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ON THE ATIYAH-BOTT FORMULA FOR
ISOLATED FIXED POINTS

DOMINGO TOLEDO

Introduction

The original Lefschetz fixed point theorem [11] states that if M is a compact
manifold, /: M -* M has isolated fixed points and L(/) denotes the Lefschetz
number of /, then

L(f) = Σ degp (1 - /) ,
V

where the sum runs over the fixed points p of /. If / is a smooth map and the
fixed point p is simple in the sense that det (1 — dfp) Φ 0, then its local index
has the infinitesimal description degp (1 — /) = sign det (1 — dfp). Atiyah and
Bott have shown that Lefschetz theory also makes sense in the context of elliptic
complexes. They show in [2] that if / induces a chain map of an elliptic com-
plex E over M and the fixed points of / are simple, then

L(/,£)= Σ > ( p ) ,
P

where v{p) are infinitesimal invariants of / at p. It is natural to ask whether
their local index can be explained as a special case of a cohomological formula
which always makes sense for isolated fixed points, as in the classical theorem.

The purpose of this paper is to present a general approach to fixed point
theory which applied to isolated fixed points gives both the Atiyah-Bott formula
and cohomological formulas. This method is based on a classical formula of de
Rham [14, § 33] which expresses intersection numbers in Riemannian mani-
folds in terms of the Green kernel. It leads to an integral representation for
the Lefschetz number from which the Atiyah-Bott theorem can be derived by
some delicate but quite elementary analysis. Moreover, assuming that the
Poincare lemma holds, a cohomological expression for the index of an isolated
fixed point can also be derived. For simple fixed points this reduces of course
to the infinitesimal description.

The use of de Rham's formula was motivated by the intersection—theoretic
proof of the classical theorem. An exposition of this proof in a form which
suggests the steps to be taken in the elliptic context is included in the first
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section. The analysis which is carried out in detail in the next four sections is
then outlined.

In § 6 the general theory is applied to the classical elliptic complexes. For
the de Rham complex it just gives the classical formula. But for the Dolbeault
complex the integral formula of § 5 is taken by Dolbeault's isomorphism into
a sheaf-cohomological expression involving the Grothendieck residue. This
formula was derived independently by Y. L. Tong, first by methods completely
different from the ones given here [17]. Very recently he has discovered for
the Dolbeault complex a similar intersection approach [18].

The intersection formula of de Rham was first brought to my attention by
Professor J. Eells, and he conjectured to me that it may be useful in fixed point
theory. I am also greatly indebted to him for much encouragement and advice
while this work was in progress. I would also like to thank Professor G. R.
Livesay for his encouragement to study these questions, and Professors C. J.
Earle and R. S. Hamilton for several very helpful conversations.

1. Topological motivation

We begin by describing the intersection-theoretic proof of the classical
theorem. This was actually Lefschetz's original approach [11]. The alternative
proof based on traces at chain level, which is more familiar today, is due to
Hopf [8]. For simplicity we assume that M is orientable. We use singular coho-
mology with real coefficients.

Let Γ: M -> M x M be the graph map defined by Γ(x) = (fx, x). The fixed
points of / are just the intersections of Γ with the diagonal Δ. To count these
intersections one introduces the Thorn class μ, namely, a generator for
Hn(M x M, M x M — Δ) » R, where n = dim M. A choice of Thorn class
is the same as a choice of orientation for M, and μ induces generators for the
one-dimensional spaces Hn(M), Hn(M,M — point). Consequently we can
identify all these spaces with R in a compatible fashion.

The Lefschetz formula follows from the following observations.
( i ) Poincare duality and the Kίinneth formula identify

Hn{M χ M ) « Σ WM ® H*M* = Σ Horn (WM, WM) .
ί i

The basic fact discovered by Lefschetz is that if μ denotes the image of μ in
Hn(M X M), then μ = 2 (— 1)* id# / under this identification.

(ii) If F denotes the fixed point set of / (F is so far arbitrary), we have the
diagram:

Hn(M,M - F)J^-Hn(M x M,M X M - Δ)

1' I'
Hn(M) < Hn(M x M)
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From (i) it is immediate that (/ X l)*/z = Σ ( - !)*/*• Since Γ* = Δ*(j X 1)*
and J * gives the cup product, which is the Poincare duality pairing, it follows
that Γ*μ = US)- Thus L(f) can be interpreted as a cohomology class supported
on F, namely, jΓ*μ.

(iii) Suppose the fixed points p are isolated. Take disjoint neighborhoods
Up of /?, each homeomorphic to Rn, and smaller neighborhoods Vp of p with
KVP) c t/p. Then Hn(Vp X Up, Vp X Up - Δ) is generated by the local Thorn
class μp at p, which is the restriction of μ. Applying excision to the top part
of the diagram and using Mayer-Vietoris to identify j with addition we get:

© Hn(Vp, Vp-0)^-@ Hn(Vp X Up9 VpχUp- Δ)
A

i
Hn(M)

Thus US) = ΣP UP) where v(p) = Γ*μp.
(iv) If δ: {Vp x Up9 Vp x Up - Δ) -> (Up, Up - 0) is the difference map

δ(x, y) = y — x, and WpeHn(Up,Up - 0) is the generator, then μp = δ*Wp9

because both classes have the same restriction to the fibre p X (Up, Up — p).
Therefore v(p) = degp (1 — /).

From this point of view Lefschetz theory centers around the study of the
Thorn class. The fact that this class is supported on the diagonal (i.e., it acts
as the ^-function on the diagonal) combined with its global interpretation as a
map of cohomology gives at once the localization of the Lefschetz number on
the fixed point set. The precise nature of this localization (the explicit formula
for the local index) is then carried out by studying only the local Thorn class.

Carrying out this procedure in the analytic context presents at once the dif-
ficulty of finding a class on M X M supported on the diagonal. One way of
doing this is to use distributions. The various proofs of Atiyah and Bott [1],
[2] use some procedure for approximating the Dirac measure on the diagonal
by smooth sections. A very elegant proof along this line was given by Kotake
[10]. He uses the heat equation to find such approximations, and actually
avoids any use of distributions. All these methods give a "trace at chain level"
which is very special to simple fixed points.

There is however another localization procedure due to de Rham [14, § 33]
which for our purposes can be stated as follows:

Localize the Thorn class by writing it as a smooth class on M x M which

cobounds off the diagonal. We follows this procedure to find the analytic ana-

logues of the steps just outlined. We work always in the context of smooth

sections of vector bundles and do not need any theory of distributions.

In § 2 we review the main facts which we need on elliptic complexes, and

carry out step (i) of the above outline. This is the only section in which we
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make essential use of pseudo-differential operators. These come in very heavily
in the proof of Lemma 1, the basic estimates which we need.

§ 3 gives the basic localization theorem of the Lefschetz number (step (ii)).
We also remark on coincidence theorems as they fall naturally under the
general study of the Thorn class. In § 4 we derive the Atiyah-Bott formula for
simple fixed points from the general theory of the first two sections.

In § 5 we show how to construct local Thorn classes under the assumption
of sheaf-exactness and complete step (iii). For step (iv) (identification of the
local Thorn class) one needs more information on the local geometry of the
complex in order to get useful formulas. This is done in § 6 for the classical
complexes.

2. Elliptic complexes

Our notation is very close to that of Atiyah and Bott [2]. A good general
reference for differential operators on manifolds is [12], and for pseudo-differ-
ential operators [13], [15].

M always denotes a compact smooth n-manifold. If E is a vector bundle
over M, and U an open subset of M, then Γ(E, U) denotes the space of C°°-
sections of E, and ΓC(E, U) those with compact support. We write Γ(E, M)
simply as Γ(E). T*M is the cotangent bundle of M.

Let Eo, , EN be complex vector bundles over M, and Dt: Γ(EZ) —> Γ(Ei+1)
differential operators such that

(i) D , + A = 0,

(ii) for each ξ € T*M, ξ Φ 0, the symbol sequence

υ — > h0 > tLι — > > tLN — > υ

is exact.
Then we say that E = {Ei9Dt} is an elliptic complex. H(E) = {W{E)}

denotes its homology.
For simplicity of exposition, we always assume that all the Dt have order

one. If the operators have arbitrary orders, then the Hodge theory of this
section would have to be modified as in [10, §§ 4, 5]. The estimates of Lemma
1 would be somewhat different. Finally, σiPi, ξ3) in Lemma 4 would have to
be replaced by suitable differential operators and subsequent formulas modified
accordingly. All our arguments will then go through in this more general
context.

