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IDEAL DECOMPOSITIONS OF KILLING AND
HOLOMORPHIC VECTOR FIELDS

WALTER C. LYNGE

1. Introduction

Let (M, g) be a compact, connected, oriented Riemannian manifold. We
show in § 3 that the Lie algebra of Killing vector fields on M can be decom-
posed into a direct sum of ideals according to the reducibility of the linear
holonomy group of M. A decomposition of this type is already known for the
case of a simply connected, complete Riemannian manifold. If in a addition
M is assumed to be Kihlerian, we show in § 4 that the Lie algebra of holo-
morphic vector fields on M can also be decomposed in this way. Our proofs
make use of part of a theory of Chern in the form described briefly in § 2.

2. Preliminaries

Let O(M) and Iy, denote respectively the oriented orthonormal frame
bundle over M with structure group SO(n) and the Riemannian connection in
O(M). We assume 'y, to be reducible to a connection I'p in a subbundle P
of O(M) with structure group G C SO(n) and projection n. The case which
will interest us most in the sequel is where P is the holonomy bundle through
some point of O(M).

Let {e,, - - -,e,} and {4,, - - -, 4,} be respectively the canonical basis of R"

and a basis for the Lie algebra of G. Let § = i} Oe;, = % ®*4;, and Q=
i=1

2=1

Ms

A, be respectively the canonical form of P, the connection form of I'p,

N
Il
-

and the curvature form of /"». We have the formula * = § > r},6° A 67 with
i,j=1

rl; = —ri. Let (4);; = a, i,j = 1, - - -, n. Then there exist functions s* on

P such that r{, = Y s*af, with s* = s**. Let A¥ denote the fundamental vector

r

field on P corresponding to A;, A =1,...,m. Let X;,i = 1,...,n, be vector

fields on P such that §Y(X;) = %, *(X;) = 0. Define differential operators P*

and S* on the space of smooth functions on P by P* = ] X,;* and S§* =
k

>, s*A¥A¥. These differential operators commute with right translation by
2,2
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elements of G. Thus, if p is a representation of G in a vector space V, and f
is a V-valued equivariant function on P, then P*f and S*f are also equivariant,
where P*f and S*f are defined componentwise for V-valued functions after
selecting a basis for V.

Let j denote the natural representation of G in R". Let ¥ = {equivariant
smooth functions on P of type (j, R*)}, ® = {smooth 1-forms on M}, and X

= {smooth vector fields on M}. Given 7 in D, we have 7*y = g fi6t. Toy

n
we associate f = ), f.e? in §. This defines a 1:1 correspondence between D
i=1

and §¥. Moreover, the Riemannian metric gives a 1: 1 correspondence between
D and X. Hence we have also a 1: 1 correspondence between X and §.

Let 4 and S be respectively the Laplacian on M and the Ricci tensor inter-
preted as an endomorphism of the cotangent space at each point. By the 1: 1
correspondence between © and §, we may regard the maps 4, S: D — D as
maps 4, S: § — §. In terms of the operators P* and S*, we then have the ex-
pressions 4 = —P* — §* and § = S*.

Suppose c is a linear transformation of R® which commutes with the action
of G. Let 5 be an element of F. Define (c-7)(u) = c(y(w)) for each u in P.
Then c-y is in §, and we have a map § — § also denoted by c. By a theorem
of Chern the diagram

commutes when T is P* or S*.

3. Decomposition of Killing vector fields

Our decomposition theorem for Killing vector fields is:

Theorem 1. Let M be a compact, connected, oriented Riemannian manifold
with oriented orthonormal frame bundle O(M). Let P be any holonomy bundle
of O(M) with structure group @. Suppose R® =V, @ --- D V,, where the V,
are mutually orthogonal subspaces of R™ with respect to the usual inner product
and each V; is invariant under @. Let & be the Lie algebra of Killing vector
fields on M. Then & =&, @ --- ®®,, where &, ={X|Xec® and the
equivariant R"-valued function on P corresponding to X is V ;-valued}. More-
over, each &, is an ideal in &.

