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GEODESICS AND VOLUMES IN REAL
PROJECTIVE SPACES

ISAAC CHAVEL

In 1951 P.M. Pu [11] proved the following result: Let P2 be 2-dimensional
real projective space, Γ the nontrivial free homotopy class of sectionally
smooth ω: [0,1] —» P2, ω

f the velocity vector of ω, h a Riemannian metric on

P2, lh = infi I (h(ω\ ω'))1/2: ω e Γ\, and vh the Riemannian volume of P2 re-
0

lative to h. Then (lh)
2/vh < \π, with equality if and only if h has constant

sectional curvature.
Pu's method was based on the fact that h is a conformal deformation of a

Riemannian metric on P2 of constant sectional curvature, that he could therefore
average the metric over the group of isometries of P2 with the Riemannian
metric of constant sectional curvature, and then show than /,, increases and vh

decreases.
In this note we will consider two examples related to the appropriate (yet

unsolved) generalization of Pu's result to higher dimensions. For convenience,
we formulate our problem as a conjecture:

Pu's conjecture. Let Pn denote π-dimensional real projective space, Γ the
nontrivial free homotopy class of continuous sectionally smooth ω: [0,1] —•
Pn, g the Riemannian metric of constant sectional curvature 1 on Pn, and h any

Riemannian metric on Pn. Set lh = infi I (h(ω\ ω'))ι/2\ ω e r\, where ωf is the
0

velocity vector of ω, and vh to be the Riemannian volume of Pn relative to h.
Then

(k)n/vh < Qg)
n/vg

with equality if and only if h has constant sectional curvature.
One easily sees that

nYlv =[kl*> n = 2k+l,
g ' V g \(πl2)k(2k- 1)(2Λ - 3) -3.1 , n = Ik .

In § 1 we consider a 1-parameter family of Riemannian homogeneous metrics
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on P2k+19k > 1, which are of strictly positive sectional curvature. For each
member h of the family we explicitly calculate lh, vh9 and show (lh)

2k+1/vh <
klπk, with equality if and only if k = 1, and h has constant sectional curvature
(for k > 1 none of the Riemannian metrics considered have constant sectional
curvature). This class of Riemannian homogeneous metrics on P2k+1 was first
discovered by M. Berger [1] and subsequently investigated in [6], where
the reader will find the details necessary for our discussion.

In § 2 we generalize Pu's method of averaging Riemannian metrics on a
normal Riemannian homogeneous space over the group of isometries of the
space. In § 3, however, we show the limitations of Pu's method in higher
dimensions, viz, for the complete collection of Poincare metrics [10] on P3 in-
duced by Riemannian metrics on the 2-sphere S2 (where P3 is identified with
the unit tangent bundle of S2), averaging the Poincare metric increases the
volume instead of decreasing it (the length of the minimal geodesic increases
as before). Furthermore, one can make the ratio of the volume of the averaged
metric to the volume of the original one larger than any given positive constant,
so that Pu's method does not even supply any upper bound for the function
(lh)

n/vh on this restricted collection of Riemannian metrics on P 3. We refer the
reader to [12] for details concerning these metrics. In a forthcoming paper we
will present some positive results concerning Pu's problem for Poincare metrics
o n P 3 .

Pu's original approach does work in higher dimensions for conformal de-
formations of Riemannian homogeneous metrics, as Pu himself noted [11, p.
62] and the approach is successful for the linearized version of the conjecture—
cf. [4], [7] for details. In these papers and in [3] one will also find discussions
of the relation of Pu's conjecture to Blaschke's conjecture on wiedersehn-
sraume. Finally, we remark that in [3], [4] Pu's conjecture is discussed for
higher dimensional subspaces of all the projective spaces.