Let Ω denote the bundle of twisted π-forms (bundle of volumes) of M. If
M is oriented, Ω can be identified with the bundle Λn(T*M) of usual H-forms.
Let E[ = Horn (Eu Ω) = Ω ® Ef. Then there exists a natural pairing

(2.1) < , > ( o r t r ) : ^ ( g ) ^ >Ω,
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given by evaluation, or equivalently trace, which induces a pairing

(2.2) Γ{Eτ) <g> Γ{E[) > C

defined by

s ® t > J<s, f) .
M

We can then define the transposed operators D[: Γ ( £ +1) -> Γ ( £ ) characterised
by

{E't9 D'i\ forms a complex E', also elliptic,called the dual complex. The pairing
(2.2) induces a pairing:

(2.3) HKE) <g> H\Ef) > C .

Ellipticity implies that these homology groups are finite dimensional and that
the pairing in homology is nonsingular. This follows easily from the Hodge
theory outlined below.

Let Ei IE1 E'j denote the external tensor product over M x M. There is a
natural inclusion with dense image Γ ( ^ ) (x) Γ(E'j) -> r(Et M E'3). The operator
Dt: Γ(Et) -> Γ(Ei+1) determines an operator Ό-(x) (or D< ̂  1): Γ(Et H E'j) ->
Γ(EU1 Kl E'j) with the property that on Γ{Et) (x) Γ(E;), D4(JC)(J ® ί) = (D,5) ® t.
This determines Z)^^) uniquely if it exists, and its existence need only be shown
locally using coordinates. Similarly, we have D'j(y): ΓiE^E)^ —> ΠE^Ej).

The bundles Et Kl E'j can be assembled into a complex EIEI ^ over M x M
by defining

2-1

with differentials

given by

( , y ) ( i j )
The sections of EffiE' can be thought of as kernels of integral operators

Γ(E) -• Γ(E) by the formula
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s > \ k(x, y)s(y) ,

where juxtaposition means the evaluation pairing (2.1). Thus k e
if and only if the associated integral operator maps Γ(Ei) to Γ(Eί+k). For
most of our work we need only a small portion of the complex Eg\E', namely,
D_x: Γ(E^E')_λ-^>Γ(E^E;)0, as we work mostly with operators of homo-
geneous degree zero and minus one. In § 5 we also need D_2.

Examples. (1) The most familiar elliptic complex is the de Rham complex
A = Λ(T*M). If M is oriented and we identify Ω with A71, then in the notation
introduced above, (Λ*)' « An~\ (If M is not oriented, (A1)' is the bundle of
twisted (n — 0-forms.) The pairing A1 (x) Λn~ι —• An is the usual wedge-product
pairing. From Stokes' theorem we see that (d$ = (— I)ί~1dn_ί, and the
induced pairing in homology is just the usual Poincare duality pairing.

AIEI A! is the complex of double forms o n M x M (in the sense of de Rham
[14]) except that we use the grading from - n t o n instead of a the usual
grading from 0 to 2n. But taking note of the various sign conventions, d is
seen to be the usual tensor product differential.

(2) Another elliptic complex of great geometric interest is the Dolbeault
complex Ap>* of differential forms of type (p, q) and a complex analytic mani-
fold M. If d im c M = n, we always identify Ω « An*n using the natural orien-
tation of M. Then (Ap>qY « An~p'n~q again under the wedge product pairing,
and (Sp,qY = (—l)p+q~1dn_p^n_q. The induced pairing in homology is the
Serre duality pairing. Ap>* ^(ΛPi*Y is again a complex of double forms on
M x M with differential corresponding to 3 of the product complex structure
on M x M. Precisely, it is the subcomplex of An**(M x M) of double forms
of degree p in the holomorphic coordinates of the first factor and degree n — p
in the holomorphic coordinates of the second.

(3) For two other examples arising from Riemannian and Spin structures
see [3]. These complexes are actually just a single elliptic operator.

Next, we need the techniques of Hodge theory. Choose Hermitian metrices
( , ) = ( , ) i on Ei and a positive volume v on M. (Thus v 6 Γ(Ω).)
These then define conjugate linear bundle isomorphisms * : Et —• E\ by *ex =
( , ex)vx. The operator Df: Γ(Eί+1) — Γ(£d defined by Df = *~ιD'* is easily
seen to be the adjoint of Dt with respect to the ZΛinner product

As usual we define the Laplacian Δt: Γ(Et) —» Γ(Ei) by

Δt = D^DU + D*Dt .



ON THE ATIYAH-BOTT FORMULA 407

This is a second order self-adjoint elliptic operator. (Ellipticity of the Δt is
equivalent to ellipticity of the complex.)

Standard Hodge theory then gives the following facts:

(2.4) There exist pseudo-differential operators Gi,Ht: Γ(Ei) —* Γ{Et) such
that

(a) Hi is ZΛorthogonal projection on the finite dimensional space ker Δt

= keτDi Π ker Df,
(b) ΔiGi = GiΔi =1-Hi,
(c) Hi has a smooth kernel /^(x, y) 6 Γ(Z^ [>3 £J) given explicity as follows:

Let {hij} be an orthonormal basis for ker Δt Then

hi(x, y) = Σ hυM ® *^z/};) ,
3

(d) ( G i 5 ) W = fgi(jc,y)s(y),

where &(*,y) is smooth for Λ: Φ y. For each c e M , gi(x,y) e L 1 ^)
so that this integral always makes sense.

Hi is called the harmonic projection, and Gt the Green operator.
We sketch briefly the standard argument. One takes a cover {t/α} of M by

coordinate charts, and trivializations of the Et over Ua. Expressing the Δt in
terms of these coordinates, the principal symbols σ(Δi,ξ) become matrices
whose entries are homogeneous polynomials of degree 2 in ξ for each x. Define
Qa\χ->ζ) o n ^α? homogeneous of degree — 2 in ξ, to be the inverse matrix.

Let θ be a smooth function vanishing near zero and identically one on | ξ \ >
1. Then the operator Γe(Ei9 Ua) -> Γ(Ei9 Ua) denned by

gives a first approximation to an inverse for Δt on ΓC(EU Ua).
Using the rule for composition of pseudo-differential operators, this approxi-

mation is improved by means of an iteration as in [13] or [15]. A sequence of
of symbols q~v(x, ξ), homogeneous degree —v in f, is constructed, and these
are assembled into a symbol qa(x, ξ) which has for asymptotic expansion at in-
finity the formal sum of the homogeneous terms q~v. Let Qa be the correspond-
ing operator:

Qau{x) =
(2τr)

and {φa} be a partition of unity subordinate to {£/«}, and let ψa <~ Cj°(t/β), ψa

Ξ I on s p t ^ Then Q = ΣψaQaΨa is a pseudo-differential operator
—> Γ(Ei) which satisfies
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ΔtQ = 1 - Sι , β j t = 1 - 52 ,

where S19S2 are smoothing operators, i.e.,

Sju(x) = ί J/Λ:, y)u{y)
yζM

with ^ € Γ(Et K £Q, / = 1,2.
This implies in particular that Δt is a Fredholm operator, and (a) follows

trivially. If in addition we use the self-adjointness of Δt as in [14, § 31], it is
not hard to construct (abstractly) the operator G{ satisfying (b). Ht is clearly
given by (c).

Finally we note that

and applying Q on the right we get

G, - β = (G, - β ) ^ + (fl4 - S2)Q ,

which is a smoothing operator. Thus Gt is pseudo-differential and has the same
symbol as Q. (d) then follows from standard facts on pseudo-differential
operators but we omit the details now as they are given below for the operator
DUG,.

The relevance of the Green operator to our problem is that it allows us to
chain-retract Γ(E) to ker Δ. Since D^t = Δi+1Di and ker Δ c ker D, if follows
from (b) that D^ = GMDt. Therefore, if we let Kt = Df^G,: Γ(E€) ->
Γ(Eί_1), the first equation of (2.4b) can be rewritten as

(2.5) D^Kt + Ki+1Dt = 1 - Ht .

In other words, Kt is a chain homotopy between 1 and the projection on ker Δ.
Since D acts trivially on ker Δ, this shows that

kerJ, « # * ( £ ) ,

where the isomorphism is induced by inclusion. This implies in particular that
W(E) is finite dimensional.

