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IDEAL DECOMPOSITIONS OF KILLING AND
HOLOMORPHIC VECTOR FIELDS

WALTER C. LYNGE

1, Introduction

Let (M,g) be a compact, connected, oriented Riemannian manifold. We
show in § 3 that the Lie algebra of Killing vector fields on M can be decom-
posed into a direct sum of ideals according to the reducibility of the linear
holonomy group of M. A decomposition of this type is already known for the
case of a simply connected, complete Riemannian manifold. If in a addition
M is assumed to be Kahlerian, we show in § 4 that the Lie algebra of holo-
morphic vector fields on M can also be decomposed in this way. Our proofs
make use of part of a theory of Chern in the form described briefly in § 2.

2. Preliminaries

Let O(M) and Γ0{M) denote respectively the oriented orthonormal frame
bundle over M with structure group SO(ή) and the Riemannian connection in
O(M). We assume Γ0{M) to be reducible to a connection ΓP in a subbundle P
of O(M) with structure group G C SO(ή) and projection π. The case which
will interest us most in the sequel is where P is the holonomy bundle through
some point of O(M).

Let {e19 , en) and {A19 , An} be respectively the canonical basis of Rn

n m

and a basis for the Lie algebra of G. Let θ = 2 9ieu ω = Σ ω ^ > a n d Ω=
i=l λ=l

m

J] ΩλAλ be respectively the canonical form of P, the connection form of ΓP,

and the curvature form of ΓP. We have the formula Ωλ = J 2 r\fiι Λ θj with

r\. — —r)^ Let (A^v = a)λ, i, j = 1, , n. Then there exist functions sλμ on
P such that rλ

kl = J] sλμak

lμ with sλμ — sμλ. Let Af denote the fundamental vector
μ

field on P corresponding to Aλ, λ = 1, , m. Let Xi,i— 1, , n, be vector
fields on P such that e\Xs) = δ), ω\X3) = 0. Define differential operators P*
and 5* on the space of smooth functions on P by P* = 2] Xk a n d 5* =

2 sλμA*Af. These differential operators commute with right translation by
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elements of G. Thus, if p is a representation of G in a vector space V, and /
is a F-valued equivariant function on P, then P*f and S*f are also equivariant,
where P*f and 5*/ are defined componentwise for F-valued functions after
selecting a basis for V.

Let / denote the natural representation of G in Rn. Let $ = {equivariant
smooth functions on P of type (/, Rn)}, 2) = {smooth 1-forms on M], and 9£

n

= {smooth vector fields on M}* Given ^ in 2), we have π*η = Σ /*#*• To η

n

we associate / = Σ fiβ1 in gf This defines a 1: 1 correspondence between 2)
t = l

and $. Moreover, the Riemannian metric gives a 1: 1 correspondence between
2) and 3£. Hence we have also a 1: 1 correspondence between 3£ and g.

Let J and S be respectively the Laplacian on M and the Ricci tensor inter-
preted as an endomorphism of the cotangent space at each point. By the 1: 1
correspondence between S) and $, we may regard the maps Δ, S: S) —• ® as
maps J , £: $ —> g. In terms of the operators P* and 5*, we then have the ex-
pressions Δ = - P * - 5* and 5 = 5*.

Suppose c is a linear transformation of Rn which commutes with the action
of G. Let η be an element of fj. Define (c-ηXύ) = c(η(ύ)) for each M in P.
Then c 3? is in g, and we have a map g —> g also denoted by c. By a theorem
of Chern the diagram

commutes when T is P* or S*.

3. Decomposition of Killing vector fields

Our decomposition theorem for Killing vector fields is:
Theorem 1. Let M be a compact, connected, oriented Riemannian manifold

with oriented orthonormal frame bundle O(M). Let P be any holonomy bundle
of O(M) with structure group Φ. Suppose Rn = V1© Θ Vr, where the Vt

are mutually orthogonal subspaces of Rn with respect to the usual inner product
and each Vt is invariant under Φ. Let © be the Lie algebra of Killing vector
fields on M. Then © = ©x 0 0 ® r , where ®, = {X\X e © and the
equivariant Rn-valued function on P corresponding to X is Vcvalued). More-
over, each Qόi is an ideal in ©.