1. Extremal lengths in odd-dimensional real projective space

Let Ers denote the (n + 1) x (n + 1) matrix which has a 1 in the r-th row
and s-th column and 0 elsewhere, and set: Ars = V — 1 (Err — Ess), Brs =
Ers - Esr, Crs = V^Ί(Ers + Esr), where r, s = 1, ., n + 1. Also, set

«j = {*/(/ + W2 , Sj = ΣkAktk+1/aj ,
k = i

where /' = 1, ,n. If an denotes the Lie algebra of SU(n + 1 ) , the special
unitary group acting on (n + l)-dimensional complex number space, n > 1,
with the inner product (x, y> = — J trace (xy), then an orthonormal basis of
αw_! naturally imbedded in an is given by {S19 ,Sn_i; Bjk,Cjk: 1 < / <
k < n). Let g be the direct orthogonal sum an 0 R, R = real numbers, D be
a basis element of R of unit length, and [an, R] = 0, where [ , ] denotes Lie
multiplication. Thus q is a Lie algebra.
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Fix a real number a, 0 < a < π let ζ be the Lie subalgebra of q spanned
b y { S 1 9 , S n _ 1 9 c o s a S n + s i n o c D B j k , Cjk: 1 < j < k < n } , G = e x p g ,

H=txp ί), where exp denotes the exponential map of the Lie algebra to the
Lie group it generates, and set M = G/H, the resulting homogeneous space.
The orthogonal complement of 1} in g, which we denote by m, has an ortho-
n o r m a l bas i s g iven b y {sina Sn — cos a-D; Bjtn+19Cjtn+1: j = 1, -,n}.

Thus the dimension of M is 2n + 1. If π: G -^ M denotes the natural projec-
tion δ — τt(H), then the tangent space M$ to M at ό is identified with m from
which M obtains a natural Riemannian homogeneous metric. The linear action
of H on X3ΓA is given by Ad(/f) acting on m also

( 1 )

( 2 ) = In - 1 .

We therefore have
Proposition 1. Ad(i/) leaves sma-Sn — cos a D invariant, and acts tran-

sitively on the unit sphere of the orthogonal complement of sma-Sn — cos a
• D in m.

We note that if Exp^: m —> M denotes the Riemannian exponential map,
then for any x e m we have Expg x = ττ(exρ t). Also one easily sees that
exp tSn is given by

exp tSn =

and therefore exp tfn € 5C/(π) if and only if / is an integral multiple of 2πan/n.
Since α^.uR ^ j Λ D all commute, and any geodesic loop in a normal Rie-
mannian homogeneous space is simply closed [9, Theorem 3], we have (see
Fig. 1) that the M-geodesic generated by e0 = ύna-Sn — cos a D is simply

exp teι

l\sϋ(n + l) exp(™n/n)Sn

Fig. 1
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closed and of length (2πan/n) sin a.
Let H* be the Lie group generated by SU(n) and exp(πan/ri)Sn,H be the

Lie group generated by H and exp (πan/ri) sin a e0, M = G/H, and π: G —>
M be the natural projection. Then the natural map p: M —• M satisfying /? o
π — 7τ is a Riemannian covering with fibre H/H homeomorphic to Z2. By
using Lemma 2 (to be stated below) one easily checks that M is homeomorphic
to SU(n + l)/SU(ή) which is homeomorphic to a sphere, and that M is home-
omorphic to U(n + ί)/{U(ή), — 1} (where U(n + 1) is the unitary group act-
ing on n + 1 complex variables, and {U(ή), — 1} is the group generated by
U(ή) naturally imbedded in U(n + 1 ) , and minus the identity e U(n + 1 ) )
which is homeomorphic to (2n + l)-dimensional real projective space.

Lemma 2 [1, Proposition 3.2]. Let G be a compact Lie group, and K, H, L
closed subgroups of G such that (1) K 3 L, (2) L = K Π H, (3) the Lie
algebra I of L has a complementary subspace in the Lie algebra ϊ of K which
is also a complementary subspace of H in G. Then G/H is homeomorphic to
K/L.

We now let Γ denote the free nontrivial homotopy class of continuous sec-
tionally smooth ω: [0,1] —• M, l(ω) the length of any given ω e Γ, and la the
inf{/(ω): ω € Γ}.