If we take on Ef the Hermitian metrics induced by * from the metrics on
E, then ZΛadjoint of D[ is *Dt*~ι. Since the Laplacian for Ef is Δ\, it is easy
to see that the restriction of * gives an isomorphism

*: ker Δt -^-> ker Δ .

This implies at once that the duality pairing (2.3) is nonsingular. (This is only
used in connection with coincidence theorems.)



ON THE ATIYAH-BOTT FORMULA 409

All our arguments are based on the fact that the operator Kt of (2.5) is an
integral operator with kernel smooth off the diagonal. We also need very
precise estimates on the singularity of this kernel at the diagonal.

Lemma 1. = J ki(x, y)s(y)

where kι(x,y) € ΓiEi^^E'i9M x M — J ) , and near the diagonal the follow-
ing estimates hold (expressed in local coordinates):

( i ) \Ux,y)\<C\x-yr\
(ii) 1(3/3*, + d/dyj)kί(x,y)\ < C\x - y\ι~n, or equivalent^
(ii') \kt(x + z,y + z) - Ux,y)\ <C\z\\x - y\ι~n.
Remark. Observe that (i) justifies writing K% as an honest integral operator

(rather than an operator with a distributional kernel), because kt(x, y) e Lι(y)
for each x. (ii') implies that we have some control on the variation of kt along
directions parallel to the diagonal. If the Dt were constant coefficient operators,
then Ki would be given by convolution with a function. Then kf(x, y) would
depend only on x — y, and (ii') would be trivial.

Proof of the lemma. This follows from the very thorough discussion of
kernels of pseudo-differential operators given in [15], but we prefer to give a
complete proof of the particular facts which we need.

Let U be our coordinate chart. Since Kt is the composition Df^Gi, it is
pseudo-differential, given locally for u € Γ c (E ί ? [/), by

KM*) = (2π)-nje^p(x,ξ)ύ(ξ)dξ

where p(x, ξ) is a symbol of order — 1 which has an asymptotic expansion as
a sum of homogeneous symbols. This expansion is obtained from that of G*
by applying the rule for composition of pseudo-differential operators. Since the
matter is purely local, we can assume that u is supported in a relatively com-
pact open set V c U, and that p(x, ξ) is compactly supported in x.

Taking a function θ vanishing near zero and identically one for |f | > 1, we
write

(2.6) p(x, ξ) - θ(ξ)Pl(x, ξ) + p2(x, ξ) ,

with px(x, ξ) homogeneous of degree — 1 in ξ and p2{x, ξ) a symbol of order

- 2 , i.e.,

(2.7) \(d/dχy(didξyp2(χ,ξ)\ < cβ,,(i + |?|)-2-^ .

The idea of the proof is to use separately the homogeneity of px and the decay
in high ξ-derivatives of p2 to obtain the estimates.
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We write Kt = Px + P2 corresponding to the decomposition (2.6) of its

symbol, and from now on we drop the irrelevant factor (2π)~n. Then

P2u(x) =

Since the integrand is not absolutely convergent in ζ, we cannot interchange

the order of integration. But we can take open cover of U given by xά — yj

Φ 0 and a partition of unity {ψj} subordinate to this cover, and write

This we can integrate by parts n — 1 times, as the relevant j-integrands are
in L1 and the ^-integrals are functions of ξ vanishing at infinity, so that we
obtain

= Σ Γ [e«*-»'t V'{x ~ y ) (id/dζj)n-%(x,ζ)u(y)dydζ .

The integrand is then in L1 with respect to y, and also with respect to ξ because
of (2.7). Therefore we can interchange the order of integration and obtain that
P2 has an integrable kernel satisfying the estimate (i), namely,

*pΛ{x9 ξ)dξ .ί; (J

As it stands this is only continuous for x Φ y. To see that it is actually smooth,
note that we can integrate by parts k times for any k > 0 and rewrite the
kernel as

t (/!*
But this can be differentiated under the integral sign k times.

To handle P1} write P t = Pi + P[' where

Piu(x) = J e» *
I f l < l

P'Mx) = J e^θ(ξ)Pl(x,ζ)ύ(ξ)dξ .
\ξ\>l

[ clearly has the smooth kernel



ON THE ATIYAH-BOTT FORMULA 411

J
which can therefore be neglected.

Now, if Δ denotes the usual Laplacian in Rn, then

P^u(x) = J ei^θ(ξ)pι(x,ξ)\ξ\-2r(~JY
I £ I > 1

For 2r > n — 1 we can write, after changing variables y = x + z,

(2.8) P['u(x) = jl(x,x + z){-ΔYzu{x + z)dz ,

where

l(x, x + z) = j e^Pl(x, ξ)\ξ\-2rdξ .

Again repeated integrations by parts show that / is smooth for z Φ 0. Moreover,
for 0 < t < 1,

, x+ tz)= J eiz'^Pι(x, ξ)\ξ\~2rdξ
KI>1

= JJ
\v\>ι

= t2r+1~nl(x,x + ίz) .

But then (d/dz)al(x, x + z) is homogeneous in z of degree 2r + n — 1 — \a\ for
\z\ small. Therefore we can integrate (2.8) by parts 2r times with L1 kernel at
each stage, and obtain

P>(x) = ±f(-ΔYzKx,x + z)u{x + z)dz .

The resulting kernel is then homogeneous of degree 1 — n for \z\ small and
hence satisfies (i).

To prove (ii), observe that [djdx^Ki] is an operator of order — 1 , because
both d/dXjiKi and Ki-d/dxj have principal symbol P1(x,ξ)ξj. Hence our
previous arguments applied to the operator [djdx^K^ rather that Kt imply
that

= Jki(x,yMy)dy ,

where kt satisfies (0
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Fix x0 Φ y0. Then for any u supported in a neighborhood of yQ whose
closure does not contain xQ, and for x close enough to xQ,

+ d/dyj)ki(x9y)u(y)dy .

Since this holds for all such U, it follows that

kt(x,y) = (d/dxj + d/dy^kiix^y) x Φ y ,

and this completes the proof of the lemma.
Lemma 2. For x Φ y,

D^Sfikfay) + iyt(y)ki+ι(x9y) = -hfay) .

Proof. (2.5) and Lemma 1 give

£>*-i J ki(x,y)s(y) + J ki+ι(x9y)Dis(y) = s(x) - j ki(x,y)s(y) .
M M M

j
y£M yζM

Again we can fix x0 Φ yQ9 and consider only sections s supported in a fixed
neighborhood of y0 whose closure does not contain x0. Then for x away from
this neighborhood we can rewrite this equation as

= - jhi(x,y)s(y) .

Since this holds for all such sections s9 the lemma follows.
Remark. We emphasize that this and the following lemma give equations

among elements of Γ(E ̂ E',M X M — Δ). At no point are we interpreting
the kernel kt as distributions. The differential operators are only applied on
M x M — Δ. Lemma 2 of course follows from a stronger statement about
distributions, involving the d-function on the diagonal, but we totally avoid
this approach.

The next lemma is the basic localization statement for the Thorn class in the
de Rham formulation.

Lemma 3. For x Φ y,

,y) = -DίΣ(-l)%(x,y)\ .
U = l J

Proof. DkAx, y) = D^^k^x, y) - Df

i.1(y)kt(x, y) .

Therefore, by Lemma 2,
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N

= Σ (—i)*(Dί
ί = l

= Σ (-D'^-iWΛi + £>Ky)̂ +i = -Σ(-D% .

3. An integral formula for the Lefschetz number

Let E = {Ei9 Di] be an elliptic complex over M, and f:M^M a smooth
map. We say that / lifts E if there exist bundle maps

such that the map

defined by (/*S)(JC) = ψιs{fx) commutes with the differentials, i.e., DJf = i\+ιDt.
Thus /* = {/J} gives a geometric endomorphism of E in the sense of [2]. We
call such lifts f simply endomorphisms of E, since we only consider lifts of this
type.

/* induces a map of H(E) which we still denote by f. Since H(E) is finite
dimensional, we can define the Lefschetz number of /

L(f,E)= Σ(-l)'tr(f, «*(£)) .

Our first objective is to express this number in terms of the kernels kί9hi of § 2.
Remark. Note that for the de Rham complex A all smooth maps / have a

natural lift with the φt given by the z'th exterior power of the differential of /.
f is the usual pull-back of forms, and L(/, A) is the usual Lefschetz number.
The definitions for a general complex E are of course designed to abstract this
situation. For the Dolbeault complex only holomorphic maps have a natural
lift. Thus the existence of an endomorphism f will in general put strong
restrictions on the maps / for which Lefschetz theory can be formulated.