Proof. We can find an element g in SO(ή) such that g'Ψi = RPί, i = 1,
• , r, where RPi is the subspace of Rn spanned by {el9 , ePl}9 Rp* is the
subspace spanned by {ePι+1, ,ePl+p%}, etc. Let P' be the holonomy bundle



KILLING AND HOLOMORPHIC VECTOR FIELDS 251

RgP with structure group g~ιΦg = Φ''. Then Φf leaves each RPi invariant, and

Rn = RPl® . ®RPr. Let ©^ = {Z|X<= © and the equivariant #w-valued
function on P' corresponding to X is i£Pi-valued}. It is easy to compute that
®i = ©J. Thus we may consider Vt to be Rp\ i = 1, , r. Furthermore, we
restrict ourselves to the case r = 2 for simplicity and write T^1 = i£p, i ^ 2 =

Let Z b e a Killing vector field on M with corresponding 1-form or. Let / be
the /^-valued function on P corresponding to X. Let p19 p2 be the projection
maps Rn -> Rp and Rn -+ Rn~p respectively. Then / = fλ + /2, where ft = ^/,
/ = 1,2. Let XX,X2 be the vector fields on M corresponding to f19f2 respec-
tively. Then X = Xx + X2. If we show Xλ and Z 2 are Killing, it follows
easily that © = © ! 0 © 2 . Let a19a2 be the 1-forms on M corresponding to
X19 X2 respectively. Applying the Chern theorem, we see that Δat = 2Sai9

i = 1,2. To show Xλ and X2 are Killing, it suffices now to prove that dat = 0,
i — 1,2. In order to do this, we first make a felicitous choice of moving frame:

Let v be an element of P with π(y) = x. Write v = (Ylx, , Yna.), where
Yίx β T^M, / = 1, , n. Let {x\ ,xn) be the normal coordinate system
on a neighborhood U of * determined by the frame v. Then d/dxi\x = Yίj;,
/ = 1, . , w. Translate v parallelly along geodesies emanating from x to obtain
a moving orthonormal frame σ = [YΊ, , Yn] over C/. By the definition of
P, σ is a section of P over U. It is called the adapted frame on a neighborhood
U ot x determined by v. Define two distributions V and W on U by Vy =
subspace of TyM spanned by [Yly9 , YP2/} and Wy = subspace spanned by
{Yp+ly9 , Ynv}9 y e Ό. We have that Γ,M =Vy®Wy and F , 1 ^ for each
y in t/.

Lemma 1. F y fl/iί/ Wy are invariant under Φ(v), where Φ(y) is the linear
holonomy group of Γ0{M) with reference point y regarded as a linear group
acting on TyM.

Proof. We recall that the action of Φiy) on TyM may be described as
follows: Let w = (Yίy, , Yny)9 and suppose τ is an element of Φ(y). Regard-
ing the linear frames w and τ(w) as maps from Rn to TyM in the usual way,
we associate to τ the linear transformation τ(w) o w~ι of Γ^M. We need to show
that r i ^ o w " 1 leaves Vy and ^ invariant. Let Φ(w) denote the holonomy
group of ΓOiM) with reference point w. Since w ζ. P, Φ(w) = Φ. Thus there is
an element g in Φ such that τiw) is the linear frame wog: Rn —> T^M. But
g leaves Λ^ and ft^ invariant. Moreover W(JRP) = Vy and wC^71"^) = Wy.
Hence the result.

Next we need to establish some properties of the Christoffel symbols Γ)k

with respect to the frame a. We do this in the next four lemmas, omitting most
of the details.

Lemma 2. Γ\s = 0 if k> p and i, j <p, andΓ\j = Oif k<p and i9 j> p,
everywhere on U.

Proof. Using Lemma 1 we can show that if X and Z are vector fields on
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U belonging to the distribution V (respectively W), then VZX and VXZ also
belong to V (respectively W). The result then follows at once.

Lemma 3. Γj

mί = — Γ^j V i,rh,j everywhere on U.

Proof. This follows from the fact that Fg = 0 and the fact that the moving

frame [Y19 , Yn] is orthonormal.