Proposition 3. la = (πan/ri) sin a.
Proof. By the homogeneity of M it suffices to consider ω e Γ satisfying

ω(0) = π(H). Furthermore, it is well-known that Γ has a simple closed geodesic
whose length is equal to la. By Proposition 1 it remains to look at all geodesies
f 0 > O < 0 < \π, emanating from o = π(H) with initial velocity vectors
f/(0) = cos θ e0 + sin Θ-Bhn+1 (it is clear that m is identified with the tangent
space to M at o). Now γoe Γ and is simply closed of length (πan/ή) sin a.
Therefore let 0 < θ < \π and set

β = (2(w + l)/π)1 / 2 sin a , σ(θ) = (4 sin20 + /32cos20)1/2

We claim that if γθ is simply closed, then its length is an integral multiple of
2π/σ(θ). Indeed, by Proposition 1, Ad(H) acts on f/(0) nontrivially and there-
fore induces a Jacobi field along γθ which vanishes for / = 0 and (at least) for
all integral multiples of the length of γθ but by Theorem 1 of [6] the zeroes
of all Jacobi fields induced by H vanish precisely at the integral multiples of
2π/σ(θ) and nowhere else. One now checks easily that (πan/n) sin a < 2π/σ(θ)
for all θ, and the proposition is proven.

Theorem 4. Let va denote the volume of M. Then

( 3 ) (Ό2n+ι/va = n l πn(an/n)2n sin2na < n\ πn

with equality if and only if n = 1, a = \π, i.e., M is 3-dimensional real pro-
jective space of constant sectional curvature 1.

Proof. Since (an/ή) < 1 for all n > 1, with equality if and only if n = 1,
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to complete the proof it suffices to calculate the volume of M. We quote the
lemma on "integration over the fibers" from [5, p. 16] for present and sub-
sequent use (§ 2).

Lemma 5. Let M, M be Riemannian manifolds with metric tensors g, g
respectively, dim M > dim M, and π: M —> M a Riemannian submersion
[5, p. 16]. Denote the induced Riemannian measures by dvg, dvg respectively,
and for any p e M let dvp denote the induced Riemannian measure on the fiber
π~\p). Furthermore, let f: M —* R be continuous with compact support, and

f:M—>Rbethe function on M defined by f(p) = I f\π-Hp)'dvp. Then f is

χ-Hp)

continuous with compact support and one has

(4) ff'dvg= ff dvg.
k M

We return to va which is | vol M. Lemma 5 and Fig. 1 combine to imply
vol M = sin a- vol SU(n + l)/SU(ή). Now the natural map of

SU(n + l)/SU(n) -» SU(n + l)/S(U(n) X

is a Riemannian submersion actually, a fibration) with fiber a circle group
S(U(n) X U(l))/SU(n), i.e., {exp tSn} with length 2πan/n. (Since our metrics
are chosen such that every element in SU(n + 1) acts as an isometry, all the
fibers are of the same length). Also, SU(n + l)/S(U(ή) x C/(l)) is isometric
to complex projective space CPn of 2n real dimensions with the standard
Fubini-Study metric, and assuming curvature values between 1 and 4. The
volume of CPn is therefore πn/nl (cf. [5, pp. 18, 112]) and the volume of
SU(n + l)/SU(n) is 2πn+1an/(n(n\)) by Lemma 5, and the theorem follows
easily.

2. Averaging of symmetric 2-tensors on Riemannian
homogeneous spaces

We start with
Lemma 6. Let H be a closed subgroup of the orthogonal group O(ή), and

assume that H acts irreducibly on Rn with the standard inner product < , >.
Let B: Rn x Rn^R be a symmetric bilinear form on Rn,dvH be a bi-

invariant measure on H, and vH = I dvH. Define the bilinear form b: Rn x

Rn -• R by

b(x,y) = CB(h-x,h.y)dvH.
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Then for all x,y e Rn we have

b(x,y) = i-(trace £)<*,)>> .
n

Proof. Clearly, there exists a ^ i ? such that b(x,y) = κ>(x,y} for all
x, y e Rn, so it remains to calculate K. Pick an orthonormal basis {e19 , en)
of Rn, and set Bjk = B(ej9 ek). For h e H, let ars(h) denote the matrix as-
sociated to h and the basis {e19 , en). Then

n n \ C
me = Σ *>(**,«?*) = Σ B(h'ek,h-ek)dvH

* = i k = iVHJ
H

t ajk(h)alk(h)BudvH
j,l = l

1 Γ w

= ΣiBjjdvH = trace 5 .