If /: M -> M lifts to E, then f x l : M χ M ^ M χ M h a s a natural lift to

(/ x 1)*: Γ(E E E') > Γ{E M E')

defined by

(/ x l){,s(*, y) = φι(x)s(fx, y)

for s e Γ(EtME'j). It is clear that D(f X 1)# = (/ X ΐ)*D.
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Applying (/ X 1)# to the expression of Lemma 3, and using the fact that it
is an endomorphism, we get

(3.1) Σ ( - ! ) ' ( / X D#/z* = - ^ { Σ (- ! )*(/ X

for fx Φ y. Note that even though Σ (— !)*(/ X 1)*£« is defined only for fx ψ y,
D{Σ (— !)*(/ X 1)#^} extends smoothly to all of M x M, namely, by the left
hand side of (3.1).

Now if s e Γ((E [x] E')09 U) where U is an open subset of M x M, restricting
to the diagonal we obtain a section over an open subset of M

To this section we can apply the pairing (2.1) and obtain

Applying this operation to (3.1) we get

(3.2) Σ ( - D * t r J*(/ X 1)*A1 = - t r Δ*D{Σ ( - Ό * ( / X 1)***} .

Observe again that the alternating sum is an element of Γ(Ω, M), even though
tr Δ*D(f X Ifki 6 Γ(Ω, M — F) for each /, where F denotes the fixed point set.

Proposition 1.

L(f,E) = -J tr J* {Σ (-lYDif X
M

Proof. Recall that from (2.4c),

ht(x, y) = Σ hίAχ) ® *

JtrJ*(/χ 1)%= Σ f<mtJ,
M M

But under the isomorphism ker Δt -^-> W(E) induced by the inclusion ker Δt

—> Γ(E), Hifl clearly corresponds to the induced map in homology. Therefore

L(f,E) - Σ(-l)*f tr

and the proposition follows from (3.2).
If E is the de Rham complex, then kt{x, y) is a double form on M x M, and

the operation tr J * is the usual restriction of an π-form on M x M to an n-
form on M via the diagonal map (the cup product of algebraic topology). If
we use # to denote the usual pull-back of forms, then
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tr Δ*D(f x 1)% = Δ*d(j x I ) ' * , - dΔ\] x 1)% ,

where the last equality makes sense only over M — F. In other words, for the
de Rham complex the integrand in Proposition 1 is exact on M — F. The same
argument holds for the Dolbeault complex.

For a general elliptic complex there is no natural (n — l)-form defined on
M — F whose exterior derivative is our integrand restricted to M — F. But
forms with this property can always be constructed as follows.

Choose one-forms ξ 15 , ξm and vector fields X19 , Xm on M such that
any one-form ξ e Γ(T*M) can be written

m

(3.3) f = Σ &Xj)ξj •
. 7 = 1

Their existence can be shown using either local coordinates or general algebraic
facts on finitely generated projective modules. If s e Γ(Eί_ι) and t € ΓiEΊ),
then by the very definition of Df we know that (Ds, f) — (s, Dff) e Γ(Ω) is
exact. But choosing ξj9 Xj satisfying (3.3) we can write explicitly

(3.4) (Ds, t> - <j, D't> = dZXj} <σ(Di_19 ξ>, /> ,

where J denotes interior product.
This is a standard fact which can be proved as follows: choose connections

V for Ei_λ and V for E\_λ such that for all vector fields X

where Lx is the Lie derivative. (If V is a metric connection for E^19 then V
defined by Vx = ^Fx^~1 + d iv x v satisfies our requirement.) Then

Ds= Σσ(Dί_1,ξj)Fx.s + Bs ,
i

D't= -Σ VXj{σ{Di_1,ξj)'t) + B't

for some bundle map B: Et_x —> Et. Thus

and this gives (3.4).

Lemma 4. Le< ? ί ; Z ,̂ satisfy (3.3), and ίeί w 6 Γ(Ei_i 13 £ ό ί/) where U is

open in M X M. Then over ά~ιΌ

(3.5) tr Δ*Du = d Σ X} J tr *(£*,_„ f^M .
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Proof. If U = M x M and u = s®t, then (3.5) is just (3.4). By con-
tinuity, since Γ C E ^ ) ® Γ ( E 0 is dense in ΠE^^E^, (3.5) must hold for
any u defined on all of M x M. It u is defined only on an open subset U, for
any (x0, y0) <= U we can find a global section v which agrees with u in a neigh-
borhood of (jto,yo). (3.5) then holds for v and therefore for u in a neighbor-
hood of (jco,yo), and hence is valid everywhere on U.

Applying Lemma 4 to each term of Proposition 1 we obtain the following
theorem.

Theorem 1. There exists α {twisted) (n - l)-form μ e Γ((T*M)', M - F)
such that dμ extends to a global form λ e Γ(Ω) and

L(f,E)= -jλ .

Moreover, for any choice of vector fields Xλ, , Xm and one-forms ξl9 ,
ξm satisfying (3.3) an explicit form with this property is μ = J] (— lYμt where

μt=Σ *j J tr J*σ(Dt_l9 ξj)(f X 1)% .

This gives at once the most elementary result of Lefschetz theory.
Corollary 1. // / has no fixed points, then L(f, E) = 0.
If the fixed point set is not empty, the theorem shows that L(f, E) depends

only on the behavior of the map / and the endomorphism f near the fixed point
set F. If F has measure zero in M, then one can attempt to compute explicitly
this dependence by taking a fundamental system of neighborhoods {U} of F,
which are manifolds with boundary, and by writing

L(/, E) = - Γ λ = -lim Γ dμ = lim Cμ .
M-F M-U dU

The limit is taken over a suitable sequence of such neighborhoods.
In this way one can define a local index for each isolated component of F.

For quite simple reasons this local index will be independent of the various
choices made. But we do not discuss these matters further because it seems
hopeless to obtain interesting results in this generality. To derive computable
formulas for the local index one needs a good deal of information on the
singularities of μ on F. The simplest case in which this information is available
is when F consists of isolated points, and this is discussed in detail in the
remaining sections.

The strarting point is the following corollary of Theorem 1. We have written
A*(f X Ifki explicitly as ψi_ι{x)kί{fx, x), where (pi_x is applied on the first
variable.

Corollary 2. Suppose the fixed points are isolated, and choose disjoint
Euclidean neighborhoods Up centered at each fixed point p. Then
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L(f,E)= Σ »(P),

where

v(p) = lim Σ (~ 1)' f Σ -?—

e(p) denotes the sphere of radius ε about p.
Remark. v(p) is independent of the local coordinates used in its definition

this follows trivially from the fact that their sum is independent of all choices.
We emphasize that the individual integrals in the definition of v(p) do not con-
verge as ε —> 0 it is only the alternating sum which converges. Taking limits
over spheres in the Euclidean structure is totally irrelevant in the convergence
of the alternating sum. We would use the boundaries of any other sequence
of manifolds exhausting Up — p.

Proof of the corollary. Take neighborhoods Vp of each p with V p c Up9

and vector fields X19 , Xn, one-forms ξ 15 , ξn on M such that

(d/dxj in a neighborhood of Vp ,
5 ~ \θ onM - Up ,

(dxj in a neighborhood of Vp ,
J ~ jθ on M - Up .

These can be completed to a dual basis {ξj9 Xj}, j = 1, , m, in the sense of
(3.3) with ξj = Xj, = 0 on each Vpiίj>n. Then

/,E) = limΣ Γ μ,
e-»0 p J

where the limit exists independently for each p because λ is smooth on all of
M. But for ε small enough μ coincides with the expression in the corollary,
where we have written the map (/ x 1)* explicitly in terms of the φt.

Remarks on coincidence theorems. Observe that everything we have done
so far also works in the following more general context. Let M, M be two
manifolds (always compact and smooth), and E, E elliptic complexes over M,
M respectively. Suppose two maps f,g: M —> M and bundle maps

φt'.pEi >Et ,

be such that the maps

g\:Γ{E[) >Γ(E0
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defined by (/fs)O) = ψiS(jx), (g\t)(x) = ψit(gx) commute with the differ-
entials. In other words, / and g induce chain maps Γ(E) —> Γ(E) and Γ(E')
—> Γ(E') respectively. Then we obtain a chain map

(/ X g)*: Γ(E E Ef) • Γ(E X E') .

