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SPECIAL CONNECTIONS AND ALMOST
FOLIATED METRICS

E. VIDAL & E. VIDAL-COSTA

On manifolds with a complex almost-product structure, we study some
special connections related to the parallelism and integrability of the distributions
and to a complex symmetric bilinear form (pseudo-metric) compatible with the
structure, and establish the notion of almost-foliated metric which includes as
a particular case the metric of a foliated type on a foliated manifold. (For
Reinhart spaces see [6].)

1. Adapted connections

Let V be a differentiable manifold of class C* and dimension n, and let
T(V) = T(V) ® C denote the complexified space of the tangent space T(V)
of the manifold. A complex almost-product structure defined on ¥ gives two
C~-fields T" and T* of supplementary subspaces, with respect to the Whitney
sum, of T7¢(V) (dim T* = n,, dim T? = n,, n, + n, = n). If x e V, [then every
vector X € T¢ is the sum of two vectors PX e TX and QX e T2, so that
T, + T: = T¢, P + Q = I (identity), P, Q being the projection tensors as-
sociated with 7" and T*.

The complex almost-product structure is determined by a vectorial form H
such that H? = I gives H = P — Q in T€. It is equivalent to the reduction of
the structural group GL(n, C) of the fibration T¢(V). The principal fibration
associated with T°(V) has, as a structural group, the subgroup of the complex
linear group GL(nC) of the form

GL(n,,C) 0
(1) ( 0 GL(n—nl,C))’

The structure determined by the operator H = P — Q, such that H* =1,
comprises as particular cases: the almost-complex structure when »n is even
and J =iP — iQ, P =iP, Q = iQ are conjugate operators; and the real
almost-product structure when P, Q are real.

We represent by A(V) the fibration of the complex references of T¢ with
GL(n, C) as the structural group, and by A’(V) the subfibration of the linear
references adapted to the complex almost-product structure with (1) as the
structural group.
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Definition 1. A connection is said to be adapted if it preserves the complex
almost-product structure.

We can easily see that these adapted connections make H parallel ; that is,
VH = 0 for an adapted connection, and deduce that the adapted connections
are the infinitesimal connections on A’(V). These connections generalize the
almost-complex connections of A. Lichnerowicz [4] and the connections of
Schouten [7], which are the connections established by I. Cattaneo-Gasparini
[1] and by Legrand [3]. For arbitary vector fields X,Y in T¢, in the same
way as for the real case we define a torsion tensor N for the complex almost-
product structure by

(2) N&X,Y) = {([HX,HY] + [X,Y] — H[HX, Y] — H[X,HY]) ,
where we write, for a tensor § of type (1, 2),
BHX,Y) = pH(X,Y) , B(X,HY) = p-HX,Y) .

Proposition 1. If a is a tensor of type (1,2), B a tensor of type (1,1) and
V a symmetric connection, then V' =V + « is a connection such that when
applied to p we have V'3 = VB + axp =VpB + a-p — .

Proposition 2. For a symmetric connection V in T, all the connections
adapted to the complex almost-product structure defined by the tensor H are
given by

(3) V'=V —H-H + 8

with the condition f-H — HB = 0.
Proof. Since V(HH) =VH-H + HVH =0, and HVH-H = —VH, we
obtain

V'H =VH — }(PH-H)«H + p«xH =VH — }VH + $HV'H-H =0 .

Definition 2. For the adapted connections F’” and the torsion tensor N of
the structure, we define the connections
(4) E=V —iN=V —iH-H+ p—3}N.

Proposition 3. N = HEH.

Proof. Since

EH = V’'H — }N+H = }(—N-H + HN) , HEH = §{(—HN-H + N) ,

NX,Y) =} uxH)Y — PuyH)X — HV yH)Y + HVyH)X] ,

we have —HN-H(X,Y) = N(X,Y), and hence the proposition.

It is well known that if the complex almost-product structure is integrable,
then there exists a symmetric connection which makes it parallel. However,
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the following immediate proposition, the E connections represent all the con-
nections such that if H is parallel with respect to them then it is integrable,
and conversely.

Proposition 4. A necessary and sufficient condition for the complex almost-
product structure determined by H to be integrable is that H be parallel with
respect to an E connection.

In the case of a real almost-product structure, the connections L of Walker
[10] are defined in the form L = D + N such that they make H parallel, D
being a symmetric connection. Then L C /,D C E.

2. Connections in relation with a pseudo-metric adapted to
the complex almost-product structure

Given the complex almost-product manifold ¥/, whose characteristic tensor
is H, let g be a C-bilinear symmetric form of a complex pseudo-metric C*
defined on V. We say that g is adapted to the complex almost-product structure if

g(HX,HY), = 8X,Y),, VpeV, VX, YeTIC.

For the two subspaces 7" and T? of T¢ determined by H, the condition for the
pseudo-metric to be adapted to this decomposition is that 7' and 77 be
orthogonal with respect to g at every point p.