Lemma 4. Γkj = Γ% at xy i, /, k.
n

Proof. Let Y = Σ y* djdx1 be the vector field on U determined by paral-
ί = l

lelly translating a vector Yx at x along geodesies emanating from x, where
again {JC1, -,xn} are normal coordinates on U determined by v. Using the
differential equations for parallel translation, we can show that dyk/dxι = 0
at x V k, I. We then apply this fact to show that [Yίy Yj](x) = 0 V /, /. Since
the torsion is zero, we then have the result.

Lemma 5. Γk

m = 0 at x unless k, ί, m are all <p or all >/?.

Proof. Immediate from Lemmas 2, 3, 4.
We now return to the proof that δat = 0, / = 1,2. Pick, an arbitrary point

x in M. Let v be an element of P such that π(v) = x. Let [Y19 , Yn] = σ
be the adapted frame on a neighborhood U of x determined by v. Let
[βi> 9 βn\ be the moving coframe dual to σ. It is not difficult to check that

p p

we have representations of the form ax = J] ηφ1 and a2 = £] ηφ1. Then Xλ
ΐ l i l

a n c ^ ^2 = Σ rfYi9 where rf — ηi9 ί = 1, , n, because σ is an
ϊ = l i = p + l

orthonormal frame. Since X is Killing, we have η5.Λ + ^ i ; ό = 0 v i, /. Setting
i = /, we have ^ , = 0. But ^ ; J = Yfaj) - Σ ^ Π ^ Hence Yj(ηj) =

i

y By Lemma 5 we have

( 1 ) if / < P , then Y/^)(x) = Σ
i£p

( 2 ) if / > p , then Γ/ftX*) = Σ 7i(*)ΓJ/*)

We recall that j?fy = y / ^ ) + Σ Γj

jkη
k. From this, using (1), (2), Lemmas 3

and 5, and the fact that rf = ty it can be computed that η{j(x) = 0 for each

/ = 1, , n. But ( ^ ( J C ) = -Σ v!j(x) and (δa2)(x) = ~Σ vίM)- H e n c e
j=l ' j=p+l

( to^W = (δa2)(x) = 0 for an arbitrary point i i n M . Thus Xι and X, are
Killing.

It remains only to show that ©x and ©2 are ideals in ©. First we show
[©!, © J c ® ! . Let X, Z be arbitrary elements of @1? and v be an arbitrary point
in P with π(v) = x. Let σ = [Y19 , Yn] be the adapted frame on a neigh-
borhood U of x determined by v. We see easily that X and Z are expressed as
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* = Σ η*Yt, Z = Σ f%, where ?« = f* = 0 on U for / > p. Now [*, Z]

= Σ[Z,Z]™Γm where
TO = 1

( 3 ) [X, Z]™= Σ (ξΎi(ηn) + f V Γ S - ?%(?«) - ^ f T ? , ) .

By Lemma 5 we obtain that [X, Z]m(x) = 0 for m > /?. Thus, if ai9 i = 1, , rc,
are the components of the 1-form corresponding to [X, Z], then at{x) = 0 for

ί > p. From this it follows that if / = Σ feι *s the Λw-valued function on P

corresponding to [X,Z], then /*(t;) = 0 for / > p. But Ί; was an arbitrary
point of P. Hence [X, Z] e @lβ Similarly we prove that [®2, @2] 6 ©2.

To complete the proof of Theorem 1, we need only to show [®15 &2] = 0.
n

Let X, Z be arbitrary elements of ©1? ©2 respectively. Then X = Σ ?*^ί a n d
i = l

Z = Σ ^ '^ i with £ * = 0 on U for / > p and ^ = 0 on U for / < p, where
i = l

σ = [Y19 , Yn] is an adapted frame on a neighborhood U of an arbitrary
point x of M determined by some v in P such that π(v) = x. Again we have

[X,Z] = Σ [X,Z]mYm where [ Z , Z ] W is given by (3). We will show that
1

i . m > p. Then [ Z , Z ] m W = | ] ξKx)(Ύt(ηm))(x) by Lemma 4 and
ί = l

the fact that fι = 0 on C/ for / > p. Since Z is Killing, we have ηm.Λ + ^ i ; m

= 0. Since σ is orthonormal, 5/ = ηt. Thus we obtain

Yi(ηm) - Σ ηuΓk

mi + YJη*) - Σ V*Πm = 0 .
k k

For m > p and / < p, it follows by Lemma 5 that Yi(ηm) = — YTO(^0 at x.
Thus [X, Z]-(x) = - Σ f ' W ί r j ^ X * ) = 0.