If ki9 hi denote again the kernels for the complex E, and D is the differential
of Γ{E £3 E'), then we have the analogue of (3.2):

(3.6)

Since

Σί-D'

Σί-D'l
J
M

tr J *(j

trJ*

f X i

(/ x

= -tr J*D{Σ (-Ό'tf X

using the usual identification of the harmonic sections with the homology of
the complex we see that this number is just the Lejschetz coincidence number
of / and g:

L(f, g;E,E)=Σ(~ D* tr ( (£)% H%E)) .

Here

(g*y:H%E) >HKE)

is the transpose of

>Hί(E/)

under the duality pairing (2, 3) in homology. Thus taking M = M, E = E and
g — 1 we can reduce this to L(f, E).

Let C = {x € M: /Λ: = gx}, the set of coincidence points of / and g. The
same formal reasoning we used to prove Theorem 1 gives

Theorem V. There exists a {twisted) {n - l)-form μ <= Γ((T*M)', M - C)
such that dμ extends to a global form λ on M and

L(f9g;E9E)= -jλ.

For any choice of vector fields and one-forms on M satisfying (3,3), an ex-
plicit form with this property is μ = Σ(~ !)*& where

μt=Σ Xj J tr J*σ(A-i, £,)(/ X g)% .

Corollary 1'. If f and g have no coincidences, then L(f, g E, E) = 0.
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Corollary 2\ Suppose the coincidence points are isolated, and choose
disjoint Euclidean neighborhoods Up centered at each coincidence point p.
Then

where

v(p) = lim Σ (-1) 4 Γ Σ — J tr (σφ^, dx'Xφ^ <g> *,)(*)*,(/*, gx)
J d/

Se(p)

Uf,

n

Σ-
. 7 - 1

g;

d

dχ3

E,E)

Jtr.

pec

If M and M are manifolds of the same dimension, and E and E are their
respective de Rham complexes, then our hypothesis hold for any smooth maps
/ and g. L(f, g A) is the classical Lefschetz coincidence number. For complex
analytic manifolds M and M of the same dimension and holomorphic /, g we
can also define L(f,g; Λp'*).

The theorems of the next two sections have obvious coincidence analogues.
But we do not mention coincidence theorems again until we discuss the
Dolbeault complex.

4. Simple fixed points

Suppose that p is a simple fixed point of / in the sense that det (1 — dfp)
Φ 0. Geometrically this means that the graph of / and the diagonal intersect
transversely at (p,p) e M x M. Then the local index v(p) can be computed
explicitly by going to the limit in the expression of Corollary 2. The result is
the formula of Atiyah and Bott [2]. Since this formula involves the values of
the ψι at p, the Dirac measure at p (evaluation at p) must be relevant to the
formula. But this evaluation functional must be hidden in the singularity of
the ku and the idea of our proof of this case is to find the Dirac measure ex-
plicitly in terms of kt.

We work in a coordinate patch Up centered at p and with fixed trivializations
of the Et over Up. We write the kernels ku ht and the symbols σ(Dί9 ξ) simply
as matrices with respect to these trivializations. (Strictly speaking, we should
write ki(x, y) (x) dy, ht(x, y) (x) dy where dy is the volume element given by the
local coordinates.)

We write dyJ for dy1 dy* - - - dyn, and σ<(£) for σ(Du ξ).
Lemma 5. Let s € ΓC(EU Up). Then

s(0) = -lim f Σ i-
duε

+ kUl(0,y)σt(dyί)}s(y)dyJ ,

where Uε C Up — 0 is any increasing family of manifolds with boundary whose
union is Un — 0.
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Proof. For s e ΓC{EU Up) we know that

£><-i fki(x,y)s(y)dy + C ki+1(x,y)DiS(y)dy
(4.1) J J

= s(x) - jht(x, y)s(y)dy .

Write D^ = Σj^-ι(dxi)3/dxs + ^ _ ! where B ^ : £ ^ 1 t / p - * £ i | Up is a
bundle map. To prove the lemma it is enough to assume that spt s is small
enough so that x + y e Up whenever x, y e spts. Then we can interchange the
order of differentiation and integration in the first term of (4.1) by making
the substitution y = x + z:

I ki(x,y)s(y)dy = \kt(x,x + z)s(x + z)dz
J dxJ JdxJ

Differentiation under the integral sign is now justified because by Lemma 1 (ii)
the integrand is in ZΛ Therefore (4.1) becomes

j^Di_ι(x)ki(x,y)s(y)
u

(4.2) + Σ σtΛdχJ)(β/dy>){ki(x, y)s(y)} + ki+1(x, y)DίS(y)\dy

= s(x) — J hi(x, y)s(y)dy .

Since the integrand is in V (note that the first two terms are not integrable,
but their sum is), setting x = 0 we can write (4.2) as the limit of the integrals
over Uε. But over Uε we can use the following three equations; the first is
Lemma 2, and the second follows from Lemma 4:

ki+1(O,y)DίS(y) - D/

i(y)kί(O,y)s(y)

, y)s(y)}dy

= dy{Σ(- D'-'σUdxWi®, y)s(y)dyJ} .

Combining these with (4.2) we see that the terms involving Dί_ι(x) and / (̂O, y)
are cancelled with each other, and Stokes' theorem gives the lemma.

Theorem 2 {Atiyah-Bott formula). Suppose that p is a simple fixed point.
Then
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= f; (-ίytxφt(p)i\dsta - dfp)\.

Proof. Applying ^(0) to both sides of Lemma 5 and noting that since

= U><-i, *']((>) and ψMσ^d^X = Oi.^dPXψi-M, it follows that

(
(4.3) J

= -lim Γ Σ (-

Therefore

tr 9<(0) = -lim f Σ ( - I ) ' - 1 tr {σ^dPXψi-MUO, y)
(4.4)

Here tr means the trace of the matrix in brackets, even though the map it
represents is not an endomorphism. (4.4) can be deduced readily from (4.3) by
taking s19 , sk € Γc(Ei, Up)9 which agree near 0 with the basis of the given
trivialization of Ei9 and by computing Σ ι ̂ ^(OXs^O)) according to (4.3).

By assumption 1 — / is a diffeomorphism in a neighborhood of 0. Choose
Uε = {y: |(1 — / ) - ^ | > ε}. Then vo\(dUε) — const. εn~ι and, since by Lemma
1 (i) | ^ ( 0 , y)\ = 0(\y\ι~n), we can replace (7<(dyOy by σi(dyJ\ in (4.4) because
the difference of the two integrals goes to zero. Making this modification in
(4.4), taking alternating sums, rearranging terms and using tr (AB) = tr(2L4),
we get

s—0
= lim (Σ i-iy-'triσUtt ~ f)*dyJ)oφi_,(())ki(0,y))dyJ .

The integral is over |(1 — f)'1y\ = ε. Now change variables y = x — fx to get

Σi-iytτφM

(4 5) = ±lim Γ Σ (-ly- ' t r fo^d - f)*dy%
\

where ± = sign det(l — d/0).

Now, by Lemma 1 (ii7),

\kί(0,x - fx) - ki(fx,x)\ <C\fx\\x - fx\ι~n

Since \fx\ < cλ \x\ and \x — fx\ > c2 \x\, we get
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Therefore the integral of this difference goes to zero in the limit, and (4.5) is
the same as

(4.6) ±lim J Σ (-1) '" 1 tr ( ^ ( ( 1 - /)*έ/y)p<_1(O)Λ<(/jc, *))(! - f)*dyJ .