Theorem 7. L^/ K be a compact connected Lie group with bi-invariant

Rίemannian metric and induced bi-invariant measure dvκ, and vκ = j dvκ.
K

Let Lbe a closed (and hence compact) subgroup, and K/L the resulting homo-
geneous space with naturally induced Riemannian homogeneous metric g. Let

dvg denote the induced Riemannian measure on K/L, vg = I dvg, and
K/L

n = dimCK/L). // t is any symmetric 2-tensor field on K/L, p ζ. K/L, and
x, y e (K/L)p the tangent space to K/L at p, then the tensor field t on K/L
defined by

, y) = — Ct(k x,k y)dvκ

is an invariant symmetric 2-tensor on K/L, where k x denotes the linear action
of k € K on tangent vectors to K/L. If L acts on K/L irreducibly, then

K/L

where τ is the trace of t relative to g.
Proof. Using the invariance of dvκ, one easily obtains the invariance of ?

under the action of K. Now let π: K —> K/L denote the standard projection,
o = π(L), x, y e (K/L)o (clearly, by homogeneity and invariance it suffices to
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consider this case), and assume L acts irreducibly on K/L. Let dvL denote the

induced bi-invariant measure on L, vL = I dvL, and for k e K, p — π(fc) =
L

k>L let Lp denote the fixed point group of p, i.e., Lp = kLk~1. In our sub-
sequent integration formulas we let Z range over L, and lp over Lp. Then

1 r
, y) = t(k>x,k-y)dvκ

vκj
vκj

K/L ir-

= — J [jtdpk x, lpk-y)dvL^dvg
K K/L LK K/L L

Vκ
 II

 n

1^- (^dvg\.8(x,y)

* K/L

To go from the first line to the second one uses Lemma 5 (vp is the Rieman-
nian measure of the coset π~Kp)), from the second to the third is obvious:
(dvLp is the bi-invariant measure on Lp), from the third to the fourth one uses
Lemma 6, from the fourth to the fifth one uses the invariance of the metrics
and their induced measures, and the final line is obtained using the invariance
of the measures and Lemma 5 as in § 1.

Corollary 8. Let det t denote the determinant of t relative to g. Then

J (det l)1/2vg = ί-ί J
/

dvX .vg

ι~n/2 .
K/L K/L

We note that if Γ is a nontrivial free homotopy class of continuously sec-

tionally smooth ω: [0,1] —> K/L, and Et = inf j j t(ω', α/): ω e Γ\ and sim-

0

ilarly for Ej , then Eξ > Et. Indeed, for every ω e Γ,k ω£ Γ by the connec-
tivity of K, which implies

Γ?
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= — f f Γt(k-ω',k ω')}dvκ > — [Etdvκ = Et .
K 0 K

If ί is positive definite, then lt = infί f W ' , ω'))1/2: ω e r\ = Et

ι'\ and sim-

o

ilarly for ? which implies lt> lt. We also note that if / is a conformal de-

formation of g, then by using Holder's inequality one easily shows that

I (det t)1/2dvg < I (det t)ι/2dvg so if / is a positive conformal deformation

K/L K/L

of g, and vt9Vf denote the appropriate volumes, lt

n/vt < lιn/v^= lg

n/vg,
which is Pu's original result. We now turn to a class of Riemannian metrics
{h} on 3-dimensional real projective space P3 for which v^ > vh.