2: m < p. The proof is similar.

4. Decomposition of holomorphic vector fields

We now assume our compact, connected, oriented Riemannian manifold M
is Kahlerian. The complex dimension is n/2, where n is now even. We denote
the complex structure by /. Let 21 be the real Lie algebra of infinitesimal auto-
morphisms of M. 31 is made into a complex Lie algebra using the almost
complex structure /. Let ίρ be the complex Lie algebra of holomorphic vector
fields on M. As complex Lie algebras, £> = 21. Thus we will deal with 21 from
now on.

The infinitesimal automorphisms of M are characterized by the property that
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their corresponding 1-forms satisfy Δa = 2Sa. Therefore, if ΓOiM) is reducible
to a connection ΓP in a subbundle P of O(M) with structure group G C SO(ri),
and if JRW = Vλ 0 0 Vr where each Vt is invariant under the action of G,
then by the theorem of Chern we have a corresponding decomposition of the
real Lie algebra 21 into a direct sum of vector subspaces: 2ί = % 0 © 2lr,
where 2ί* = {X | Z € 2ί and the equivariant unvalued function on P correspond-
ing to X is VΓvalued}.

Now we specialize P and G. Let x be an arbitrary point of M. Let TXM =
Vιx © 0 Vsx be a direct sum decomposition of TXM such that the Vix are
mutually orthogonal subspaces invariant under Φ(x) and Jx. There is an element
u in O(M), πiu) = x, which is of the form

u = (w1? , wri, /w15 , Jurι, uri+ι, , w r i + r 2, /M r i + 1, , /w r i+r2, )

where the first 2rλ vectors in the frame u span Vlx, the next 2r2 vectors span
V2X, etc.

Theorem 2. Le/ P = P(u) be the holonomy bundle of O(M) through u with
structure group G = Φ(u) = Φ. Let Rn = R2ri © © R2r\ Then each
R2r^ ί = 1, . . . , j , is invariant under Φ. Moreover, if Sί = % © © 81, is
the decomposition of 2ί corresponding to this decomposition of Rn, then the
21̂  are complex subspaces of 21 and in fact ideals.

Proof. For simplicity we assume s — 2 and write R2ri — Rp, R2r* = Rn~p,
Vίx — Vx, and V2x = Wx. To show Rp is invariant under Φ, let g be an
arbitrary element of Φ. Then there is an element τ of Φ(x) such that τ(u)
is the frame uog: Rn —• TXM. Since Vx is invariant under Φ(x), we have
τ(ύ)ou-ψx = uogou-ψx = Vx. But u~Ψx = Rp. Therefore uogRp = Vx

and gi^^ = M " 1 ^ = Rp. Similarly Rnp is invariant under Φ.
Now let v be an arbitrary element of P with πίtO = y. By the definition of

P = P(u) and the fact that FJ = 0 we see that i; is of the form

v = Oi, , vri, Jv19 , Jvrι, vTl+1, , i ; r i + r 2 , M 1 + i , , Jvrι+r%)

where 2rλ = p and 2r2 — n — p. Thus, if Vy is the subspace of TyM spanned
by the first p vectors of this frame and Wy is the subspace spanned by the last
n — p vectors, then we have JyVy — Vy and JVWV = Wy. It follows readily
that Mt c 8ίf, i = 1,2. Thus 2ίχ and 2I2 are complex subspaces of 21.