If we let (aJk) be the matrix of 1 — /* in the local coordinates, then

(1 _ f)*dyj = Σ bμ(x)dxJ ,
j

where (bJt) is the matrix of minors of (ajk), and hence

(4.7) Σ ( - l ) ί + ι » Λ W = *ι* d e t (1 - /*)W
3

The integrand in (4.6) can be written as

Σ ( - I ) ' " 1 * (Σ ajk(O)σ(dx*)0kt(fx,x)) Σ bόl{x)dxJ .
3 \k ) I

Replacing bμ{x) by bjt{0) by the usual argument that any smooth factor can
be replaced by its value at the origin because kt(fx, x) = 0(|JCI1""), (4.7) gives
that the integral of

±det (1 - /*) Σ ( - I ) ' " 1 tr W ώ V i t O M ^ J t W

has the same limit as (4.6). Therefore replacing now aidx1)^.^) by σ{dxι)x

<Pi-ι(x) we get

= |det (1 - df,)\ lim f Σ (~ I)*"1 tr (σidx^^^^k.ifx, x)dxJ

= |det(l -dfo)\v(p) ,

and the proof is complete.
Remark. Note the reason for the change of variable in the proof of this

theorem (and the presence of the "twisting factor" |det (1 — dfp) | in the formula
for v(p)). The differential equation satisfied by ki(x, y) gives information on this
kernel along the fibres x = constant. This is the content of Lemma 5. But v(p)
involves the singularity of kt along the graph of /, or equivalently, the singularity
of (/ x l)*ki along Δ. The proof relates these two singularities via the change
of variable y — x — fx and the estimate (ii') of Lemma 1.
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5. Isolated fixed points

Suppose that the fixed points are isolated but not necessarily simple. In this
case it is hopeless to carry an explicit computation of v{p) as in Theorem 2.
First of all, the change of variable y — x — fx is no longer available. But
more significantly from our point of view, in the absence of the estimate
\x — fx\ > c \x\ the estimates of Lemma 1 are totally useless in studying the
limits. For this reason we want to avoid taking limits in the expression of
Corollary 2. This can be done if the integrand in that expression can be replaced
by a closed form. The topological argument of § 1 suggests that this is possible
provided we can replace kt by a cohomology class in the product—the local
Thorn class.

To do this we need a local cohomological condition on E, the Poincare
lemma in the sense of sheaf exactness. Precisely, we say that E is sheaf exact
in dimension i if g i v e n a n y xeM a n d s e Γ(EU U), Dts — 0 w h e r e U i s a
neighborhood of x, there exists a possibly smaller neighborhood V of x and
t € Γ(Ei_19 V) such that s\ V = Dί_ιt. If E is sheaf exact in dimension i for all
/ > 0 we say simply that E is sheaf exact. Thus the local cohomology of E is
just the germs of solutions of Dos = 0. Of course since E',E^E' have not
been graded in increasing order starting at 0, these definitions have to be
modified in the obvious way for these complexes.

We observe the following simple fact:
Lemma 6. If E — {E^D^f^ is an elliptic complex, then E is sheaf exact

in dimension N.
Proof. Since the integrability condition DNs = 0 is vacuous, this just says

that any s e Γ(EN) is locally exact. Fix a neighborhood U of x e M and let
ΔN = DN_1D%_1 be the Laplacian of § 2. Since the null space of ΔN is finite
dimensional, there is a possibly smaller neighborhood V of x such that there
are no solutions of ΔNs = 0 supported in V.

Take a neighborhood W of x with W compact in V and a real valued func-
tion p identically zero near W and identically one near M — V. Then ΔN + p
is still elliptic and self-adjoint, and by the positivity of ΔN it is easy to see
that ker ΔN + p = 0. Thus there exists a Green operator

GP:Γ(EN) >Γ(EN)

for ΔN + p which is bijective. Since ΔN + p = DN_ιD%_ι near W, if we take
a function ψ identically one on W and with spt ψ Π spt p = 0, it follows that
if s e Γ(EN, [/), then DN_ί(D%_ιGpψs) = s on W.

Remarks. (1) For the complex E' the lemma says that if s e Γ(E'Q, U),
then s\ V = D'ot for some t e Γ(E'19 V) and V c U. This is the form in which
we will apply the lemma.

(2) Sheaf exactness of E in dimensions < N is a very hard problem. The
proof of the lemma does not work in this case because the integrability condi-
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tion DiS = 0 is present. For this reason the local problem over U cannot be
reduced to the global theory of elliptic equations over closed compact mani-
folds. The standard approach to this problem is to reduce it to a boundary
value problem. For more information on these questions see [16] and the
references given there.

(3) The classical elliptic complexes are well known to be sheaf exact, in
fact locally exact.

From now on p denotes an isolated fixed point of /, Up a sufficiently small
Euclidean neighborhood centered at p, and Vp a smaller neighborhood of p
with fVp C Up. If

qt(x,y) 6 nEi_MK UpχUp-J), i = 1, ,N ,

we write

q(χ,y) = Σ (- !

Let

= Σ ( W ) J tr (σi-1(dx')φi_ι(fx9 x)) ,
. 7 = 1

where φt are the bundle maps defining f\. Then//^) and μ(q) = J] (—
are (n — l)-forms on Vp — p. Observe that if q^x, y) is smooth on Up X Up9

then μ(qι) is a smooth form on all of Vp.
Applying Lemma 4 to each (/ x Vfqi and taking alternating sums it follows

that on Vp - p

(5.1) dμiq) = to Δ*(j X l)*q .

Proposition 2. Assume E is sheaf exact. If Up is sufficiently small, then
there exist kfc β Γ ( ^ _ ! K ££, Up X Up — Δ) such that

(i) μ(kloc) is closed in Vp — p,

(ii) f
Sε

Proof. By shrinking Up sufficiently, and by sheaf exactness of E and
Lemma 6 applied to Ef we may assume that there exist

stj e Γ(Ei9 Up) , tuj e Γ(E'19 Up) ,

such that

Dsi_hj = htj , D'thj = *h0J .

denotes as usual an orthonormal base for the space of harmonic sections
of E over M, as in (2.4).
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We can restrict the operators Ki9 Ht on M to operators

V . ~Π (TP T7 \ ^ ΓΎJ7 T7 \

Ki: 1 cyhi9 Up) > I C^i-u Up) •>

Then (2.5) gives

D^Ki + Ki+1Dt =l-Hi on Γe(Et9 Up) .

Define operators Lt: ΓC(EU Up) -* Γ(Eι_19 Up) by

< ? ^ > + Σ ^ J < , * Λ i . * > ,
Z7 U

U

Since

HiU{x) = 2 /**̂  I <M, * A^) ,
ε/

it is immediate that on Γc{Ei, Up)

Hence, if we define

it follows that on Γ c (E i ? Up)

Note that this identity holds only on compactly supported sections.
Now Lt clearly has smooth kernel lt{x,y) on Up X Up9 hence KfQ has

kernel kf%x, y) = kt(x, y) — lt{x, y) which is smooth for x φ y and satisfies
the estimates of Lemma 1. Standard reasoning as in the proof of Lemma 2
gives

(*, y) + D^kfUx, y) = 0 for x φ y .

Hence taking alternating sums we get, as in Lemma 3,

Dkloc(x, y) = 0 for x φ y .

Therefore, by (5.1),

dμ(kloc) = 0 in Vp - p .
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This proves (i), and shows that

Jμ(kloc)
Sε

is independent of ε. To see that its value is v(p), write

Jμ(k^) = Jμ(l) + Jμ(k) .
Sε Sε Sε

The first term on the right hand side converges to zero because μ(l) is smooth
on Up, the second converges to v(p) by definition of v(p), and this completes
the proof.

Thus the kernel kloc(x, y) = Σ (— iykfc(x, y) can be thought of as a repre-
sentative of the "local Thorn class" of E. But the formulation of the proposition
is still far from satisfactory. The operator Kloc is defined in terms of the global
operator K, whose construction involves the whole manifold M. Both for
aesthetic and practical reasons we would like to have a purely local descrip-
tion of v(p). More precisely, we would like to know that given any locally
defined operators

Kf°: ΓC(EU Up) > Γ(E^l9 Up)

satisfying

(5.2) D^K'r + XlϊA = 1 on Γe(Ei9 Up)

with kernels kfc(x,y), then the cohomology class of μ(kloc) always gives the
local index v(p).

Observe that if E consists of just one operator Do: Γ(E0) —• ΓiEJ, then
the uniqueness of the local index is trivial. In this case, (5.2) determines the
symbol of Kloe and hence determines Kloc up to smoothing operators. But
smooth kernels do not affect the local index, the fact which we used at the end
of the proof of Proposition 2.

If the complex consists of more than one operator, then (5.2) no longer
determines the symbol. Kloc is determined only up to operators A satisfying

(5.3) D^A, + Ai+1D, = 0 on Γe(Ei9 ϋp) .

We proceed to study the kernels of operators satisfying (5.3).
First we enlarge the class of kernels which we consider. So far we have been

working with operators Q with integral representation

(5.4) Qu(x) = Jq(x,y)u(y) ,
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where q(x, y) is smooth for x Φ y and q(x, y) e L\y) for each x. Kt and K1?0

are of this type because of Lemma 1 (i). The proof was based on the fact that
Ki is pseudo-differential of order — 1 , and that its top order symbol is homo-
geneous in ξ. For estimate (ii) we needed also the next term in the homogene-
ous expansion of the symbol. These estimates were essential in the study of
simple fixed points because we needed delicate information on the kernel near
the diagonal.