In accordance with Proposition 2, by taking different expressions for g we
can determine the adapted connections with certain special properties as in the
following proposition.

Proposition 5. There exists a unique connection on TC(V) with the follow-
ing conditions:

(a) It is adapted to the structure H.

(b)  The connection induced in T* (or T?) is compatible with g.

(c)  The first n, components of the torsion are of type (0,2), and the last
n — n, are of type (2,0).

This connection (called the second connection) is given by
(5) VY =0zY 4+ UV urHX + HEHX) + 2HH)Y)] .

Lemma 1. Suppose V' =V + a, where o is a tensor of type (1,2), and
let g be a tensor of type (0,2). Then

Ve)X,Y,Z) = Fe)(X,Y,Z) + (ax8)(X,Y,2) ,
(a*g)(X, Y, Z) = —g(a(X, Y)a Z) - g(Y’ C((X, Z)) .
Proof. Since

YeY,2) =Xg(Y,2) = VY, 2) + gWV,Y,Z) + g(Y,V%2) ,
VeY,Z) =Xg(Y,Z) = Vx)Y,Z) + gWxY,Z) + g(Y,Vx2Z) ,

(6)
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substration of these two equations gives the second equation of (6) immediately.
Proof of Proposition 5. a) Since

DY = W(HH)Y = VHHY + HVH)YY =0,
HWVHHY = —(FH)Y ,
in accordance with Proposition 1 we obtain
PxH)Y = FH)Y + }VyH)X + HV yyH)X + 2HV xH)HY
— HYV yyH)X — VyH)X — 2(FPxH)Y) =0 .
b) SinceV and g are compatible with the complex almost-product structures,

4(7 px8)(PY, PZ) = 4V px8)(PY, PZ) + [(VuyH)X + H((WyH)X)
+ 2H(V zH)Y1+g(PX, PY, PZ) .

Since Vg =0, HVH)PX = —(PH)PX and (WH)P = 2QFP, by Lemma 1
we obtain

47 px8)(PY,PZ) = —g((VpyH)PX + H((V pyH)PX + 2H(V »xH)PY, PZ)
— g(PY,(Wp,H)PX + HV pH)PX + 2H(V pxH)PZ)
— —g(QH(V pxH)PY, PZ) — g(PY,2H(V pxH)PZ) .

On the other hand, from V(HP) = (VH)P + HVP = VP it follows PWH)P
= 0 and therefore

HW pxH)PY = P(VpxH)PY — QW pxH)PY = — QW xH)PY .
Thus
gRHW pxH)PY,PZ) = —28(Q(VpxH)PY,PZ) =0 .

On account of the orthogonality of 7" and 7%, we hence have (7 px8)(PY, PZ)
= 0, which is similarly true with P replaced by Q.

c) We must show that the first components of the torsion of I are of type
(0, 2) and the second ones are of type (2, 0), that is,

P Tory (PY,PZ) =0, PTory(PY,0Z)=0, QTor;(QY,07Z)=0.

For this purpose, it sufficies to observe that the torsion of V is the Nijenhuis
tensor except for a sign so that

PN(PY,PZ) = PON(Y,Z) =0, N(PY,0Z) =0.
Similarly, ON(QY, QZ) = 0.
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To prove that V is the only connection satisfying a), b) and c), we shall
prove that if a connection 7 = / + B, 8 being a tensor of type (1,2) satisfies
a), b) and ¢), then B(Y, Z) = 0, where Y, Z are arbitrary.

From a) we have gxH = 0, thatis, (Y, HZ) — HA(Y, Z) = 0, from which
follow

Pp(Y,HZ) — PR(Y,Z) =0, QOB(Y,HZ) + QBp(Y,Z) =0.
Moreover,
(7) PR(Y,07) =0, Op(Y,PZ) =0.

By b) we obtain pxg(PY,PX,PZ) = 0, xg(QY,Q0X,0Z) = 0, from the
first of which it follows

—g(B(PY, PX),PZ) — g(PX,B(PY,PZ)) =0 .
Putting X = Z for arbitrary Z in the above equation yields
g(p(PY,PZ),PZ) =0,
which implies
(8) PA(PY,PZ) =0 .
In a similar way, we obtain
(9) 0B(QY,02) = 0.
From c) follow
(10) PB(PY,QZ) — PR(QZ,PY)=0, OBQY,PZ) — QR(PZ,QY) =0,

which, together with (7), (8), (9), hence give (Y, Z) = 0.

The coefficient of this connection was obtained by Vaismann [8] for real
almost-product Riemannian manifolds, and in the case of almost-complex
manifolds this connexion coincides with that introduced in [2, p. 143].

Proposition 6. There exists a connection V' on a complex almost-product
manifold adapted to the structure such that its torsion is

1 Tor,, (X,Y) = {(FyH) HX — VxyH)HY] .

This connection has also the property that the connections induced in T*
and T? are compatible with the metric induced in 7" and T2.

For the connection F corresponding to a g pseudo-metric adapted to the
complex almost-product structure, we have

Proposition 7. If the connection V' makes T' parallel, it also makes T*
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parallel, and consequently both T' and T? are integrable.