Proof. We can find an element g in SO(n) such that g7V, = R®:, i = 1,
- -+, r, where R”: is the subspace of R" spanned by {e,, - - -, €5}, R?is the
subspace spanned by {ep,,;, - - -, €p,.5,}, €tc. Let P’ be the holonomy bundle
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R,P with structure group g~'@g = @’. Then @’ leaves each R?: invariant, and
R"=R""@® .-- ®R". Let & = {X|X e® and the equivariant R"-valued
function on P’ corresponding to X is R”:-valued}. It is easy to compute that
®&; = &;. Thus we may consider V; to be R?:, i = 1, - - ., r. Furthermore, we
restrict ourselves to the case r = 2 for simplicity and write R”* = R?, R?* =
Rr-?,

Let X be a Killing vector field on M with corresponding 1-form «. Let f be
the R™-valued function on P corresponding to X. Let p,, p, be the projection
maps R® — R? and R® — R"? respectively. Then f = f, + f,, where f; = pf,
i=1,2. Let X,, X, be the vector fields on M corresponding to f,,f, respec-
tively. Then X = X, + X,. If we show X, and X, are Killing, it follows
easily that & = &, ® ©,. Let «y, a, be the 1-forms on M corresponding to
X,, X, respectively. Applying the Chern theorem, we see that da; = 2S«;,
i = 1,2. To show X, and X, are Killing, it suffices now to prove that da; = 0,
i = 1, 2. In order to do this, we first make a felicitous choice of moving frame:

Let v be an element of P with z(v) = x. Write v = (Y, - - -, Y,,,), Where
Yi,eT M, i=1,-.--,n Let {x',.--,x"} be the normal coordinate system
on a neighborhood U of x determined by the frame v. Then 9/ox¢|, = Y,
i =1, ...,n. Translate v parallelly along geodesics emanating from x to obtain
a moving orthonormal frame ¢ = [Y}, ---,Y,] over U. By the definition of
P, ¢ is a section of P over U. It is called the adapted frame on a neighborhood
U of x determined by v. Define two distributions V¥ and W on U by V, =
subspace of T',M spanned by {Y,,, - --,Y,,} and W, = subspace spanned by
{Ypirgs -+ Yu,},ye U. Wehavethat TM =V, @ W,andV, | W,foreach
yin U.

Lemma 1. V, and W, are invariant under @(y), where ®(y) is the linear
holonomy group of I'y ., With reference point y regarded as a linear group
acting on T,M.

Proof. We recall that the action of @(y) on T,M may be described as
follows: Letw = (Y, - - -, Y,,,), and suppose ¢ is an element of @(y). Regard-
ing the linear frames w and ¢(w) as maps from R" to T,M in the usual way,
we associate to z the linear transformation ¢(w) o w™' of T,M. We need to show
that z(w) ow™! leaves ¥, and W, invariant. Let @(w) denote the holonomy
group of Iy, With reference point w. Since w € P, ®(w) = @. Thus there is
an element g in @ such that «(w) is the linear frame wog: R* — T ,M. But
g leaves R? and R""? invariant. Moreover w(R?) = V, and w(R""?) = W,.
Hence the result.

Next we need to establish some properties of the Christoffel symbols 1™,
with respect to the frame ¢. We do this in the next four lemmas, omitting most
of the details.

Lemma2. [% =0ifk>pandi,j<p,andl}; =0ifk<pandi,j> p,
everywhere on U.

Proof. Using Lemma 1 we can show that if X and Z are vector fields on
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U belonging to the distribution V' (respectively W), then V,X and VyZ also
belong to V' (respectively W). The result then follows at once.

Lemma3. [}, = —TI%,;Vi,m,jeverywhereon U.

Proof. This follows from the fact that /g = 0 and the fact that the moving
frame [Y,, - - -, Y] is orthonormal.