But in the cohomological approach of this section this delicate information
is irrelevant. Also, even though operators Kfc satisfying these estimates are
the most likely to turn up in practice, (5.3) need not even determine the order
of Kf°. For these reasons it is unnatural to consider only this restrictive class
of operators. The following condition is just what we need.

Let Q: Γe(Et, Up) -> Γ(Ei+k, Up). We say that q(x, y) e Γ(Ei+k H E'i9 Up x
Up — Δ) is the kernel of Q if (5.4) holds for x outside the support of u.
(Strictly speaking we should say that q is the kernel of Q outside the diagonal.)
It is clear that if Q has a kernel, it is unique. The following facts are well
known [2, §4].

Lemma 7. Let Q: ΓC{EU Up) —> Γ(Eί+k, Uv) be pseudo-differential. Then
(i) Q has kernel q(x, y) e Γ(Ei+k ES E'i9 Up X Up - Δ\
(ii) DQ has kernel D(x)q(x, y), QD has kernel D'(y)q(x, y).
Proof, (i) follows by the same argument as in the beginning of the proof

of Lemma 1. One integrates by parts by taking enough ξ derivatives of the
symbol (depending on the order of Q) until the ξ integrand is covergent. Since
x $ spt u, the y integrand is smooth and there is no problem in interchanging
the order of integration.

(ii) follows by the same argument which we used in Lemma 2.
Proposition 3. Let At: ΓC{EU Up) —• r(Ei_19 Up) be pseudo-differential

operators satisfying

(5.3) Di^At + Ai+1D, = 0 on Γe(Ei9 Up) ,

and at(x,y) be the kernel of At. Then there exist

b(x,y) e Γ((E|EIE')-2, UpχUp-d) ,

such that

D_2b(x, y) + c(x, y) = a(x, y) for x φ y , D_λc(x, y) = 0 .

Proof. We write simply Kt for the operator Kfc constructed in Proposition
2. Take a locally finite cover {[/J of Up by relatively compact open sets and
a partition of unity {ψα} subordinate to {£/„}. Then
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Ki = Σ ΨaKiΨβ ,

and if we let

Ki= Σ ΨaKίΨβ > Si = Σ ΨaKifβ >

then Kt = Ki + Ŝ  where Si is smoothing and Kt: ΓC(E*, ί/p) —• Γe(Ei_19 Up).
From (5.2) we get

Di-iKi + Ki + iDi = 1 — Si ,

where Si = D^jSi + Si+1Dt is smoothing and commutes with D. Moreover,
since Kt maps compactly supported sections into compactly supported sections
and the Dt do not increase supports, it follows that

(5.5) St: ΓC(EU Up) > Γe(Ei9 Up) .

Let bi(x,y) € Γ(Et_2^E'i9 Upχ Up - Δ) be the kernel of A^K^ Then on
Γc(Ei, Up) we have

AiKi+βi = A t - AtD^Ki - AtSi = At + D^A^Ki - Λ A .

In the last equality we used the fact that Ktu has compact support if u does.
If Ci(x, y) denotes the kernel of AtSi9 which is smooth since AiSt has order
— oo, (ϋ) of Lemma 7 gives

D i . 2 W W ί j ) ~ Di(yYbι+ι(x9y) = at(x9y) - ct(x,y) .

Taking alternating sums we get

D_2b(x, y) = a(x, y) - c(x9 y) .

Finally, D ^ ^ A = —Ai+1DiSi = ~Aί+1Sί+1Dί, where in the second equality
we used (5.5). Therefore

Oί-ifrtafoy) + D't(y)ci+ί(x9y) = 0 ,

and taking alternating sums we get Dc(x9 y) = 0.
Theorem 3. Suppose E is sheaf exact. Then for Up sufficiently small there

exist pseudo-differential operators Kt: Γe(Ei9 Up) —> Γ(Ei_ί, Up) such that
(i) D^Ki + Kί+1Di = 1 on Γc(Eί9 Up),
(ii) // kt is the kernel of Kt, then μ(k) is closed and

fμ(k) = v(p) .
S
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Moreover, if Kt are any pseudo-differential operators satisfying (i) with kernel
hi, then μ(k) is cohomologous to μ(k).

Proof. Only the uniqueness part remains to be proved. We apply Proposi-
tion 3 to A = K — K. μ(c) is a closed form on all of Vp by (5.1), hence

Cμ(c) = 0. Now fix Sε in Vp - p and take b(x,y) e Γ((EME')_2, Up x Up)

which agrees with b(x, y) outside a sufficiently small neighborhood of Δ so that
μφb) — μφb) on Sε. μφb) is again a closed form, smooth on all of Vp.
Since

§ μφb) = Jμφb) ,
S S

this shows that the right hand side vanishes. Therefore I μ(a) = 0, and the

sε

proof is complete.
Remarks. (1) Observe that the same argument shows that the cohomology

class of μ(k) depends only on the cohomology class of k on Up X Up — Δ.
Thus even though the expression for v(p) was derived from the fact that k is
the kernel of an operator, k can be altered in its cohomology class to a section
which is not necessarily the kernel of an operator, and we still get the local
index. This is another degree of flexibility gained from "working away from
the singularity".

(2) Of course it is natural to ask whether the D cohomology class of k
itself is determined by (i), even though for the local index only the cohomology
class "modulo smooth sections on Up X Up" is relevant. From Proposition 3
it is immediate that the class of k is unique if E Kl Ef is sheaf exact in dimen-
sion — 1. This is of course the case both for the de Rham complex and the
Dolbeault complex. In the first case E M Er is the de Rham complex o f M x M
and hence locally exact. In the second case, E^E' is a subcomplex of the
Dolbeault complex of M x M given by a certain condition on the holomorphic
coordinates (see §2). One just has to check that the usual maps constructed
to show exactness [9], [12] leave this subcomplex invariant. But this is imme-
diate because these maps do not affect the holomorphic coordinates since they
involve only the anti-holomorphic part.

6. The classical complexes

6.1. The de Rham complex. Let kq(x, y) be the double form on Rn x Rn

— Δ, of bidegree (q — 1, n — q), defined by

I k
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where γn is the reciprocal of the volume of the unit (n — l)-sphere. We use
the usual multi-index notation: / = (i19 , iq), iλ < < iq. If a is a g-form
with compact support in Rn, let

Kqa{x) = (-l)Q(n-

The reason for the sign (— l)«(n-«> is that to apply the pairing (2.1) in the
second variable a should come before the dy-part of kq. Then Kq: Γc(ΛqRn)
-+ Γ{Λq~ιRn) and satisfies

dKq + Kq+1d = 1 on Γc(ΛqRn)

It is enough to check this identity for a = φdx1. Thus

Kqa(x) = γn Σ (— 1) I -^-^ ^ ^ d** * ώcβ ,

~Γ Z J Z J V—*-) — I

r

\x — y\n

Σ (_υ,C^-yuXdΨ/dy^
i jΦίk J \x — y\ny\n

Differentiating the first expression under the integral sign by making the sub-

stitution y = x + z as in Lemma 5, we see that the second terms are cancelled

and

= ΐn lim
\v-χ\>z

• dy1 d y dyn}dxτ

= ^?(x)ί/Λ:7 .

Therefore k = 2 (— l ) α ^ is a local Thorn class for the de Rham complex in
the sense that it satisfies (i) of Theorem 3. From our general theory we know
that k(x, y) is closed on Rn X Rn — Δ. To find its cohomology class, let
ix: Rn — 0 —> Rn x Rn — Δ be the inclusion of the fibre at x, i.e., ίx(y) =
(x,y). Then
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ix*k(x,y) = -ix*K(x,y) = Wx ,

where Wx is the volume form of the sphere centered at x:

Wx = γn\x- y\~n Σ ( - D * - 1 ^ * - x*)dyι W dy» .

In other words, k(x, y) represents the usual topological Thorn class. But so
does δ*W0, where δ(x, y) = y — x is the difference map. By the uniqueness
of the topological Thorn clase, k(x, y) must be cohomologous to δ* Wo (it is in
fact equal, but we do not need this). From this we get the usual local index
v(0) for the de Rham complex:

p(0) = J Δ*(ί x l)*fc = J (1 - f)*W0 = deg0 (1 - /) .
Sn-i sn-l

6.2. The Dolbeault complex. The formula for the local index for the de
Rham complex as a local degree is very special. It is a consequence of the fact
that the local cohomology of the complex is one-dimensional. For the Dolbeault
complex the situation is more interesting because the local cohomology is
infinite dimensional (the space of local holomorphic forms).