3. Poincarέ metrics on 3-dimensional real projective space

We now let 52 be the standard 2-sphere. Then for any Riemannian metric g
on 52 the unit tangent bundle of the metric is homeomorphic to P3. (Indeed,
for different metrics on S2 the unit tangent bundles are homeomorphic, and for
constant sectional curvature 1 the unit tangent bundle is explicitly seen to be
the special orthogonal group 5Ό(3) acting on R3. But SO(3) is known to be
homeomorphic to P3 (e.g. cf. [13, p. 115])). To construct the induced
Riemannian metric g on P3 we first construct in the standard manner (cf. [8,
Chap. Ill, IV] for details) the 3 global linearly independent differential 1-forms
on P3 (viewed as the oriented frame bundle of 52): ω19 ω2, ω2l where ω19 ω2 are
the canonical forms of the bundle, and ωn is the connection form on P3 of g.
The forms ω19 ω2, ω2l then satisfy the Cartan structure equations

dωλ = ω2 Λ ω2l , dω2 = — ωλ Λ ω2ί , dω2l = Kωλ Λ ω2 ,

where K is the Gaussian curvature of g (actually we should write Koπ). The
induced Riemannian metric on P3 is then defined by (dsg)

2 = (ωx)
2 + (ω2)

2 +
(ω3)

2, i.e., at each point the global linear frame on P3 dual to the basis of 1-
forms {ω19 ω2, ω21} is declared to be orthonormal. One checks that this metric
is the same as the construction given in local coordinates in [12].

We henceforth let g be the metric on S2 of constant sectional curvature 1
with associated forms ω19 ω2, ω2l on P3, and for any other Riemannian metric
h on S2 we denote the associated forms P3 by ωf9 ω2

h, ω21

h. First we note that g
has constant sectional curvature 1. Second, for any given metric h on S2 there
exists σ: S2-+ R such that h = e2σg which implies that dσ (lifted to P3) is of
the form dσ = σγωγ + σ2ω2, and ωλ

h = eσωι, ω2

h = eσω?, ω2l

h = σ2ωι — σλω2 +

ω2l. Direct calculation then shows

= 2e2σ + 1 + || grad a ||2 , det̂ /z = eiσ ,
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where || gradσ ||2 = (σ2 + σ2) is the length squared of the gradient of σ on S2

in the metric g.
The Riemannian metric g of constant sectional curvature 1 on P3 can be

realized naturally from the Riemannian homogeneous space SO(4)/{SΌ(3), — 1},
where for any positive integer n, SO(n) denotes the special orthogonal group
acting on Rn, and {SO(3), — 1} denotes the group generated by SO(3) naturally
imbedded in SO(4) and minus the identity map of R\ Let h denote the Rieman-
nian metric on P3 obtained by averaging h over SO(4) as in Theorem 7, and
vh,v% the respective volumes of P3. Then by Lemma 5 and Corollary 8 we
have

vh = 2π I e2σdvg

2 π J11 grad

s

Let a = -JV = ) - (e2σdvk. Then
Sπ2 AπJ g

s

2a + I)3 - 27«2}/27

- m^a + l)/27

with equality if and only if σ = 0. Thus v% > vh with equality if and only if
h = g. Furthermore, if K is any positive constant and σ any constant >
i/n(27ic/8), then (v~h)

2 - κ(vh)
2 > 0.

The last comment in the above paragraph reflects the fact that a Rimannian
metric of constant sectional curvature K Φ 1 on S2 does not induce a metric of
constant sectional curvature on P3. If we change our class of metrics on P3 by
replacing ω2ί

h written above with ω2l

h* = e2σ(σ2ωι — σλω2 + ω2l), then metrics
of constant sectional curvature on S2 induce metrics of constant sectional cur-
vature on P3. Furthermore, (lh*y/vh* < π with equality if and only if σ is

constant. Indeed vh* = 2π j eZσdvf, each of the fibers is nonhomotopic to zero

Si

[13, p. 115] and of length 2πe% which implies lh* < 2τr mineσ < A ί e"dvt,.
s2 J

s2

Holder's inequality then implies (Z *̂)3 < 2ττ2 J eZσdv* and the result follows. In
s2

light of N. Kuiper's remark [2, p. 309] the Poincare metrics are of interest
with regard to Pu's conjecture and, as mentioned, we will consider them in a
future publication.
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