Lemmad. [}, =1I%atxvVvijk.

Proof. LetY = i} y® d/0x* be the vector field on U determined by paral-
i=1

lelly translating a vector Y, at x along geodesics emanating from x, where
again {x', - - -, x"} are normal coordinates on U determined by v». Using the
differential equations for parallel translation, we can show that dy*/ox' = 0
at x ¥ k,l. We then apply this fact to show that [Y;, Y;](x) = 0 v i,j. Since
the torsion is zero, we then have the result.

Lemma 5. % = 0 at x unless k,i,m are all <p or all >p.

Proof. Immediate from Lemmas 2, 3, 4.

We now return to the proof that da; = 0, i = 1, 2. Pick an arbitrary point
x in M. Let v be an element of P such ‘that z(v) = x. Let [V, ---,Y,] =0
be the adapted frame on a neighborhood U of x determined by w». Let
[Bs, - - -, B.] be the moving coframe dual to ¢. It is not difficult to check that
we have representations of the form a, = }“i 98¢ and o, = Zp} 98¢ Then X,

i=1 i

i=p+1

= f} 7Y, and X, = Zn] 7Y, where * = y;, i = 1, - - -, n, because ¢ is an
i=1

i=p+1
orthonormal frame. Since X is Killing, we have 7;.; + 7;,; = 0 v i, j. Setting
i =j, we have 7;; = 0. But 7;; = Y;(p;) — 2 7I"5;. Hence Y;(n;) =

2 n:d75;. By Lemma 5 we have

(1) i j<p, then Y,0)0) = T 7@,
(2) it j>p, then Y,)® = I n0I%0 .

We recall that 7/, = Y ,(/) + > I'},n*. From this, using (1), (2), Lemmas 3
k

and 5, and the fact that 7 = 5, it can be computed that n‘,(x) = 0 for each
i=1,---,n But (ba)x) = — Z 7i,(x) and (Ba)(x) = — Z 7; /;(x). Hence
(0a)(x) = (Oarp)(x) = O for an arbltrary point x in M. Thus X and X, are
Killing.

It remains only to show that &, and &, are ideals in &. First we show
[®,, ®,]C®,. Let X, Z be arbitrary elements of &,, and v be an arbitrary point

in P with n(v) = x. Let ¢ = [Y}, -- -, Y, ] be the adapted frame on a neigh-
borhood U of x determined by v. We see easily that X and Z are expressed as
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= 31 9iYi, Z = 3, &Y, where g = & = O on U for i > p. Now [X, Z]
i=1

i=1

z"; [X, Z]™Y,, where

1

(3) [X, Z]™ = X Y (™) + 9T — 7Y i(En) — 9§T7) .

1,7
By Lemma 5 we obtain that [ X, Z]™(x) = O for m > p. Thus, ifa;, i=1,-- -, n,
are the components of the 1-form correspondmg to [X, Z], then a;(x) = 0 for
i > p. From this it follows that if f = Z f'e; is the R™-valued function on P

corresponding to [X, Z], then f{(v) = 0 for i > p. But v was an arbitrary
point of P. Hence [X, Z] ¢ &,. Similarly we prove that [&,, ®,] ¢ &,.
To complete the proof of Theorem 1, we need only to show [®&,, ®,] = 0.

Let X, Z be arbitrary elements of &,, &, respectively. Then X = i} &Y, and
i=1

Z = Zn;pin-with&'iE00nUfori>pand77iE0 on U for i < p, where
o= [ll;j, -.+,Y,]is an adapted frame on a neighborhood U of an arbitrary
point x of M determined by some v in P such that z(v) = x. Again we have
[X,Z] = Zn: [X, Z]"Y, where [X, Z]™ is given by (3). We will show that
X, ZI"(5) = O m.