We work first with the complex Λ°>* of forms of type (0, q) on Cn. The local
kernel can be guessed easily from our experience with the de Rham complex:

kq(z,ζ) = Cn\z - ζ\~2n Σ Σ (-Vk-\zίk -
/ k

where Cn = (— \)^n~l){n — 1)! (2πi)-n, and * denotes the duality operator
defined by

d ζ ^ d ζ 1 ) = dζ1 dζndζι .-.dζn.

kq is a double form on Cn X Cn — Δ of type (0, q — 1) in z and (n, n — q)
in ζ. The associated integral operator

Kq: Γc(Λ°>qCn)

satisfies

3Kq + Kq+ιd = 1 on Γc(Λ°'qCn) .

This can be checked in the same way as we did for the de Rham complex.

It follows that k = Σ (— l)qkq is 3-closed in Cn X Cn - Δ. Let /.: Cn - 0
-> Cn X Cn - Δ be the inclusion of the fibre over z: iz(ζ) = (z, ζ) Then

where Wz(ζ) is the Bochner-Martinelli kernel
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W,(ζ) = Cn\z- ζ|-2« Σ ( - l ) * - 1 ^ - zjdζdξ1 • • • dζ« • • • dζn .

The basic property of this kernel [5] is that if / is holomorphic on the unit
ball in Cn, then

f(z) = J W.(QKO •
£271-1

Note the analogy with the real case. In both cases the restriction of k to a
fibre gives the evaluation functional on the local cohomology of the fibre by
integration over the boundary.

From the general theory we get the formula for the local index

(6.1) i,(0)= J J*(/X
S2n

If n = 1 the Dolbeault complex consists of just one operator 3: Γ(Λ°>°)
) , and the local kernel is just

*fcO = l dζ

2πi z - ζ

Therefore

dz
= Resn

2πί J z — fz
\z\=ε

In higher dimensions there is an analogous formula in terms of the Cauchy
kernel and residues, rather than (6.1) which involves the Bochner-Martinelli
kernel and integration over spheres. We discuss briefly this alternative
expression.

Recall that Λ°>* M (Λ°>*Y is the subcomplex of Λn>*(Cn X Cn) consisting of
forms of degree zero in dz and nindζ. We denote this subcomplex by Λ§;* and
its homology by //<>;*. Λg;* then gives a resolution of the sheaf Ω°'n of germs
of holomorphic forms on Cn X Cn of degree 0 in z and n in ζ. We can inter-
pret the Cauchy kernel

y
2πi / (ζ1 - zι) (ζn - zn)

as an element of the cohomology group Hn~ι(Cn X Cn — J , β°'w). More
precisely, if U C Cn is a ball about 0 (any Stein neighborhood of 0 would do),
and V C U is another such neighborhood of 0 such that fV C £/, then we
interpret the Cauchy kernel as an element of Hn-\V X U — J, Ω^n) as follows:
Let W = {Wj} be the open cover of V X U - Δ given by Wά = {Zj - ζj Φ 0}.
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Then each Wj is a domain of holomorphy (cf. Theorem 2.5.14 of [9]), hence
d-acyclic. From standard sheaf theory it follows that the Cech cohomology of
this cover is the same as the cohomology of the space V X U — Δ. Now (6.2)
defines an (n — l)-cochain of this cover, trivially a cocycle since there are no
H-cochains, and hence a cohomology class c e Hn~\V X U — Δ, β M ) .

The basic fact that we need is the following proposition. It can be proved
by the same argument as Theorem 2.2 of [7].

Proposition. Let D: Hn~\V x U - Δ, Ω^n) ^ > H^~\V X U - Δ) be
the Dolbeault isomorphism. Then Dc = {k(z, ζ)}.

Granting this, the naturality of the Dolbeault isomorphism gives a com-
mutative diagram

V - 0, Ωn) fV X υ Hn~\V x U - Δ,

D\ \D

- 0) c J * ( / x l ) * HWKV XU-Δ).

Therefore

r

~ J {2πΐ)n (z1 - f) (zn - /»)

The expression in brackets is interpreted as a cochain of the cover Δ~\iχ\)~ιW
of V — 0, hence a cohomology class since the sets Δ~\f X l)~ιWj are again
domains of holomorphy.

But the composition

Hn-\γ _ o, Ωn) -^-> Hn>n-\V - 0) —U C

is the Grothendieck residue (cf. [4]). It has a computational algorithm similar

to that of the residue calculus in one variable. Thus we can state the final form

of the residue formula for the local index as

az az

(z1 - f) (zn - jn)

In particular, the properties of Res0 imply that y(0) depends only on a finite
(but large!) number of derivatives of / at 0.

More generally we could consider a holomorphic vector bundle E over the
compact complex analytic manifold M, and a holomorphic bundle map φ: f*E
-> E. There Λ^q{dj)®ψ gives a lift of / to the complex Λ°'*(E) of forms of
type (0, q) with values in E. Taking tensor products we get the analogous
formula for the local index in this situation:
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Here we take the trace of the matrix of φ(z) even though strictly speaking φ
is not an endomorphism for z Φ 0. Note that if 0 is a simple fixed point, from
the properties of Res0, (6.4) reduces to

trcy(O)

det c (1 - dU) '

which is the formula of Atiyah-Bott [3].
If E = ΛP>°(M), the bundle of holomorphic p-forms, then Λ°>*(E) is just the

Dolbeault complex AV'*(M) of forms of type (p, *) . All holomorphic maps lift
naturally to this complex, and if we denote the local index in this case by
1^(0), then

= Res0

This can be written in the following alternative form, where / = (i19 , ip),
J = (j19 . . . ? jn_p) is the multi-index complementary to / and ε7 = S\^\% hm.mjn_ :

Observe that

(6.6) Σ ( - 1 ) V Q )

where the last equality follows from the properties of Res0. Thus even though
each Vp(0) is not expressible as a local degree, their alternating sum is. There-
fore 2 (— l)^p(0) is a topological, rather than holomorphic, invariant of /
at 0. This is not surprising because for the Lefschetz numbers it is easy to see
that

L(f, deRham) = Σ ί-DpL(f,A*> ) .

(6.6) just says that this relation also holds for the local indices.
There is a formula for the local coincidence index vf,g(0) (cf. § 3) with

respect for Λp>* similar to (6.5):
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In this context it is also natural to consider meromorphic maps (or corre-
spondences). By this we mean an irreducible ^-dimensional analytic subvariety
G c M x M such that there exists a subvariety F c M and a holomorphic
map f:M — V-+M with

G Π M x (M - V) = {(/JC, JC) : x e M - V) .

Then we can define the Lefschetz number of G to be

L(G,Λ*>*) = fh(z,ζ) ,

where Λ(z,ζ) = Σ (—l)βλβ(z,ζ) is the harmonic kernel of Ap>* considered
simply as an (n9 n)-ίoτm on M x M. Note that if G is a manifold, then its
Lefschetz number is just the coincidence number of the projections on each
factor:

We can still talk about fixed points of G, the intersections of G with Δ. If G
is a map near the diagonal, and its fixed points are isolated, then L(G, Λv'*)
is a sum of local indices given by (6.5).

We conclude with the following elementary corollary of these observations,
which does not require to know the nature of the fixed-point coincidence
formula. Suppose fl° «(M) = 0 for q > 0.

(a) If dim M = dim M, g: M —> M is holomorphic, and deg g ^ 0, then
any holomorphic map f:M—>M has a coincidence with g.

(b) Any meromorphic map G of M has a fixed point.
For the proof, observe that the harmonic kernel h(z, ζ) of M is just πfω

where ω 6 Γ(iίn»nAf) is a volume element. It follows easily that L(f, g Λ°»*) =
deggandL(G;Λ 0 ' * ) = 1.

A Kahler manifold M of positive sectional curvature satisfies //°'Q(M) = 0
for q > 0. In this connection see Theorem 4 of [6].

Added in proof. Since this paper was written, another proof of the holo-
morphic formula and a detailed account of the Grothendieck residue have
been given respectively in: L. Sibner & R. Sibner, A note on the Aίiyah-Boίί
fixed point formula, to appear in Pacific J. Math. Y. L. L. Tong, Integral
representation formulae and Grothendieck residue symbol, to appear in Amer.
J. Math.
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