Proof. Since g is adapted to the structures, J is the metric connection and
V makes T' parallel, we have, respectively, g(PY,Q0Z) =0, Vg =0 and
OFP = 0, the last of which implies PP = PFP. Thus

V(e(PY, Q7)) = Vo)(PY,QZ) + gWPY,QZ) + g(PY,VQZ)
= gPWP)Y,07) + g(PY,(VQ)Z)
=g(PY,(VFQ)2)) =0.

Hence FQ)Z e T*? implies PWQ)Z = 0, which is the condition for // to make
T*? parallel.

The integrability is a consequence of the parallelism with respect to a sym-
metric connection.

Definition 2. Let I’ be a symmetric connection. Then a connection is a C-

connection if it is of the form
(12) C=V—-Q0FP+ON + 7, Or-P=0.

Proposition 8. A necessary and sufficient condition for T* to be integrable
is that it be parallel with respect to a C-connection.

Proof. 1f T'is integrable, then QN = 0, and the expression of C is re-
duced to the expression of the connection which makes 7" parallel. Conversely,
QCP = QVP — QVP + ON-P 4+ Qy-P =0 implies that ON-P = 0 and
therefore that Q[P, P]-P = Q[P,P] = 0.

Corollary.

(13) Q Tor, (PX,PY) =0.

3. Almost-foliated pseudo-metrics

Definition 3. Let V be a C* manifold with a complex almost-product
structure, g a complex pseudo-metric, and F/ the second connection given by
V=r+ a/4, where V is the metric connection. Then g is said to be almost-

foliated if
(14 Vrx8)(QY,07) =0, VX, Y,ZeT%V).

Proposition 9. A necessary and sufficient condition for the form g to be
almost-foliated is that

(axg)(PX,QY,07) =0 .

Proposition 10. If the form g is almost-foliated, then the fields of T*
parallel with respect to the connection V along any curve preserve their length.
Proof. From Proposition 5 and (14) we obtain (V/ xg)(QY,0Z) = 0.
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4. Real foliated manifolds

If we consider a real foliated manifold, then the almost-foliated metric con-
tains the fibre-like metric (Reinhart spaces [6]) as a special case in accordance
with the following proposition.

Proposition 11. Given a real foliated Riemannian manifold (V,T*,T%), T*
being integrable, a necessary and sufficient condition for the metric to be fibre-
like is that it be almost-foliated.

Proof. Suppose on the manifold there exists a fibre-like metric, IV is the
metric connection, and taking references adapted to the foliation (6x¢,Y,),
@+, dy"),(a,b=1,..-.,n;u,v=n,+1,...,n), we have [5]

(15) ds® = g4,(x, 9)0°0° + G,,(y)dy dy® .

Then the condition of fibre-like metric is expressed as

(16) Va,,,(g(Yu, Yv)) = aa,Guv =0 >
that is,
an 8V, Yu, Yy) + 8(Yy, V5,Y,) = 0.

We must prove that in this case  »x8)(QY, QZ) = 0. For this purpose we
shall first demonstrate

(7aa,g)(Yua Yv) = (Vaag)(Yu’ Yv) + Zlf(a*g)(aa’ Yu, Yv) =0.
Fg) = 0, since V is the metric connection and

—(a*g)(aaa Y., Yv) = g(a(aa., Yu); Yv) + g(an a(aa’ Yv))
= g((V_y H)d, + HWVy H)3, + 2HWV ;,H)Y ,, Y )
+ 8(Y,, V_y,H)o, + HV y H)d, + 2HWV ;, H)Y ) .

On the other hand,
(VH)P = 20QrP , TH)Q = —2PVQ .
Since g(PY,QZ) =0,

_"(a*g)(aa, Yu7 Yv) = _4(g(QVYuaa’ Yv) + g(Ym QVY,aa,)) s
or

(18) (a*g)(aa,9 Yu, Yv) = 4(g(VY,,aa,a Yv) + g(Yw VY,,aa)) .
Since V is symmetric and [3,, Y,] € T*, by (17) we finally obtain
(19) (x8)(0a> Yo, Y,) = 4(g(Va,,Yu> Y, + &Y, Va,,Yv)) =0.
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To prove that
(75,8 (Yy, Y,) = 0 implies (7 »x)(QY,QZ) =0,
it suffices to consider

7 x8)(QY, 0Z) =V px(8(QY, 0Z)) — g(7 pxPY, QZ) — g(QY,V x0Z)
= ﬁoaaa(g(ruyu, FvY'o) - g(ﬁcﬂaaFuYu, Fva)
_g(FuYzw 70aaquYv) .

Conversely, if the metric is almost-foliated and T" is integrable, then the
metric is fibre-like. In fact, since the metric is almost-foliated we have
(axg)(PX,QY,Q0Z) = 0. For the foliated manifold V, by taking adapted
references we thus obtain (19), which is equivalent to 9,G,, = 0.
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