Case 1: m > p. Then [X, Z]’"(x):i} E'(x)(Y;(x™)(x) by Lemma 4 and

the fact that £ = 0 on U for i > p. Since Z is Killing, we have 7,.; + 7in
= 0. Since ¢ is orthonormal, 7* = 7,;. Thus we obtain

Yi(ﬂm) — Tf 77101—"7;,1‘ + Ym(ﬂi) - Zk: ﬁkrfm =

For m > p and i < p, it follows by Lemma 5 that Y,(3™) = —Y (3% at x.
Thus [X, Z]™(x) = ~-Z §(Y (7)) = 0.
i<p

Case 2: m < p. The proof is similar.

4. Decomposition of holomorphic vector fields

We now assume our compact, connected, oriented Riemannian manifold M
is Kéhlerian. The complex dimension is n/2, where n is now even. We denote
the complex structure by J. Let 9 be the real Lie algebra of infinitesimal auto-
morphisms of M. U is made into a complex Lie algebra using the almost
complex structure J. Let § be the complex Lie algebra of holomorphic vector
fields on M. As complex Lie algebras, § = %. Thus we will deal with % from
now on.

The infinitesimal automorphisms of M are characterized by the property that
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their corresponding 1-forms satisfy da = 2S«. Therefore, if "y 4, is reducible
to a connection I"p in a subbundle P of O(M) with structure group G C SO(n),
and if R» =V, @ . .- @V, where each V, is invariant under the action of G,
then by the theorem of Chern we have a corresponding decomposition of the
real Lie algebra ¥ into a direct sum of vector subspaces: % = A, @ --- D Y,,
where %; = {X | X ¢ A and the equivariant R"-valued function on P correspond-
ing to X is V;-valued}.

Now we specialize P and G. Let x be an arbitrary point of M. Let T,M =
Vie® -+ ®V,, be a direct sum decomposition of T',M such that the V', are
mutually orthogonal subspaces invariant under @(x) and J,. There is an element
u in O(M), n(u) = x, which is of the form

u= (ul’ sy U, Jun . ‘3Juna Upiprs s Up iy Jur1+1, c "Jun+r,a v ‘)

where the first 2r, vectors in the frame u span V,,, the next 2r, vectors span
V., etc.

Theorem 2. Let P = P(u) be the holonomy bundle of O(M) through u with
structure group G = @u) = @. Let R* = R*"* @ ... @ R¥s. Then each
R {=1,...,s, is invariant under @. Moreover, if A =AU, D --- DY, is
the decomposition of U corresponding to this decomposition of R", then the
A, are complex subspaces of A and in fact ideals.

Proof. For simplicity we assume s = 2 and write R = R?, R¥2= R""?,
V.=V, and V,, = W,. To show R? is invariant under @, let g be an
arbitrary element of @. Then there is an element z of @(x) such that z(u)
is the frame uog: R®* — T ,M. Since V, is invariant under @(x), we have
tWouW, =uogouV, =V,. But u='V, = R?. Therefore uogR? =V,
and gR? = u'V, = RP?. Similarly R""? is invariant under @.

Now let v be an arbitrary element of P with z(v) = y. By the definition of
P = P(u) and the fact that F'J = O we see that v is of the form

V= (vl’ ] ’U,.l, J'Ul, et 7"?)71, 'vrl-)-l, ce s Vppirgs Jvn+l’ v ’J’Ufl—}-fg)

where 2r, = p and 2r, = n — p. Thus, if V, is the subspace of T\,M spanned
by the first p vectors of this frame and W, is the subspace spanned by the last
n — p vectors, then we have J,V, =V, and J,W, = W,. It follows readily
that JU; C U;, i = 1,2. Thus ¥, and %, are complex subspaces of .

