox . ox? . oxt\ @
A pyg, = (L% | i 0%y xg_ﬂ>_.
dt (dt e T R L v e

atp —
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For the derivative of x¢ we get

oxt _ 0Pt 1y o'9t of ta@" of
ou? ou“ou? ouds ouf oufds ou"
T 3 2.
Lp ‘9t of of n ta¢> of

0s* ou* ouf ds ououf

Since 3@ /ouou’, °®t|duas, 3*@*/os*, 09*/3s do not depend on ¢ when con-
sidered only at the point p on the hypersurfaces F"(p, ), we get for the
derivative of the above expression with respect to ¢:

| n ow'  of npy ow* of of Wi o*f ,
dt ouf ou* ouf ouf  ou” os ou* oJuf ou-ouf
SO
d o°f of of ow of of
— Dt Dw D.w 2t
ar T Y e T O e ¥ ou, s o ow

Therefore the formula for the variation of the mean curvature in our case is
the following:

dH w 0f g olw,n) of 21( ow ) « Of Of
dt (. g utou’ T2 ou*  ouf + s )9 ous  ouf
g=I? (w, n) f

2. A lemma on partial differential equations

For the proof of our main theorem we need a generalization of the strong

maximum principle for elliptic partial differential equations. We consider a
linear differential expression of the form

L= % 4,001 1 518

of
oxe

where A4,,(x) and B, (x) are differentiable functions, together with a differenti-
able function ¢(x) in a normal domain G of the r-dimensional number space
R". We assume that ¢(x) and L(f) have the following properties:

a) grad o(x) # 0 whenever ¢(x) = 0,

b) 27, A(x)2°2% is positive definite for every x with o(x) > 0, negative
definite for every x with ¢(x) < 0, and identically O for every x with ¢(x) = 0.

Then we prove the following

Lemma. Let f(x) be a solution of L(f) = 0, and x, be a point in G such
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that f(x) < f(x)) for all x in G. If either ¢o(x,) #+ 0 or ¢(x) =0 and
1, B (x)(@¢/0x")(x,) > 0O, then f(x) = f(x,) in a neighborhood of x,.

This lemma is a special case of a theorem proved in the paper [4] by Hartman
and Sacksteder. However, since we use only a simple case, we give a sketch
of the proof.

Proof. The case ¢(x,) # O follows directly from the strong maximum
principle of E. Hopf [5]. Therefore we may assume ¢(x,) = 0, and
>*_, B, (9¢p/0x)(x,) > 0. The proof for this case is a modification of the proof
of E. Hopf’s second lemma [6]. Since by assumption grad ¢ #+ 0 whenever
¢ = 0, the set of points where ¢(x) = 0 is a differentiable curve through x,.
Therefore there exists an open ball K, in G such that its boundary has exactly
the point x, in common with the curve ¢(x) = 0 and that ¢(x) > 0 in K, — x,.
We choose its center as the origin of the coordinate system, and set r = |x|, r,
= |x,|. We may assume f(x,) = 0 and f(x) > O in K,. By the strong maximum
principle this implies either f(x) > 0 in K, — x, and f(x,) = 0 or f(x) = 0 in
K,. We show that f(x) > 0 in K, — x, leads to a contradiction. We consider
the auxiliary function A(x) = e~"* — e"3, which has the properties: A(x) > 0
for |x| < r,, h(x) = O for |x| = r,, and

Lopew) = 5 B2 () = =207 5} Bas=c 5B, 2w, >0,

since the vector x, = (x, - - - , x7) is a negative multiple of grad ¢. Therefore
L(h)(x,) > 0, and hence L(k) > 0 in the closure of a ball K, with center x,.
Now we consider the function g(x) = f(x) — ¢h(x) in the domain K = K, N K,.
Then g > 0 on S, N K,, where S, = boundary of K,, and ¢g(x,) = 0. Further-
more, by choosing ¢ > 0 sufficiently small, we also have g > 0 on S, N K,
since f > O there.

Since L(f) = 0, and L(#) > 0 in K, we have L(g) < 0 in K, and therefore
¢g > 0 in K by the strong maximum principle. Hence (dg/dn)(x,) < 0, where
dg/dn is the derivative in the direction of the outer normal of K. But then

A () — 99 ) 4 B
E(xo)—dn(xo)+€dn(xo)<09

since (dh/dn)(x,) < 0. This contradicts the fact that grad f(x,) = O.
Proof of the Theorem. By using the formula for the variation of the mean
curvature and the relation

Hp) - A = [ D a—0,

we get the following differential equation for the function f:
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n of
B, = s
ot P guous + 4‘;:1 P ou

where

Ay = f "w, n()g=*(dt ,

B, = fl{zgaﬁm + 2t(aa—w, n)g“ﬁ% — g% 4w, n)}dt .
) u s u

From the relation
(w, n(2))dA(1) = (w, R)dA

(proved in [2]), where dA(?) is the volume element of the hypersurface F*(p, 1)
at p, it follows that if (w, ) == 0, then (w, n(¢)) = O for all ¢, 0 < ¢t <1, and
that if (w,7n) = 0, then (w, n(z)) = O for all 7. Therefore by setting ¢(p) =
w, ), 237, A,A°2° is positive definite if ¢ > 0, negative definite if ¢ < O,
and identically O if ¢ = 0, since g**(?) is positive definite for every ¢.

Now let p, be a maximum point of f, so that f(p) < f(p,) for all p in F=.
Such a point exists, since F" is supposed to be compact. Then either ¢(p,) # 0,
or ¢(p,) = 0; the latter implies that (w, n(#)) = O for all ¢, and

B, = 2fl(g«ﬁa_(w’_'i>d, ,
. ou*

Since (w,n(7)) # 0, if (w,7) # 0, then the set of points p on F" where
(w, n(2)) = 0 is the same as the set where (w,7) = 0. Furthermore, if (w, )
> 0, then (w, n(¢)) > 0, and

grad (w, n(?)) = c(?) grad (w, i) ,
with ¢(¢) > 0. Thus

S 0 (- f‘ o 0w, n(®) 0w, n)
—(P) =2 £ dt
,sz=:1 ouf (P . g ou® ou?

) f ‘() ger IW, ) OW. ) 4y s
1 ou® out

u

since g*f is positive definite and c(?) > 0, c(1) = 1. Therefore by our lemma,
f(p) = f(p,) in a neighborhood of p, ; in other words, the set U, = {p ¢ F*|f(p)
= f(p,)} is open in F”. This implies that F* = U, U U,, where U, = {p ¢
F*|f(p) < f(py)}, so that F"is the disjoint union of two open sets. Since F»
is connected, it follows that U, = F~*, i.e., f(p) = const. on F*. Hence the
theorem is proved.
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