It remains to show that 2Iχ and 2ί2 are ideals in 21. The proof that [21*, 2ίJ
c 2ίί? / = 1,2, is exactly the same as the proof of the analogous fact in
Theorem 1. We therefore have only to show [2ί1? SI2] = 0. Let X, Z be arbitrary
elements of 2ίl5 2I2 respectively. Let y be an arbitrary point of M and let σ =
[Y19 , Yn] be an adapted frame on a neighborhood U of y determined by
an element v = (Yly, , Yny) in P. Let the components of X, Z, and [Z, Z]
be £*, fl* and [X, Z]m respectively in the frame σ. Then ? Ξ 0 for / > p and
37* = 0 for / < p. From Lemma 4 we obtain
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Thus [X,Z]m(y)= -ΣvKyXYiiξ^Xy) for m<p, and [X,Z\"(y) =
i>P

Σ ζKy)(Yi(ηm))(y) for m > p. In order to show [X, Z]m(y) = 0 V m, it suffices
%<,v

to show

(Yi(ξm))(y) = 0 for / > p and m <p , and

= 0 for / < p and m> p .

Lemma 6. Φ°(y), ί/ze restricted linear holonomy group at y (which is the
identity component of Φ(y)) with respect to Γ0(M), is decomposed into the direct
product of two normal subgroups Φ%y) and Φ\iy) such that Φ\iy) is trivial on
Wy and Φ\(y) is trivial on Vy.

Proof, This follows from the proof of Proposition 5.3, p. 183 in [2]. By
Lemma 1 we have that Φ%y)Vy c Vy and Φ\(y)Wy c Wy. From this and
Lemma 6 it follows that the holonomy algebra φ(y) at y splits into a direct
sum of subalgebras φλ(y) and φ2(y), where, as linear endomorphisms of TyM
with respect to the basis {Yly, , Yny}, elements of φx(y) (respectively φ2(y))
are represented by matrices of the form

0
I respectively

0 0

Now let η be the 1-form corresponding to the infinitesimal automorphism Z.
By an easy computation we find that with respect to the moving frame σ, (Fη)H

= Yi(yι) + Σ yjΓlj. In particular, (Pv)H(y) = (Yi(ηι))(y) if / > p and i < p.
j

But an element of φ{y) + Jyφ(y) is represented with respect to the basis
{Ylv, •-, Yny) of TyM by a matrix of the form

Π

"{n-p)X(n-p)

This follows from the above representations of φi(y), i — 1,2, and from the
fact that JyVy = Vy and JvWy = Wy. By a theorem of Lichnerowicz [3, p.
151], (Vη)y β φ(y) + Jyφ{y). This implies that (Fη)H(y) = 0 if / > p and i < p.
Thus we must have (Xi(ηm))(y) = 0 for / < p and m> p. Similarly, we can
prove that (Yi(ξm))(y) = 0 for / > p and m <p. This completes the proof of
Theorem 2.

Finally, if we assume the Kahler manifold M is nondegenerate, we can
obtain a decomposition of 21 starting, as in the Killing case, from any holonomy
bundle:
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Theorem 3. Let M be nondegenerate. Suppose P is any holonomy bundle
of O(M), and G = Φ is its structure group. Suppose Rn = Vx Θ ® Vr is
a decomposition of Rn into a direct sum of subspaces mutually orthogonal with
respect to the usual inner product and invariant under Φ. Let% = %® Θ2ί r

be the corresponding decomposition of Sί. Then the 2Γ4 are complex subspaces
of Sί and in fact ideals.

Proof. As in Theorem 1, it suffices to consider V1 Θ Θ Vr to be
RVl® ζ& RPr. For simplicity, we consider only the case r—2 and write
Rn = RP 0 Rn~p. Let u = (Ylx9 , Ynx) be an element of P with π(u) = x.
Then by Lemma 1, Vx and Wx, the subspaces of TXM spanned by {Ylx, , Ypx\
and [Yp+ix, , Ynx} respectively, are invariant under Φ{x). Since M is non-
degenerate, we have Jx e Φ(x) [3, p. 173]. Then, in particular, JVX C Vx and
/W^ C W3. The rest of the proof proceeds as the proof of Theorem 2.

The results of this paper constitute part of the author's Ph. D. dissertation
written at the University of Notre Dame. The author would like to express his
gratitude to Professor Yozo Matsushima for much encouragement and many
helpful suggestions.
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