It remains to show that ¥, and %, are ideals in 9. The proof that [, ;]
c ¥, i=1,2, is exactly the same as the proof of the analogous fact in
Theorem 1. We therefore have only to show [2,, 2,] = 0. Let X, Z be arbitrary
elements of U, ¥, respectively. Let y be an arbitrary point of M and let ¢ =
[Y,,---,Y,] be an adapted frame on a neighborhood U of y determined by
an element v = (Y,,, - -+, Y,,) in P. Let the components of X, Z, and [X, Z]
be &%, »* and [X, Z]™ respectively in the frame ¢. Then £ = O for i > p and
7' = 0 for i < p. From Lemma 4 we obtain
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n

(X, Z]"(y) = 2 § X (y™)D) — 'Y (™)) -

=1

Thus [X, Z]™(y) = —§ 7"OX(E™M)(Y) for m < p, and [X, Z]™(y) =
2 8 (Y (p™)(y) for m > p. In order to show [X, Z]™(y) = 0V m, it suffices

i<p
to show

Y, (™) =0 fori>p and m<p, and
Y™ =0 fori<p and m>p.

Lemma 6. @%y), the restricted linear holonomy group at y (which is the
identity component of @(y)) with respect to Iy, is decomposed into the direct
product of two normal subgroups ®%(y) and @Yy) such that @(y) is trivial on
W, and @Y(y) is trivial on V.

Proof. 'This follows from the proof of Proposition 5.3, p. 183 in [2]. By
Lemma 1 we have that &{()V, C V, and 9}(»)W, C W,. From this and
Lemma 6 it follows that the holonomy algebra ¢(y) at y splits into a direct
sum of subalgebras ¢,(y) and ¢,(y), where, as linear endomorphisms of 7,M

with respect to the basis {Y,,, - - -, Y,,}, elements of ¢,(y) (respectively ¢,(y))
are represented by matrices of the form

Now let 5 be the 1-form corresponding to the infinitesimal automorphism Z.
By an easy computation we find that with respect to the moving frame o, (F7);;

=Y,(p") + 2 7'I"};. In particular, p)y(y) = (Y.(;3))(v) if I > p and i < p.
J

But an element of ¢(y) + J,¢(y) is represented with respect to the basis
{Yy, -+, Yy} of T,M by a matrix of the form

Apyp O
0 0

H (respectively

00
o s

(n=p)X(n=p)

DPX(R—D)

Apsp o
o

(m=P)XDp B(n—p)x(n-p)

This follows from the above representations of ¢,(y), i = 1,2, and from the
fact that J,V, =V, and J,W, = W,. By a theorem of Lichnerowicz [3, p.
1511, Fp), € ¢(») + J,¢(y). This implies that (F7),,(y) = 0if I> pandi<p.
Thus we must have (Y;(™)(y) = 0 for i < p and m > p. Similarly, we can
prove that (Y;(§™)(y) = O for i > p and m < p. This completes the proof of
Theorem 2.

Finally, if we assume the K#hler manifold M is nondegenerate, we can

obtain a decomposition of % starting, as in the Killing case, from any holonomy
bundle:
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Theorem 3. Let M be nondegenerate. Suppose P is any holonomy bundle
of OM), and G = @ is its structure group. Suppose R» =V, @ -.- @V, is
a decomposition of R™ into a direct sum of subspaces mutually orthogonal with
respect to the usual inner product and invariant under @. Let A =, @D - - - DY,
be the corresponding decomposition of A. Then the W, are complex subspaces
of U and in fact ideals.

Proof. As in Theorem 1, it suffices to consider V, @ --- @V, to be
R ® ... @ R#r. For simplicity, we consider only the case r=2 and write
R*=R?*®R"? Letu= (Y, -+,Y,,) be an element of P with =(u) = x.
Then by Lemma 1, V', and W, the subspaces of T,M spanned by {Y,,- - -, Y}
and {Y, 4, « -+, Yy} TESpectively, are invariant under @(x). Since M is non-
degenerate, we have J, € @(x) [3, p. 173]. Then, in particular, JV, C V, and
JW, C W,. The rest of the proof proceeds as the proof of Theorem 2.

The results of this paper constitute part of the author’s Ph. D. dissertation
written at the University of Notre Dame. The author would like to express his
gratitude to Professor Yozo Matsushima for much encouragement and many
helpful suggestions.
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